soitechnics environmental - geotechnical - building fabric

Ground Investigation Report

Proposed Residential Development

Cefn Isaf, Merthyr Tydfil

November 2023

Proposed Residential Development Cefn Isaf, Merthyr Tydfil Ground Investigation Report

Project Details

Site:	Cefn Isaf, Merthyr Tydfil		
Document Title:	Ground Investigation Report		
Document no.:	STV6119-R01 Rev A		
Date:	November 2023		
Client:	Merthyr Valley Homes Limited		
Issuing office:	Soiltechnics Ltd Cedar Barn, White Lodge, Walgrave, Northampton. NN6 9PY Tel: 01604 781 877 E-mail: <u>mail@soiltechnics.net</u>		

Document history and status

Revision	Date	Description	Author	Checker	Reviewer
А	November 2023	First Issue	RF	КВ	AW/SD

Table of Contents

Non-technical Summary

1	Intro	oduction	1
	1.1	Scheme Outline	1
	1.2	Brief	1
	1.3	Definition of Scope	1
	1.4	Limitations	2
2	Desk	Study	3
	2.1	Sources of information	3
	2.2	Site Description	3
	2.3	Planning Records	4
	2.4	Previous Reports	5
	2.5	Site History	5
	2.6	Regulatory Enquiries	6
	2.7	Anticipated Geology	6
	2.8	Hydrogeology and Groundwater Sensitivity	6
	2.9	Hydrology and Surface Water Sensitivity	7
	2.10	Flood Risk	7
	2.11	Non-Mining Ground Instability Hazard	7
	2.12	Quarrying and Mining	7
	2.13	Landfill and infilled ground	7
	2.14	Recent industrial activity	7
	2.15	Radon	8
	2.16	Underground Infrastructure	8
	2.17	Unexploded Ordnance (UXO) Hazard Screen	8
3	Tier	1 Preliminary Contamination Risk Assessment	9
	3.1	Objectives	9
	3.2	Evaluation Criteria	9
	3.3	Methodology	9
	3.4	Source Assessment	10
	3.5	Receptor Assessment	11
	3.6	Pathway Assessment	11
	3.7	Initial Conceptual Site Model (iCSM)	12
	3.8	Preliminary Risk Assessment Conclusions and Recommendations	18
4		Ind Investigation	19
	4.1	Objectives	19
	4.2	Fieldwork summary	19
	4.3	Unexploded Ordnance (UXO)	19
	4.4	Sampling	20
	4.5	In-situ Testing	20
	4.6	Monitoring Installations	20
	4.7	Investigation Constraints	20
5		pratory testing	21
	5.1	Overview	21
	5.2	Geotechnical Testing	21
	5.3	Chemical Testing	21
	5.4	Materials Testing	21

soiltechnics

vi

6	Grou	nd Investigation Findings	22
	6.1	Ground Model	22
	6.2	Topsoil	23
	6.3	Made Ground	24
	6.4	Devensian Till	25
	6.5	Bishopstone Mudstone Formation	26
	6.6	Groundwater	27
	6.7	Evidence of Possible Contamination	27
	6.8	Obstructions and Instability	27
	6.9	Internal works	28
7	Geot	echnical Discussion	29
	7.1	Scheme Overview	29
	7.2	Geotechnical Category	29
	7.3	Key Geotechnical Issues	29
	7.4	Made Ground	29
	7.5	Building Foundation Strategy	29
	7.6	Geotechnical Parameters	30
	7.7	Spread Foundations	30
	7.8	Pile Resistance	31
	7.9	Ground Improvement	32
	7.10	Residential Ground Floor Construction	33
	7.11	Basement	33
	7.12	Aggressiveness Of The Ground To Buried Concrete	33
	7.12	Drainage	33
	7.13	Pavement Foundation	34
0			-
8		2 Generic Quantitative Risk Assessment	36
	8.1	Objectives	36
	8.2	Fieldwork Observations	36
	8.3	Laboratory Testing Rationale	36
	8.4	Generic Assessment Criteria	36
	8.5	Human Health GQRA (soils and vapour)	37
	8.6	Proposed Site Users Risk Assessment (soils and vapour)	37
	8.7	Construction Workers Risk Assessment	38
	8.8	Adjacent Site Users Risk Assessment	39
	8.9	Controlled Waters Risk Assessment	39
	8.10	Water Supply Pipes	39
	8.11	Updated Conceptual Site Model (uCSM)	39
	8.12	Risk Assessment Conclusions	42
	8.13	Unexpected and Previously Unencountered Contamination	42
9	Soil a	nd Waste Management	44
	9.1	Sustainability	44
	9.2	Waste Hierarchy	44
	9.3	Liability Of Waste Management	44
	9.4	Materials Management	44
	9.5	Waste Characterisation governance	45
	9.6	Waste Populations	45
	9.7	Sampling And Testing	45
	9.8	Waste Characterisation	46
	9.9	Managing Reclaimed Asphalt	47

	9.10 Application Of Advice9.11 Further Recommendations	47 47
10	Recommendations for further works	48

Appendix A	Drawings
Appendix B	Exploratory Hole Logs: Trial Pits
Appendix C	Exploratory Hole Logs: Boreholes
Appendix D	Exploratory Hole Logs: Concrete Cores
Appendix E	Photographic Records
Appendix F	Dynamic Cone Penetrometer Results
Appendix G	In situ Permeability Testing Results
Appendix H	Geotechnical Laboratory Test Results
Appendix I	Concrete Laboratory Test Results
Appendix J	Geoenvironmental Laboratory Test Results
Appendix K	Contamination Assessment Screening
Appendix L	Waste Characterisation Analysis
Appendix M	Integral Geotechnique Ground Investigation Report
Appendix N	Consultants Coal Mining Report
Appendix O	Utility Service Plans
Appendix P	Envirocheck Report
Appendix Q	Regulatory Correspondence

Drawing Register

Title	Produced by	Date	Reference
Site Location Plan	Soiltechnics	July 2023	STV6119-D01-A
Exploratory Hole Location Plan	Soiltechnics	September 2023	STV6119-D02-A
Geological Section	Soiltechnics	September 2023	STV6119-D03-A

List of Tables

Table 1-A:	Definition of Ground Investigation Scope	2
Table 2-A:	Site Description	4
Table 2-B:	Summary of site history	6
Table 2-C:	Summary of anticipated geology at the site	6
Table 2-D:	Preliminary Hydrogeological Model	6
Table 2-F:	Non-Mining Ground Stability Hazards	7
Table 3-A:	Contamination source assessment	11
Table 3-B:	Receptor assessment	11
Table 3-C:	Generic pathway assessment	12
Table 3-D:	Generic pathway assessment	12

Tal	ble 3-E:	iCSM Risk Ratings	13
Tal	ble 3-F:	iCSM – Proposed End Users	14
Tal	ble 3-G:	iCSM – Acute Exposure to Construction Workers	15
Tal	ble 3-H:	iCSM – Chronic Exposure to Adjacent Site Users	15
Tal	ble 3-I:	iCSM – Acute Exposure to Adjacent Site Users	16
Tal	ble 3-J:	iCSM – Phytotoxic Risk to Proposed Planting Scheme	16
Tal	ble 3-K:	iCSM – Controlled Waters Risk	16
Tal	ble 3-L:	iCSM – Current Site Risks (Part IIA)	17
Tal	ble 3-M:	Receptors at Risk Under The Proposed Scheme	18
Tal	ble 4-A:	Summary of fieldwork undertaken	19
Tal	ble 4-B:	Summary of field testing undertaken	20
Tal	ble 4-C:	Summary of monitoring installations	20
Tal	ble 4-D	Table of site restrictions	20
Tal	ble 5-A:	Summary of geotechnical laboratory testing	21
Tal	ble 5-B:	Summary of chemical laboratory testing	21
Tal	ble 5-C:	Summary of concrete laboratory testing	21
Tal	ble 6-A:	Ground Model	23
Tal	ble 6-B:	Summary of obstructions and instability encountered during the investigation works	27
Tal	ble 7-A:	Summary of characteristic geotechnical parameters –Devensian Till	30
Tal	ble 7-B:	Summary of foundation ultimate limit state analyses	30
Tal	ble 7-C:	Key geotechnical variables used in settlement analyses	31
Tal	ble 7-D:	SLS bearing resistance to ensure total settlement to <25mm	31
Tal	ble 7-E:	Variables used for determining pile resistance - granular strata	32
Tal	ble 7-F:	Summary of preliminary pile assessment	32
Tal	ble 7-G:	Summary of common ground improvement techniques	33
Tal	ble 7-H:	Summary of the aggressiveness of the ground to buried concrete	34
Tal	ble 7-I:	Summary of infiltration test results undertaken following of BRE 365	34
Tal	ble 8-A:	Human health GQRA models and outcomes	37
Tal	ble 8-B:	Human health GQRA exceedances	37
Tal	ble 8-C:	uCSM – Proposed End Users	40
Tal	ble 8-D:	uCSM – Acute Exposure to Construction Workers	40
Tal	ble 8-E:	uCSM – Acute Exposure to Adjacent Site Users	41
Tal	ble 8-F:	uCSM – Controlled Waters Risk	41
Tal	ble 8-G:	GQRA Risk Assessment Conclusions	42
Tal	ble 9-A:	Waste management hierarchy	44
Tal	ble 9-B:	Potential waste populations	45
Tal	ble 9-C:	Waste characterisation summary	46
Tal	ble 10-A:	Recommended Further Works (Pre-Commencement)	48
Tal	ble 10-B:	Recommended Further Works (Enabling Works & Construction Phase)	48

List of Figures

Figure 2-A:	Aerial photograph and approximate site boundary	3
Figure 6-A:	Geological cross section through the site	22
Figure 6-B:	Topsoil encountered within BH03	23
Figure 6-C:	Made Ground excavated from BH02	24
Figure 6-D:	Made Ground encountered beneath surfacing in BH04	25
Figure 6-E:	Devensian Till excavated from BH01	26
Figure 6-F:	Bishopstone Mudstone Formation encountered between 10.5m and 13.5 within BH01	27

Non-technical Summary

Торіс	Commentary
Site description	The proposed development currently comprises vacant residential buildings, located on the southern outskirts of Cefn-coed-y-cymmer, which is situated on the northwestern edge of Merthyr Tydfil.
Development proposals	The project consists of the demolition of the currently vacant 4 storey residential buildings on site, and the construction of 2 new, 5 storey residential buildings comprised of 1 and 2 bedroom apartments.
Ground conditions	Exploratory excavations encountered Made Ground to depths of up to 3.3m, largely resulting from terracing on site, which overlies Devensian Till (sand and gravel) with the Bishopstone Mudstone Formation at depth. The Bishopstone Mudstone Formation generally comprised bedded argillaceous sandstone with some layers of limestone. With the exception of a seepage in a trial pit in the south of the site, no groundwater has been encountered
	during ground investigations at the site.
Quarrying and Mining Risk	The site is located within a Coal Mining Reporting Area, but outside of a Development High Risk Area. The Consultants Coal Mining Report for the site, obtained from the Coal Authority, indicates that there are no records of coal mining within the area. The site is not considered to be at a significant instability or subsidence risk from the historical coal mining legacy in the area. There are no historical quarries or active mineral sites recorded within close proximity of the site.
Foundation solution	The Bishopston Mudstone Formation will adequately support concentrated loads on spread foundations, depending on the magnitude of the proposed loads, however, due to the thickness of Made Ground locally, alternative foundations in the form of piles or ground improvement may require consideration.
Drainage potential	The Devensian Till soils display a degree of permeability, although further testing to BRE 365 will be required to confirm viability and inform the design of soakaways systems and SUDS.
Chemical contamination and remedial requirements	Providing new landscaped areas are constructed using site won or imported Topsoil, which is confirmed as suitable for use, end users are at low risk from ground conditions. Sporadic fragments of ACM may be present at surface and will require removal. Asphalt on site potentially contains coal tar in some areas and requires testing to confirm or otherwise.
Radon, gas risk and protection measuresRadon protection measures are not considered necessary.The gas risk at the site is considered protection measures are considered necessary.	
·	Soils should be reused in preference to disposal at landfill where possible.
	Coal tar, and any soils cross contaminated with coal tar materials is classified as hazardous waste. Where implemented appropriately and safely, asphalt containing coal tar can be re-used on site subject to the relevant permissions/permits/consents, in favour of disposal.
Soil wasta managament	Should disposal be proposed, Topsoil can likely be disposed of to a non-hazardous landfill.
Soil waste management	Made Ground (excluding asphalt/coal tar containing materials) can be classified as non-hazardous but this assessment is likely to be impacted by a single sample containing high PAH concentrations (likely from cross-contamination with overlying asphalt). Further testing is recommended in order to determine if the classification can potentially be reduced to inert.
	All natural deposits are classified as inert.
	Testing of existing asphalt confirm the presence and extent of coal tar impacted surfacing is recommended which will inform a detailed and targeted remedial solution.
Recommendation for	In the absence of testing, it must be assumed that all surfacing contains coal tar and an appropriate remedial strategy and subsequent verification report will be required with regard to protection of end users.
further works	Sporadic fragments of ACMs could remain at surface. If present it will require segregation and removal. Specialist visual inspection recommended.
	Further infiltration testing to determine feasibility of soakaways.
	The principal contractor should have a discovery strategy in place for unexpected contamination.

1 Introduction

1.1 Scheme Outline

- 1.1.1 The project consists of the demolition of the currently vacant 4 storey residential buildings on site, and the construction of 2 new, 5 storey residential buildings comprised of 1 and 2 bedroom apartments. Proposal drawings are presented within Appendix A.
- 1.1.2 The report is based on the project proposals and information outlined above; should the scheme change then it will be necessary to review the conclusions and recommendations presented in this report.

1.2 Brief

- 1.2.1 This report has been prepared following instructions received from our Client, Merthyr Valley Homes Limited. The overall brief of works is to:
 - i) Undertake a ground investigation at the site to establish the prevailing ground conditions and identify potential abnormal development constraints.
 - ii) Support a future planning application by assessing the potential risks from contamination at the site.
 - iii) Determine geotechnical parameters and provide a geotechnical appraisal for the scheme.
- 1.2.2 The objectives of this report are outlined below:
 - i) Review and summarise desk study information.
 - ii) Undertake a land contamination Tier 1 preliminary risk assessment.
 - iii) Summarise the intrusive investigation works undertaken and associated laboratory testing.
 - iv) Present a ground model summarising the ground and groundwater conditions at the site including relevant geotechnical parameters.
 - v) Provide a geotechnical appraisal for the project and highlight key geotechnical issues that may impact upon the proposed scheme.
 - vi) Undertake a land contamination Tier 2 generic quantitative risk assessment.
 - vii) Provide recommendations to inform an Options Appraisal and Remediation Strategy, should they be required.
 - viii) Provide a waste characterisation assessment of soils at the site for potential disposal to landfill.

1.3 Definition of Scope

1.3.1 The phasing and scope of the ground investigation works is broadly defined by the following documents.

environmental - geotechnical - building fabric

Title	Document Reference	Publisher	Investigation Scope
Code of practice for ground investigations	BS 5930: 2015	British Standards Institution	Phase 1: Desk study Phase 2: Preliminary investigation
Eurocode 7 — Geotechnical design Part 2: Ground investigation and Testing	BS EN 1997-2: 2007	British Standards Institution	Preliminary Investigation Design Investigation
Investigation of potentially contaminated sites – Code of practice	BS 10175: 2011+A2:2017	British Standards Institution	Preliminary Investigation (desk study) Exploratory Investigation
Land contamination risk management	Online resource, updated April 2021	Environment Agency	Stage 1 Risk Assessment: Tier 1: Preliminary risk assessment Tier 2: Generic quantitative risk assessment
Geotechnical Investigation Brief	1759	Simple Works	Site-specific investigation brief

 Table 1-A:
 Definition of Ground Investigation Scope

1.4 Limitations

1.4.1 Soiltechnics disclaims any responsibility to our Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence in accordance with the terms of our contract, taking account of the resources, investigations and testing devoted to it by agreement with our Client. This report is confidential to our Client and Soiltechnics accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

2 Desk Study

2.1 Sources of information

- 2.1.1 Reference has been made to the following sources of information:
 - An Envirocheck Report and historical map records, presented as Appendix P.
 - British Geological Survey (BGS) GeoIndex Onshore database.
 - BGS Sheet 231 (Scale 1:50 000) *Merthyr Tydfil* (1979).
 - Ordnance Survey OpenData
 - Coal Authority Development and Specific Risk databases.
 - Environment Agency open-source databases
 - Google mapping services
 - Interrogation of search engines for anecdotal information on the site history and other readily available online resources.

2.2 Site Description

- 2.2.1 The proposed development lies on the southern outskirts of Cefn-coed-y-cymmer, which is situated on the northwestern edge of Merthyr Tydfil. The post code for the site is CF48 2RH, and the site is accessed from Wern Road which lies adjacent to the site's southern boundary.
- 2.2.2 An aerial image showing the approximate site boundary is presented below, followed by a table summarising the key site features. A site plan is provided within Appendix A.

Figure 2-A: Aerial photograph and approximate site boundary

Theme	Feature
Current site use	The site currently comprises vacant residential buildings and is secured from public access.
Local area land use	The site is located in a predominately residential area with associated amenities. Woodland extends southwards from the site's southern boundary.
Topography	The topography of the surrounding area generally falls steeply to the southwest, towards Taff Fawr. On site, there is a ~10m fall in level from north to south.
торовгарну	The site has been terraced to create level areas for construction of the existing buildings and external areas.
Buildings, surfacing and other permanent features	Approximately 50% of the site area is occupied by the existing buildings. The buildings appear to be of concrete frame construction with brickwork infill. The buildings are separated by a grassed area which cuts from west to east through the centre of the site. The southern part of the site is predominately surfaced with asphalt with areas of grassed landscaping.
Boundary features	The site is bound by roads to the north and the west, dwellings to the east and woodland to the south.
Vegetation	No significant vegetation was noted within the site boundary.
On-site / adjacent surface water features	Taf Fawr is located roughly 100m to the south of the site.
Environmental Designations	The site is not reported to be within or in close proximity to any areas of designated sensitive land use, such as a Ramsar Site, Site of Special Scientific Interest (SSSI), or Special Area of Conservation.
Injurious and invasive weeds	None observed
Asbestos containing material (ACM) in buildings	The scope of this report excludes identifying asbestos within buildings on site, and an asbestos survey was not made available at the time of writing.
ACMs on site	No suspected ACMs were observed in any surface debris.
Potential sources of contamination	None observed
Evidence for ground instability	None observed
Table 2 Ar Site Deceription	

Table 2-A:Site Description

2.2.3 The observations provided above are made by a Geoenvironmental Engineer, who is not a specialist in asbestos surveying or invasive weed identification. Any associated comments are intended for use by this report only, and not for any other purpose.

2.3 Planning Records

2.3.1 A search of online planning records held for the site by Merthyr Tydfil Council reveals an application for refurbishment of the existing buildings was approved in July 2019. There is no information relevant to this investigation attached to this application.

2.4 Previous Reports

- 2.4.1 Soiltechnics have been provided with a ground investigation report carried out by Integral Geotechnique for Merthyr Valley Homes Limited in September 2022. The investigation comprised a series of windowless sample boreholes and hand excavated trial pits.
- 2.4.2 Ground conditions are reported as up to 3.7m of Made Ground onto *'natural superficial soils'* assumed to be the Devensian Till. These were described as loose, slightly silty, sandy gravels of sandstone and limestone or gravel and cobbles of sandstone and limestone. No groundwater was recorded. Natural soils were only penetrated in a limited number of locations.
- 2.4.3 Integral Geotechnique recommend that further ground investigations are undertaken to inform foundation and floor slab design as the window sample investigation did not achieve sufficient depth. Soil infiltration testing was recommended to inform SUDS design.
- 2.4.4 Concentrations of chemical contaminants were below guideline values, with the exception of a number of speciated PAH compounds within a single sample of Made Ground. Fragments of asbestos containing material were also noted on the ground surface during that investigation phase. Both of these identified contaminants were considered to pose a risk to human health and remedial action was recommended. Environmental receptors are assessed to be at low risk from ground conditions at the site.
- 2.4.5 A potential source of ground gas was identified, associated with the type and age of the Made Ground encountered. The report recommends ground gas monitoring is undertaken.
- 2.4.6 A copy of the Integral Geotechnique report is presented in Appendix M.

2.5 Site History

2.5.1 A chronological summary of the site's history is provided below.

Date	On-site	Off-site
		The local area is occupied by a mix of open space and apparent residential development with associated amenities.
Late 1800s to early 1900s	Buildings are recorded in the northwest quadrant of the site. The remainder of the site appears to be undeveloped.	'Ruin' is recorded adjacent to the east in the late 1880s but is absent by 1901.
		The Brecon & Merthyr Railway is recorded ~200m to the west.
		Open ground is recorded to the south and to the east, with Taf Fawr recorded 100m to the south.
1920s	No significant change.	A sewage works is recorded 50m to the southeast. Increased residential development recorded to the north and the northeast.
1951	The southern half of site is recorded as "Allotment Gardens", with this land use extending so the southeast.	No significant change.
Late 1950s	The majority of the site is undeveloped, with the exception of 'Ruins' recorded in the northwestern corner. Allotments are no longer recorded on site.	No significant change.
1960s	'Refuse Tip' recorded in the northeast of the site.	A row of small buildings is recorded adjacent to the northeastern boundary, consistent with the location of the present day garages.

ltechnics

environmental - geotechnical - building fabric

Date	On-site	Off-site
1970s	'Cefn Isaf' with the current site layout recorded.	The railway is recorded as 'Dismantled Railway' with the viaduct being recorded until current day.
1990s to present day	No significant change.	The sewage works to the south is no longer recorded.

Table 2-B: Summary of site history

2.6 **Regulatory Enquiries**

2.6.1 Soiltechnics have contacted Local Authority Building Control and Environmental Health and at the time of writing the report, no reply has been received. Should any pertinent information be received following issue, this will be forwarded onto the client.

2.7 Anticipated Geology

- 2.7.1 Based on a review of available records, the site is anticipated to be underlain by the following geological units: Devensian Till overlying the Bishopston Mudstone Formation.
- 2.7.2 In addition, due to historical construction and demolition phases occurring at the site, Made Ground could be expected to various depths across the entire site footprint, with deepened deposits in areas of former foundations and basements. With reference to the Integral Geotechnique report, Made Ground was encountered between 0.5-3.7m although the full thickness was proven in only three of eight exploratory positions. The shallowest deposits were to the far south of the site.
- 2.7.3 A summary of the anticipated geology underlying the site is summarised as follows:

Stratum	Bedrock / superficial	Anticipated thickness (m)	Typical description
Made Ground	Superficial	0.5-4	Coarse soils with cobbles and boulders.
Devensian Till	Superficial	3-5	Sand, gravel and cobbles of sandstone and limestone.
Bishopston Mudstone Formation	Bedrock	Up to 750	Mudstone, siltstone and sandstone.

Table 2-C: Summary of anticipated geology at the site

2.8 Hydrogeology and Groundwater Sensitivity

The general hydrogeological profile of the site is provided in the table above. 2.8.1

Stratum	Aquifer Designation	Groundwater commentary	
Devensian Till	Secondary Aquifer - Undifferentiated	No groundwater encountered in previous investigation or recorded in nearby boreholes. Potentially present in basal deposits confined by the rockhead.	
Bishopston Mudstone Formation	Secondary Aquifer - A	Groundwater likely to be present within rock fractures .	

Table 2-D: Preliminary Hydrogeological Model

- 2.8.2 The site is not located within a Source Protection Zone
- There are no recorded potable abstraction licenses and no active groundwater abstraction licenses 2.8.3 associated with industrial processes within 1km of the site.

2.9 Hydrology and Surface Water Sensitivity

- 2.9.1 The closest surface water feature is Taf Fawr, which is located ~100m south of the site and flows in a southeasterly direction.
- 2.9.2 There are no active surface water abstraction licenses down-gradient of the site.

2.10 Flood Risk

- 2.10.1 The site is falls within a Flood Zone 1 area. This designation indicates there is less than a 0.1% chance of flooding from rivers or the sea in any year.
- 2.10.2 The site is recorded outside an area with the potential for surface water flooding.
- 2.10.3 The site is recorded in area shown to have a limited potential for groundwater flooding to occur.
- 2.10.4 It should be noted that this information does not constitute a site-specific Flood Risk Assessment and one may be required for the scheme.

2.11 Non-Mining Ground Instability Hazard

2.11.1 The Envirocheck Report includes hazard ratings due to natural ground instability, which have been derived by the BGS. These hazards have been summarised in the table below.

Hazard Potential
Very Low
No Hazard
No Hazard
Very Low
Very Low
Very Low

Table 2-F: Non-Mining Ground Stability Hazards

2.12 Quarrying and Mining

- 2.12.1 The site is located within a Coal Mining Reporting Area, but outside of a Development High Risk Area. On this basis a Consultants Coal Mining Report has been obtained from the Coal Authority and a copy is presented as Appendix M. The report indicates that there are no records of coal mining within the area. On review of the data, the site is not considered to be at a significant instability or subsidence risk from the historical coal mining legacy in the area.
- 2.12.2 There are no historical quarries or active mineral sites recorded within close proximity of the site.

2.13 Landfill and infilled ground

2.13.1 No records of landfill sites, infilled ground or historical mineral sites are held within 500m of the site.

2.14 Recent industrial activity

2.14.1 There are no regulated facilities or activities in the vicinity of the site under IPPC or LAPPC control, and no registered radioactive substances.

- 2.14.2 The site is in a primarily residential area. As such there are a limited number of commercial and industrial properties in close proximity to the site. There are no pertinent, potentially contaminating Contemporary Trade Directory entries within 100m of the site.
- 2.14.3 The site lies close to Taff Fawr, a tributary of the River Taff. All local discharge consents are positioned down-gradient of the site and therefore are not considered further. There are a number of pollution incidents to controlled waters recorded within 1km, primarily associated with raw sewage discharges. Again, all recorded incidents are down gradient of the site and therefore not considered further.

2.15 Radon

2.15.1 The site is in an area where the above ground radon Affected Area status is classed as an Intermediate Probability Radon Area.

2.16 Underground Infrastructure

2.16.1 Copies of all utility plans obtained are presented as Appendix O. The plans are provided for information only and should not be relied upon to be accurate. In addition, it is worth noting that the public utility plans provided by the asset owners typically exclude private service runs.

2.17 Unexploded Ordnance (UXO) Hazard Screen

- 2.17.1 A preliminary risk review has been undertaken by a UXO specialist to assess the risk of encountering UXO during ground investigation works undertaken by Soiltechnics only and to identify any precautionary measures required. It should be noted that the risk assessment has not been carried out fully in accordance with CIRIA report C785 'Unexploded Ordnance (UXO) A guide for the construction Industry'.
- 2.17.2 The risk review concluded that there was not a credible risk of encountering UXO during the ground investigation. It should be noted that this preliminary risk review does not consider risks to the construction phase.

3 Tier 1 Preliminary Contamination Risk Assessment

3.1 Objectives

- 3.1.1 The objective of this preliminary risk assessment (PRA) is to determine the suitability of the site for the proposed redevelopment and end users, in terms of the risk from contamination. The assessment comprises the following steps:
 - Identify potential contaminant linkages (PCLs) between sources, pathways and receptors.
 - To provide data to assist in the design of potential exploratory and detailed intrusive investigations and to give an early indication of possible remedial requirements, if necessary.

3.2 Evaluation Criteria

- 3.2.1 The following assessment is undertaken within the legislative framework of the planning system. Therefore, the assessment needs to identify if land contamination could pose an unacceptable risk to human health or the environment, within the context of the proposed development site. In the context of the existing site use, as a minimum, land should not be capable of being determined as 'contaminated land' under Part IIA of the Environmental Protection Act 1990.
- 3.2.2 The risk criteria for the proposed development is based on a 'minimal risk' approach, whereas under the existing land use a designation of 'contaminated land' would only apply if there is a significant possibility of significant harm (SPOSH).

3.3 Methodology

- 3.3.1 The objectives listed above are achieved by utilising the information presented within the desk study to develop an initial conceptual site model (iCSM) and identification of potential unacceptable risks. Depending upon the outcome of the Tier 1 assessment, it may be necessary to undertake a Tier 2 generic quantitative risk assessment (GQRA).
- 3.3.2 An iCSM relies upon the identification and assessment of PCLs. A contaminant linkage comprises of three key components:
 - Source a contaminant or pollutant that is in, on or under the land and that has the potential to cause harm or pollution.
 - Pathway Current and post-development routes by which a receptor is, or could be, affected by a contaminant.
 - Receptor Something that could be adversely affected by a contaminant, for example a person (current and proposed end users or neighbours), controlled waters and ecosystems.
- 3.3.3 The Tier 1 risk assessment has been produced with reference to the following guidance:
 - <u>'Land contamination risk management</u>' (EA, 2021).
 - BS 10175:2011+A2:2017 'Investigation of potentially contaminated sites Code of Practice'.
 - CIRIA C552 'Contaminated land risk assessment- a guide to good practice', 2001.
 - BS EN ISO 21365:2020 'Soil quality Conceptual site models for potentially contaminated sites'
 - BS 8576:2013 'Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOC)'.

3.4 Source Assessment

3.4.1 The table below summarises identified sources based on the findings of the desk study. Where appropriate, further discussion has been provided in the paragraphs which follow.

Potential Sources of concern		Detail	Viable source
On-site sources			
	Various inorganic and organic compounds (hydrocarbons, metals, asbestos)	Refuse tip recorded on site from the 1960s until construction of Cefn Isaf in the 1970s. Given the history of the area, the location of the recorded tip and surrounding topography, it is considered unlikely this record relates to depositing of waste	
Historical 'refuse tip' recorded on site	Permanent ground gases (CH4 and CO2)	and it is more likely the site was used for collection and sorting of waste prior to transport elsewhere for disposal. Indeed, the site is not recorded as a landfill site. On this basis, the potential for buried waste which could result in a significant source of chemical contaminants or ground gas is considered low.	N
Asbestos at surface	Asbestos	Although no obvious ACMs were identified during this investigation, the previous ground investigation did identify fragments of asbestos cement sheeting at surface on the central grassed embankment. Given the site is vacant, it is possible that sporadic ACM fragments remain.	Y
Made Ground	Metals, polycyclic aromatic hydrocarbons (PAH), asbestos	Made Ground is expected to be encountered across site due to historical construction phases and potential terracing works. The previous ground investigation undertaken by Integral Geotechnique encountered Made Ground up to 3.7m, which included demolition-type waste.	Y
	Permanent ground gases (CH4 and CO2)	It is considered unlikely that the Made Ground will be a significant source of ground gas as high concentrations of organic or putrescible material was not recorded and is not anticipated.	N
Radon Radon		The site is recorded as being in an Intermediate Probability Radon Area with between 1-3% of homes at or above the Action Level. On this basis, no radon protection measures are necessary.	N
Aggressive ground conditions due to potentially pyritic ground	Pyrite and sulphates	Ground is potentially pyritic.	Y
Asphalt	Coal tar	Given the age of the existing hardstanding areas, the asphalt may contain coal tar.	Y
Unexploded Ordnance	UXO	The Preliminary Risk Assessment indicates there is not a credible risk of encountering UXO during construction works.	N
Off-site sources			
Historical sewage treatment plant recorded 50m to the south	Various inorganic and organic compounds (Metals, acids/alkalis, asbestos), Micro- organisms (Pathogens).	There are no recorded pollution incidents relating to the works. The plant is also located downgradient from the site and therefore migration of contaminants from this source to the subject site is unlikely.	N

environmental - geotechnical - building fabric

Potential Sources	Contaminant(s) of concern	Detail	Viable source?
	Permanent ground gases (CH4 and CO2)	Generally, sewage treatment plants send treated solid wastes off site for disposal and therefore organic waste within the ground, which is capable of being a significant source of ground gases is considered unlikely.	N

Table 3-A: Contamination source assessment

3.5 Receptor Assessment

3.5.1 The following table summarises the identified receptors based on current site conditions and our understanding of the proposed end use:

Receptor Category	Principal Receptor	Receptor present?	Detail	
	Users of the current site	No	Currently vacant.	
	End user of the developed site	Yes	Proposed residential use with soft landscaping.	
Human health	Construction operatives and other site investigators	Yes	Site to be developed.	
	Adjacent site users and off-site members of the public	Yes	Public footpath and residential properties present adjacent to site.	
Controlled	Surface waters	Yes	Taf Fawr is located ~100m south of site.	
waters	Groundwater	Yes	Site over secondary aquifers.	
Sensitive	Current site	No	Site is not currently within, or proposed to form, a	
ecosystems and species	Developed site	No	designated environmentally sensitive area (e.g. SSSI, RAMSAR, AONB, SPA, SAC)	
	Soft landscaping (current)	No	No significant vegetation present	
	Soft landscaping (proposed)	Yes	Soft landscaping proposed, potentially including planting.	
Property	Duilding motorials	Vec	Concrete classification to be assessed under the geotechnical investigation.	
	Building materials	Yes	Water supply pipes will be required within the development.	

Table 3-B:Receptor assessment

3.6 Pathway Assessment

3.6.1 The following table summarises the generic human health pathway assessment for the site, assuming a range of contaminant sources within the underlying soils. Source-specific pathways are considered within the iCSM in subsequent report sections.

Human Health Exposure Pathway	Residential land with communal soft landscaping (proposed)	Construction operatives	Adjacent Site Users
Ingestion, inhalation and dermal contact with soils and dusts	\checkmark	\checkmark	✓ (inhalation only)
Ingestion, inhalation and dermal contact with site derived dusts indoors	✓	✓	×
Ingestion of home-grown vegetables	×	×	×
Inhalation of vapours in outside spaces	\checkmark	\checkmark	\checkmark

environmental - geotechnical - building fabric

Human Health Exposure Pathway	Residential land with communal soft landscaping (proposed)	Construction operatives	Adjacent Site Users
Intrusion and inhalation of vapours indoors	\checkmark	\checkmark	×
Accumulation and Inhalation of ground gas in enclosed structures	\checkmark	\checkmark	×
Permeation into below-ground drinking water pipes	√	×	×

Table 3-C: Generic pathway assessment

3.6.2

The following table summarises generic pathways for the site which could be viable for the identified controlled water receptors, given our understanding of the hydrogeological model and assuming a range of contaminants in the sub-surface.

Controlled Water Exposure Pathways	Current Setting	Proposed Setting	Mechanism
Site characteristics			
Leaching via infiltration through unsurfaced areas, and surface run-off	√	\checkmark	Mobilisation
Leaching via infiltration through cracks/joints in hardstanding areas and drainage infrastructure	\checkmark	\checkmark	Mobilisation
Leaching via saturation from groundwater flooding and shallow/perched groundwater bodies	√	\checkmark	Mobilisation
Infiltration through sustainable drainage systems	×	✓	Mobilisation
Preferential lateral pathways (e.g. underground services)	√	\checkmark	Migration
Preferential vertical pathways (e.g. piling, vibro-stone columns)	×	\checkmark	Migration
Hydrogeological characteristics			
Vertical migration through permeable strata into shallow aquifers and perched groundwater bodies	√	\checkmark	Migration
Vertical migration through permeable strata into sensitive aquifers at depth	√	\checkmark	Migration
Lateral migration within shallow and perched groundwater bodies into surface waters	✓	✓	Migration

Table 3-D: Generic pathway assessment

3.7 Initial Conceptual Site Model (iCSM)

- The table below presents our approach to the assessment of risks associated with PCLs. The 3.7.1 categories below are based upon the definitions within CIRIA C552 (2001), with the addition of a 'negligible likelihood' scenario, which is to be used where there is no realistic scenario in which harm could occur.
- 3.7.2 The initial conceptual site model (iCSM) is presented within the following tables overleaf.

environmental - geotechnical - building fabric

		Consequence of harm				
		Severe	Medium	Mild	Minor	
	High likelihood	Risk: Very high (high – severe)	Risk: High (high – medium)	Risk: Moderate (high – mild)	Risk: Moderate/Low (high – minor)	
harm	Likely	Risk: High (likely – severe)	Risk: Moderate (likely – medium)	Risk: Moderate/Low (likely – mild)	Risk: Low (likely - minor)	
Probability of harm	Low Likelihood	Risk: Moderate (low – severe)	Risk: Moderate/Low (low – medium)	Risk: Low (low – mild)	Risk: Very low (low – minor)	
Probal	Unlikely	Risk: Moderate/Low (unlikely – severe)	Risk: Low (unlikely – medium)	Risk: Very low (unlikely – mild)	Risk: Very low (unlikely – minor)	
	Negligible Likelihood	Risk: Low (negligible– severe)	Risk: Very Low (negligible– medium)	Risk: Very Low (negligible– mild)	Risk: Negligible (negligible– minor)	

Table 3-E: iCSM Risk Ratings

RECEPTOR: PROPOSED END USERS

Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion
Asbestos at surface	Asbestos	Inhalation of dusts	Risk: Moderate (likely – medium)	ACMs have previously been noted at surface on the central embankment. Although no obvious ACMs were noted during this investigation, the presenc of sporadic fragments is possible.
Made Ground of unknown origin	Metals, polycyclic aromatic hydrocarbons (PAH), asbestos	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Moderate (likely – medium)	Made Ground has been recorded on site and is associated with previous developments and terracing on site. Elevated levels of inorganic and organic contaminants could be present in the Made Ground deposits due to its origin and composition (e.g., potentially containing uncontrolled demolition materials). The previous site investigation recorded elevated concentrations of PAH within this material. Testing undertaken to date has not detected any asbestos within soils.
Organic contaminants associated with Made Ground	PAHs, total petroleum hydrocarbons (TPH)	Permeation into drinking water pipes	Risk: Moderate (likely – medium)	Organic contaminants could be present in soils at depths at concentrations which could pose a risk of penetrating drinking water pipes.
Asphalt	Coal tar	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Moderate/Low (low – medium)	Given the age of the development, it is possible that asphalt on site contains coal tar. Based on current development proposals, the existing access road along the southern boundary is to remain. It is not known if it is proposed to resurface the area. Where coal tart containing asphalt might remain, there will be a potential risk to future site users should the surface become damaged or worn.

Table 3-F: iCSM – Proposed End Users

RECEPTOR: CONSTRUCTION WO	RKERS			
Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion

RECEPTOR: CONSTRUCTION WORKERS

General Made Ground	Asbestos fibres and ACMs	Inhalation of dusts	Risk: Moderate/Low (low – medium)	If present, asbestos in soils can present an acute risk to construction workers, particularly during the enabling works phases. Very low and trace concentrations often pose a low risk if appropriate controls are put in place. Testing undertaken to date has not detected any asbestos within soils.
	Metals, PAH, TPH	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Low (unlikely – medium)	No gross contamination of high-risk contaminants anticipated (e.g., cyanide, benzene, and vinyl chloride) based on the history of the site and the previous ground investigation. Standard PPE and hygiene protocols for working on brownfield sites are likely to be sufficient to the mitigate risk.
Asbestos at surface	Asbestos fibres and ACMs	Inhalation of dusts	Risk: Low (unlikely – medium)	ACM fragments were observed at surface on the central embankment during the original ground investigation. Any residual fragments are likely to be sporadic and localised and will pose a low risk if appropriate controls are put in place.
Asphalt	Coal tar	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Low (unlikely – medium)	Possible risk from coal tar during removal of asphalt. Standard PPE and hygiene protocols for working on brownfield sites are likely to be sufficient to the mitigate risk but testing to confirm extent of coal tar within the asphalt is recommended to confirm/refine the risk.

 Table 3-G:
 iCSM – Acute Exposure to Construction Workers

RECEPTOR: ADJACENT SITE USERS FOLLOWING COMPLETION

Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion
General Made Ground	Metals, PAH, TPH, asbestos	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Low (unlikely – medium)	Based on the exposure pathways that would be present from the developed site, and on the anticipated levels of contamination, it is considered unlikely that a pollutant linkage could pose an unacceptable risk to off-site receptors.

Table 3-H:iCSM – Chronic Exposure to Adjacent Site Users

RECEPTOR: ADJACENT SITE USERS DURING THE CONSTRUCTION PHASE							
Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion			

General Made Ground	Asbestos fibres and ACMs Inhalation of dusts		Risk: Moderate/Low (low – medium)	Potential risk associated with generation of air-borne asbestos fibres and dust during construction main earthworks phase. Whilst there is a low likelihood of harm occurring due to the effect of fresh-air dilution, the risk cannot be discounted at this stage.
	Metals, PAHs, TPH	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Low (unlikely – medium)	Unlikely to pose a viable risk to off-site receptors.
able 3-1: iCSM – Acute Expo	sure to Adjacent Site Use	rs		
RECEPTOR: PROPOSED PLANTING				
Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion
				Given the site's location in an urban environment, elevated levels of

RECEPTOR: CONTROLLED WATERS

Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion
Made Ground	Metals, PAHs, TPHs	Leaching and lateral migration (Surface water)	Risk: Moderate/Low (low – medium)	Potential leachable contaminants within the Made Ground. There is a potential for contaminants to be mobilised through the infiltration of rainwater, followed by the lateral migration along preferential pathways and the underlying Devensian Till, ultimately discharging into the Taf Fawr.
		Leaching and vertical migration (Groundwater)	Risk: Moderate/Low (low – medium)	Potential leachable contaminants within the Made Ground. There is a potential for contaminants to be mobilised through the infiltration of rainwater into groundwater.

Table 3-K:iCSM – Controlled Waters Risk

3.7.3 The risk to identified receptors from the proposed developments under the planning regime are assessed under a 'minimal risk' approach. Whereas the risk to receptors under the current and continued use of the site is dealt with under the regulatory framework of the Part IIA regime, where Soiltechnics consider if there is a reasonable chance of a 'significant potential of significant harm' (SPOSH) occurring. This is not equivalent to a due diligence assessment for the continued use of the site to aid in determining potential contaminated land liabilities or land valuations.

Preliminary Assessment: Contaminants Pathway Is their reasonable **Potential Source** Discussion Receptor of Concern evidence of SPOSH? Whilst potential contamination sources have been identified, Soiltechnics All potential Inhalation, ingestion Human Health Various have not encountered any evidence which indicates there could be a (Current and adjacent contaminant sources and contact with soils, No significant possibility of significant harm to human health occurring from Contaminants site users) identified above dusts and vapours. contamination on site. Whilst potential contamination sources have been identified, Soiltechnics **Controlled Waters** All potential Various Mobilisation and have not encountered any evidence which indicates there could be a contaminant sources No (Surface water and Contaminants migration significant possibility of significant harm to controlled waters occurring from identified above groundwater) contamination on site. All potential Direct contact and root The site does not fall within a relevant designation for environmentally Various Ecosystems contaminant sources No Contaminants uptake sensitive land (e.g. SSSI, NRA, Ramsar). identified above All potential Through undertaking the desk study, no evidence of potentially significant Various Property contaminant sources Various pathways No Contaminants harm occurring to property has been identified. identified above

The following table sets out the risk to current users considering a SPOSH approach:

Table 3-L: iCSM – Current Site Risks (Part IIA)

3.8 Preliminary Risk Assessment Conclusions and Recommendations

- 3.8.1 In summary, the PRA has not highlighted any potential contaminant linkages (PCL) which could pose a significant possibility of significant harm under the current land use. In terms of the proposed development scheme, a minimal risk approach applies, and PCLs have been identified which require further consideration.
- 3.8.2 In particular the historical refuse tip recorded to the east of the site and potential for Made Ground deposits could give rise to a wide range of contaminants. Further intrusive investigation works are recommended to further refine the assessment and to determine if any remedial measures are necessary.
- 3.8.3 Overall, each PCL identified as posing a risk of 'Moderate/Low' or higher should be considered as part of an intrusive Tier 2 generic quantitative risk assessment (GQRA). The following table summarises the principal receptors at risk which require further investigation to support the proposed development.

Receptor Category	Principal Receptor	PCL Present Requiring Further Investigation?
	Current site users	No
	Proposed site users (soils, dusts, and vapour)	Yes
	Proposed site users (permanent ground gas)	No
Human health	Proposed site users (radon)	No
	Adjacent site users and off-site members of the public (during the long-term use of the site)	No
	Adjacent site users and off-site members of the public (during the construction phase)	Yes
	Construction operatives	Yes
Controlled waters	Surface waters	Yes
Controlled waters	Groundwater	Yes
	Soft landscaping (current)	No
Due a cutu	Soft landscaping (proposed)	No
Property	Potable infrastructure	Yes
	Building materials	To be considered by the specifier

Table 3-M: Receptors at Risk Under The Proposed Scheme

4 Ground Investigation

4.1 Objectives

- 4.1.1 The initial ground investigation scope was provided by the client and was updated in consultation with Soiltechnics.
- 4.1.2 The objectives of the fieldwork were to:
 - i) Establish ground and groundwater conditions at the site.
 - ii) Obtain samples for subsequent laboratory testing.
 - iii) Prove existing foundation, floor slab and retaining wall arrangements.

4.2 Fieldwork summary

- 4.2.1 Fieldwork was undertaken between 1st August and 8th August 2023.
- 4.2.2 A summary of the works completed is set out in the table below, along with the location of the exploratory logs. Photographic records of the trial pits and rock cores are presented in Appendix E, and the exploratory hole location plan is presented within Appendix A.

Exploratory Hole Logs	Method	Qty	Final Depth Range (m bgl)	Comments
				TP02, TP04 & TP05
			0.15 - 1.00	To investigate existing foundations and retaining walls.
Appendix B	Line d Dite	0		TP03 & TP06
	Hand Pits	8	1.20	Drill probing techniques used to find extent of foundations
			0.20 - 0.44	TP01, TP01B & TP07
				Terminated due to service obstruction
Appondix P	Machine-excavated trial pits	2	1.40 - 2.30	TP08 & TP09
Appendix B				Trial pits used for infiltration testing
			10.00 - 15.00	BH01 & BH02. Terminated at target depth.
				BH04
Appendix C	Rotary core boreholes	5	4.00	Terminated within superficial deposits
	borchoics		0.55	BH03 & BH03B
			0.55	Terminated due to obstruction
	Concrete cores and			IN01 & IN02 investigated floor slab construction
Appendix D	non-intrusive ferro scanning.	4	-	IN03 & IN04 investigation wall construction

Table 4-A:Summary of fieldwork undertaken

4.2.3 All soils encountered were described in accordance with BS EN ISO 14688 'Identification and Classification of soil'. Rock was described in accordance with BS EN ISO 14689 'Identification and classification of rock'.

4.3 Unexploded Ordnance (UXO)

4.3.1 In the absence of a UXO Risk Assessment in accordance with CIRIA C681, Soiltechnics commissioned a UXO specialist to undertake a preliminary risk review for the purpose of the ground investigation works phase only.

4.3.2 The review concluded that the UXO risk to the ground investigation works is low within the site boundary and therefore no special precautions were required.

4.4 Sampling

- 4.4.1 During the fieldwork, sampling of soil, rock and groundwater for geotechnical purposes has been undertaken in accordance with BS EN ISO 22475-1 '*Geotechnical Investigation and testing sampling by drilling and excavation and groundwater measurements*'.
- 4.4.2 Samples collected for chemical analysis have been taken and handled in accordance with BS ISO 18400-105:2017 'Soil quality Sampling Part 105: Packaging, transport, storage and preservation of samples'.
- 4.4.3 Various sampling and sub-sampling methodologies have been adopted as appropriate, with the primary aim of obtaining the highest quality sample class practicable. Untested chemical and geotechnical samples will be held for a period of 4 weeks from the date of the first report issue.

4.5 In-situ Testing

4.5.1 The following table summarises the field testing carried out. The results are summarised on individual exploratory hole logs where appropriate and detailed within the Appendices indicated.

Tests	Qty	Applicable standard / guidance	Location of Results
Dynamic cone penetrometer (DCP) using TRL probe	4	DMRB: CS229	Appendix F
Infiltration test	2	BRE 365	Appendix G

Table 4-B: Summary of field testing undertaken

4.6 Monitoring Installations

4.6.1 Instrumentation installed within exploratory holes during the fieldwork are shown on the logs within Appendix B and are summarised below:

Installation type	Target Stratum	Qty	Exploratory hole ID
Combined gas and groundwater well	Devensian Till	2	BH01 & BH04

Table 4-C: Summary of monitoring installations

4.7 Investigation Constraints

4.7.1 The table below outlines restrictions and constraints to the investigation methods which either limited the design of the original scope of work or resulted in a deviation from the agreed scope.

Detail	Impact	
Pre-commencement constraints		
Limited height room to locations BH03 and BH04 due to overhead walkways.	Excavator used to reduce ground level beneath the walkways to allow access to locations for the drilling rig.	
Fieldwork constraints		
Locations TP03 and IN04 were inaccessible	Brickwork had to be removed to gain access.	
Services encountered at locations TP07, TP01 and BH03	Intrusive works were terminated at shallow depth.	
Table 4-D Table of site restrictions		

5 Laboratory testing

5.1 Overview

5.1.1 Samples obtained from exploratory holes were sent to independent accredited laboratories for geotechnical and chemical testing.

5.2 Geotechnical Testing

- 5.2.1 The geotechnical testing schedule was prepared by Soiltechnics using a targeted and judgemental approach, based upon the scheme proposals and our initial understanding of the ground conditions.
- 5.2.2 Geotechnical laboratory test results are presented in Appendix H, and the total number of geotechnical tests undertaken is summarised below:

Qty	Test	
4	Atterberg limits	
2	Particle size distribution (coarse)	
2	Point load testing (axial and diametral)	
2	Uniaxial compressive strength of rock cores	
2	BRE SD1 Suite C	
2	BRE SD1 Suite D	
Table 5-1.	Summary of geotechnical laboratory testing	

Table 5-A: Summary of geotechnical laboratory testing

5.3 Chemical Testing

- 5.3.1 The chemical testing schedule was prepared by Soiltechnics using a targeted and judgemental approach, based upon the initial conceptual site model and fieldwork observations. This is further elaborated on within subsequent report sections.
- 5.3.2 Chemical laboratory test results are presented in Appendix J, and the total number of chemical tests undertaken is summarised below:

Sample Type	Qty	Testing	Suite Name
	6	Basic Contamination Suite [metals, cyanides, PAHs, phenol]	ST Suite 1
Soils	7	Asbestos screening	-
-	1	Waste Acceptance Criteria (WAC) testing	-

Table 5-B:Summary of chemical laboratory testing

5.4 Materials Testing

5.4.1 Concrete laboratory test results are presented in Appendix I, and the total number of chemical tests undertaken is summarised below:

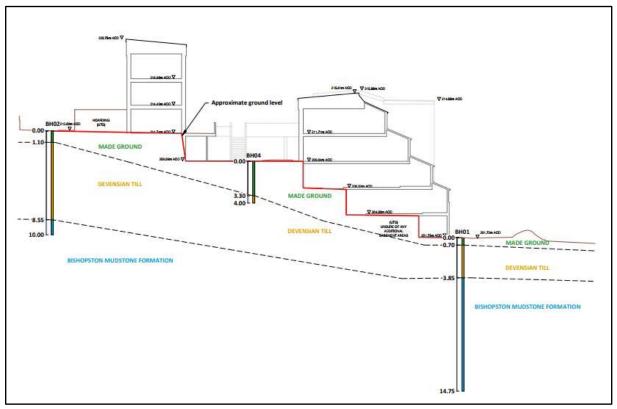

Sample Type	Qty	Testing	Suite Name
Concrete	4	Concrete compressive strength	-
	4	Carbonation assessment	-
	<u></u>	· of one works laboratory to sting	

 Table 5-C:
 Summary of concrete laboratory testing

6 Ground Investigation Findings

6.1 Ground Model

- 6.1.1 Ground conditions encountered were relatively consistent across the site and were broadly in line with those anticipated from the desk study.
- 6.1.2 The table below presents our generalised interpretation of geological conditions at the site. Unless otherwise stated in subsequent interpretive report sections, this represents the adopted ground model. A geological cross section through the site is presented on Drawing 03 and an extract is presented below.

Figure 6-A: Geological cross section through the site

6.1.3 Further detail about the ground conditions encountered is provided in the relevant sub-sections below.

Stratum	Brief description	Top depth range (m bgl)	Adopted model top depth (m bgl)	Thickness (m)
Hard surfacing	Asphalt, concrete and paving slabs	G.L	G.L.	0.05-0.2
Topsoil (Central courtyard)	Firm dark brown, slightly gravelly, organic, clay	G.L	G.L.	0.20-0.55
Light brown and light grey sand and gravel of, brick, concrete and Made Ground Sandstone and soft to firm dark grey and black slightly gravelly clay. Gravel of brick and concrete.		0.05 - 0.2	0.2	0.2-3.1

environmental - geotechnical - building fabric

Stratum	Brief description	Top depth range (m bgl)	Adopted model top depth (m bgl)	Thickness (m)
Devensian Till	Orangish gravelly sand with gravels of sandstone with occasional cobbles of sandstone or mudstone.	0.28 - 3.3	1.0	3.15-7.45
Bishopston Mudstone Formation	Light grey and dark grey sandstone and siltstone.	3.85 - 8.55	6.0	Not proven (>10m)

Table 6-A: Ground Model

6.1.4 It is suspected that no groundwater was encountered, although any seepages would be obscured by drilling techniques.

6.2 Topsoil

- 6.2.1 Topsoil was encountered in exploratory holes within the central courtyard. The base of the unit was typically 0.20m BGL and varied between 0.2m and 0.55m thick.
- 6.2.2 Topsoil was typically encountered as firm, brown, slightly gravelly, organic clay. Gravels consisted of fine to medium, subrounded to subangular sandstone.
- 6.2.3 A photograph of typical topsoil deposits encountered is presented below.

Figure 6-B: Topsoil encountered within BH03

6.3 Made Ground

- 6.3.1 Made Ground was encountered across the site. Where the base of the unit was proven, it varied between 0.28m and 3.3m.
- 6.3.2 Excavations to the north and the south of the site encountered Made Ground to depths generally up to 1m. The deepest Made Ground was encountered in BH04, undertaken within the central grassed area to the east of the site. These depths appear reasonably consistent with those encountered by Integral Geotechnique during the previous investigation and is consistent with terracing on site (see Figure 6-A above). Shallow Made Ground was encountered to the south and Made Ground to the far north was encountered to 1.8m. Boreholes within the central grassed courtyard did not penetrate the Made Ground due to obstructions but proved it extended beyond 1.5m. There is some variation to the southeastern corner of the site, where Made Ground was encountered to 0.7m in this investigation but Integral Geotechnique recorded Made Ground to 3.7m some 5-6m west of this position.
- 6.3.3 Made Ground was typically encountered as light brown, sandy, gravel of mudstone, sandstone, brick and concrete over black and brown, slightly sandy, gravelly, clay. Gravels comprised concrete, brick, sandstone.
- 6.3.4 Photographs of the typical Made Ground encountered are presented below.

Figure 6-C: Made Ground excavated from BH02

Figure 6-D: Made Ground encountered beneath surfacing in BH04

6.4 Devensian Till

- 6.4.1 Devensian Till was encountered across the site. The base of the unit was encountered at 3.85m to the north (BH01). Within BH02 to the south of the site, the Devensian Till was proven to 4.2m. Between 4.1-8.55m there was poor recovery, although based on the material recovered, it was suspected to be Devensian Till. On this basis, it would appear that the deposits deepen across the site to the south.
- 6.4.2 The Devensian Till comprised orangish brown, gravelly, silty sand with suspected cobbles of sandstone. Gravels consisted of sandstone and limestone.
- 6.4.3 A photograph of the typical Devensian Till is presented below.

soiltechnics environmental - geotechnical - building fabric

Figure 6-E: Devensian Till excavated from BH01

6.5 **Bishopstone Mudstone Formation**

- 6.5.1 Bishopstone Mudstone Formation was located beneath the Devensian Till. The base of the unit was not penetrated.
- 6.5.2 Bishopstone Mudstone Formation was typically encountered as weak, grey, thinly to thickly bedded, argillaceous sandstone with closely spaced to medium spaced bedding fractures, occasionally infilled with soft, grey, slightly sandy, slightly gravelly clay. Occasional beds of medium strong, light grey limestone were also encountered.
- 6.5.3 A photograph of the typical Bishopston Mudstone Formation encountered is presented below.

Figure 6-F: Bishopstone Mudstone Formation encountered between 10.5m and 13.5 within BH01

6.6 Groundwater

6.6.1 No groundwater was encountered during the ground investigation with the exception of a slight seepage at the base of TP08.

6.7 Evidence of Possible Contamination

6.7.1 During the ground investigation works, no significant visual or olfactory evidence of contamination was noted, except for the presence of anthropogenic materials contained within the Made Ground (brick and concrete).

6.8 **Obstructions and Instability**

- 6.8.1 The table below summarises the instability encountered that affected the progress of the investigation works.
- 6.8.2 The general stability of trial pits during excavation are also recorded on the trial pit logs.

Strata / Area	Depth range (m bgl)	Issue	Description
Devensian Till	0.35 – 2.30	Instability	Collapse of exploratory holes due to addition of water for soakaway testing
Made Ground	0.3-0.55	Obstruction	Boreholes BH03A and BH03B and trial pit TP01B terminated due to presence of concrete.
Made Ground	0.2-0.35	Obstruction	Suspected service in TP01 and TP07

 Table 6-B:
 Summary of obstructions and instability encountered during the investigation works

6.9 Internal works

- 6.9.1 IN01 and IN02 were undertaken through the existing concrete floor slabs and IN03 and IN04 were undertaken through existing walls. In all locations, the concrete was confirmed to be reinforced. Scanning was also undertaken to confirm the presence and spacing of reinforcement within.
- 6.9.2 With regard to the floor slabs, a screed finish of 100mm thick was observed in IN01 but was absent in IN03. The concrete was recorded at 215mm and 300mm respectively.
- 6.9.3 The walls were confirmed to have a thickness of 240mm and 245mm.
- 6.9.4 Core and scan records are presented in Appendix D

7 Geotechnical Discussion

7.1 Scheme Overview

- 7.1.1 The following assessments are made on the investigatory data presented in the preceding sections of this report and are made with reference to the specific nature of the development. Should scheme proposals change then it is recommended that the validity of the conclusions of this report in relation to the revised scheme are checked.
- 7.1.2 In view of the scheme proposals, the geotechnical elements considered in this report are outlined below:
 - Building foundations
 - Drainage
 - Pavement
 - Floor slab

7.2 Geotechnical Category

- 7.2.1 In accordance with BS EN1997-1:2004 + A1:2013 (Eurocode 7), the project is designated as Geotechnical Category 2. This category includes projects with *conventional types of structures and foundations with no exceptional risk, or difficult ground or loading conditions*. Furthermore, *routine design procedures* are appropriate.
- 7.2.2 It should be noted that this Report does not constitute a Geotechnical Design Report (GDR) as defined in Eurocode 7. Accordingly, a GDR should be prepared by the designer during the detailed design phase.

7.3 Key Geotechnical Issues

- 7.3.1 In view of the ground conditions, the following list summarises the key geotechnical issues that may impact the scheme and will therefore need to be appropriately managed during the lifecycle of the project:
 - Made Ground
 - Groundwater

7.4 Made Ground

7.4.1 Deep Made Ground was encountered in the northeast of the site during both Soiltechnics and Integral Geotechnique ground investigations. The Made Ground is unsuitable for supporting concentrated foundation loads due to their variable characteristics. Accordingly, foundations should extend, as a minimum, through such deposits and where Made Ground thicknesses exceed 2.5m, this may ultimately require alternatives to spread foundations to be considered.

7.5 Building Foundation Strategy

7.5.1 Due to the deep Made Ground discussed above a range of foundations types are considered suitable for the project;

- Spread foundations
- Piles
- Ground improvement

7.6 Geotechnical Parameters

7.6.1 Characteristic values of geotechnical parameters have been derived, in accordance with Eurocode 7. The following tables present the recommended characteristic values for the strata encountered:

Variable	Characteristic value	Derivation
Weight density above water table, γ_{b} (kN/m³)	17	BS8004:2015 Figure 1
Weight density below water table, γ_{sat} (kN/m³)	19	BS8004:2015 Figure 2
Critical state angle of shearing resistance, ϕ_{cv} (°)	34	Literature

 Table 7-A:
 Summary of characteristic geotechnical parameters – Devensian Till

7.7 Spread Foundations

- 7.7.1 The naturally deposited soils underlying the foundations are coarse grained in nature and therefore are not shrinkable and thus their volume will not be influenced by the water demands of the variety of trees at the site Accordingly and in isolation of other considerations affecting foundation depth, foundations extend a minimum of 0.75m below ground level.
- 7.7.2 Made Ground was encountered across the site. All foundations should extend through Made Ground and into the underlying Devensian Till deposits by a minimum of 0.3m. The deepest areas of Made Ground were encountered within the centre of site extending up to 3.30m BGL. Where Made Ground is shallow, say <2.5m then spread foundation are likely to be suitable. In areas of deepened Made Ground, pile foundations are likely to be required.
- 7.7.3 Based on the considerations outlined above, it is anticipated that spread foundations will be a minimum 1.4m deep. Ultimate limit state analyses (bearing capacity) have been undertaken in accordance with the approach outlined in Annex D of Eurocode 7 to derive the following design bearing resistances. These bearing resistance will also be applicable where foundation depth is increased in order to penetrate the Made Ground.

Tupo	Size / width	Founding depth	Founding stratum	Bearing r	Bearing resistance	
Туре	(m)	(m BGL)	Founding stratum	Combination 1	Combination 2	
	1.0m x 1.0m	1.40	Devensian Till	1348 kN/m ²	640 kN/m ²	
Pad	1.5m x 1.5m	1.40	Devensian Till	1475 kN/m ²	691 kN/m²	
	2.0m x 2.0m	1.40	Devensian Till	1603 kN/m ²	742 kN/m ²	
	0.45m	1.40	Devensian Till	396 kN/m run	197 kN/m run	
Strip	0.6m	1.40	Devensian Till	563 kN/m run	277 kN/m run	
	0.75m	1.40	Devensian Till	748 kN/m run	363 kN/m run	

 Table 7-B:
 Summary of foundation ultimate limit state analyses

7.7.4 Serviceability limit state (SLS) has been assessed by undertaking settlement analyses in accordance with the approach outlined in Annex F of Eurocode 7 and adopting the following variables:

environmental - geotechnical - building fabric

Stratum	Variable	Value adopted Derivation
Devensian Till	SPT N Value	20 Literature

Table 7-C: Key geotechnical variables used in settlement analyses

7.7.5 The proposed loads are not known at this stage. Accordingly, the maximum bearing pressures have derived to ensure settlement is less than 25mm, which is typically adopted as a maximum tolerable limit. The following table summarises the results.

Foundation type	Size / width (m)	SLS bearing resistance
	1.0m X 1.0m	650 kN/m ²
Pad	1.5m x 1.5m	555 kN/m²
	2.0m x 2.0m	535 kN/m ²
	0.45m width	330 kN/m run
Strip	0.6m width	365 kN/m run
	0.75m width	400 kN/m run

 Table 7-D:
 SLS bearing resistance to ensure total settlement to <25mm</th>

- 7.7.6 Differential settlement is dependent upon the variation of loads imposed on the ground and consistency of the foundation supporting ground. Assuming foundation loads are reasonably uniform and in line with the values outlined above, it is estimated that differential settlement is unlikely to exceed say 15mm. It is likely settlement will be substantially achieved within say 10 years of construction.
- 7.7.7 It should be noted that foundation design is iterative. Accordingly, a final check of ultimate and serviceability limit states should be undertaken following confirmation of foundation size and loads. Both ultimate limit state and serviceability limit state MUST be verified.

7.8 Pile Resistance

- 7.8.1 In areas where there is deep Made Ground (>2.5m) a piled foundation may be required. Accordingly, a preliminary assessment of single pile capacity has been undertaken to assist the foundation designer in establishing a foundation layout who will also retain design responsibility. The assessment has been undertaken in accordance with BS EN1997-1:2004 + A1:2013 and BS 8004:2015. It is recommended that the design and installation of the piles are determined by a specialist piling contractor who has experience in pile installation in these or similar ground conditions.
- 7.8.2 It is assumed that the piles will be installed using replacement piling techniques; i.e. bored piles.
- 7.8.3 The calculations have been undertaken with the aid of PILE, a specialist geotechnical software programme developed by OASYS. The analyses have been undertaken without explicit verification of serviceability limit state. Accordingly, set R4 partial factors have been adopted for Combination 2. However, as a general guide, the settlement of a single pile at working loads (factor of safety > 2) is typically of the order of 1% of the pile diameter.
- 7.8.4 A model factor of 1.4 has been adopted in the analyses. The value may be reduced to 1.2 If the resistance is verified by a maintained load test taken to the required, unfactored ultimate resistance.
- 7.8.5 Shaft resistance within any Made Ground is assumed to be zero. It is further assumed that the Made Ground will not cause downdrag on the pile.

7.8.6 Unit base and shaft resistance within the granular strata have been derived using an effective stress approach, adopting the variables detailed in Table 7-E. When deriving unit base resistance, a bearing pressure coefficient has been adopted based on the relationship suggested by Berezantsev (1961).

Stratum Variable		Value	Derivation
Devensian Till	Earth pressure coefficient, K _s	0.7	BS 8004:2015 – Table 8
	Angle of interface friction, δ (°)	34	BS 8004:2015 – Eqn 36

Table 7-E: Variables used for determining pile resistance - granular strata

- 7.8.7 Unit shaft resistance within the Bishopstone Mudstone Formation has been derived based on the compressive strength of the material and the formulae presented in Table 54.8 of the ICE Manual of Geotechnical Engineering; an average value has been adopted. It is assumed that 'good' construction practices will occur when the piles are installed, and as a result full bonding between the concrete and rock has been assumed. On this basis a unit shaft resistance of 2.2 MPa has been adopted.
- 7.8.8 Unit base resistance within the Bishopstone Mudstone Formation has been derived based on the compressive strength of the material and the guidance given in Section 54.3.7.2 of the ICE Manual of Geotechnical Engineering. The value has been reduced based on the limiting compressive strength of the concrete. On this basis a unit base resistance of 7.5 MPa has been adopted
- 7.8.9 The table below summarises resistances for a 7m length pile, assuming 1m embedment into the rockhead. It should be noted that the resistance of a single pile is reduced in the vicinity of other piles. Accordingly, detailed design of the piled foundation arrangement should take into account spacing between piles and pile group effects.

Dilo Longth	0.15m d	iameter	0.3m di	iameter	0.45m d	iameter
Pile Length	ULS C1 (kN)	ULS C2 (kN)	ULS C1 (kN)	ULS C2 (kN)	ULS C1 (kN)	ULS C2 (kN)
7.0	881.7	539.2	1952.7	1173.1	3213	1901.6

Table 7-F: Summary of preliminary pile assessment

7.9 Ground Improvement

- 7.9.1 Ground improvement is typically associated with increasing the strength and stiffness of the ground, thereby leading to increased bearing capacity and lower settlement. This has the consequential benefit that foundation designs can be leaner, economical and more sustainable.
- 7.9.2 There are many techniques associated with ground improvement and consultation with specialist contractors should be undertaken. The following table summarises potentially viable techniques at the site and the relative advantages and disadvantages of each:

Technique	Overview	Advantages	Disadvantages
Vibro-compaction	Insertion of a poker into the ground which vibrates leading to settlement of overlying fill.	Densifies granular soils. Reduces risk of liquefaction and collapse settlement.	Unsuitable in clay soils Induces vibration.
Controlled modulus columns	Installation of low strength concrete columns.	Effective up to tens of metres. Alternative option to driven piles.	Tight spacing required in very soft soils.
Grouting	Cement or polymer based grout is injected into the ground.	Minimal surface footprint required – can repair existing problems in situ.	Less suitable in clayey soils.

environmental - geotechnical - building fabric

Technique	Overview	Advantages	Disadvantages
Excavate and recompact	Excavate existing soft deposits, condition if required (dry out) and place back in compacted layers.	Straightforward with no specialist plant required	Can be time consuming as material is conditioned.

Table 7-G: Summary of common ground improvement techniques

7.10 Residential Ground Floor Construction

- 7.10.1 Ground bearing floor slabs can be adopted where they are remote from trees and where Made Ground and Topsoil deposits are fully removed within the footprint of the building. Following completion of excavations to formation levels it is recommended that the formation is proof rolled to identify any soft areas, which if encountered should be excavated and replaced with suitably compacted engineered fill. It is further recommended that a layer of durable, well graded compacted granular material be placed prior to construction of the floor slabs.
- 7.10.2 In areas close to existing major vegetation at the site (or where ground floors are elevated requiring in excess of 600mm of fills) then it is recommended that suspended ground floors are adopted with a sub floor void determined in accordance with NHBC Standards.

7.11 Basement

- 7.11.1 It is understood that a single lower ground floor will be formed for both structures on site. The southern edge will be at ground level while the northern edge will be cut into the slope. It is anticipated that the basement excavation will extend to a depth of the order of 3.5m at the northern edge. The characteristic geotechnical parameters presented in Section 7.6 should be adopted for retaining wall design purposes.
- 7.11.2 Groundwater is not anticipated to be encountered during excavation of the basement.

7.12 Aggressiveness Of The Ground To Buried Concrete

- 7.12.1 The aggressiveness of the ground with respect to buried concrete has been assessed in accordance with Building Research Establishment Special Digest 1: Concrete in Aggressive Ground Third Edition (2005).
- 7.12.2 The site is interpreted to be a brownfield site where pyrite is likely to be present.
- 7.12.3 Laboratory testing has been undertaken on soil samples obtained from the investigation works.
- 7.12.4 The proposed foundations will extend into previously undisturbed soils that contain pyrite Excavating to form a foundation does not create 'disturbed' ground as defined in BRE SD-1. However any arisings resulting from foundation excavation or replacement piling for example would be classified as 'disturbed' ground. Accordingly, the amount of oxidizable sulphides has also been considered when categorising the strata.

7.12.5 The classification of the strata is tabulated below:

Stratum	Disturbed / Undisturbed	Design sulphate class	Aggressive chemical environment for concrete class
Made Ground	Disturbed	DS-1	AC-1
Devensian Till	Disturbed	DS-1	AC-1

environmental - geotechnical - building fabric

Stratum	Disturbed / Undisturbed	Design sulphate class	Aggressive chemical environment for concrete class
	Undisturbed	DS-1	AC-1

Table 7-H: Summary of the aggressiveness of the ground to buried concrete

7.12.6 At the time of issue, sulphate concentration results for the Bishopstone Mudstone Formation remain outstanding. This report will be updated on receipt of the test results.

7.13 Drainage

- 7.13.1 The predominantly granular deposits of the Devensian Till may be suitable for disposal of stormwater.
- 7.13.2 There is extensive Made Ground across the site. Soakaways would promote leaching of contaminants within the Made Ground soil. Consequently, soakaways should extend through the Made Ground and sufficiently sealed to ensure that stormwater is only discharged into the underlying Devensian Till.
- 7.13.3 Infiltration testing has been undertaken at the site following principles of BRE 365: Soakaway Design (2016). The results are presented as Appendix G and summarised below:

Exploratory hole ID	Stratum tested	Cycle	Infiltration rate (m/s)	Comments
TP08	Devensian Till	1	N/A	Test abandoned due to rising water level caused by collapse of trial pit sides.
ТРО9	Devensian Till	1	1.59x10- ⁵ .	Limited infiltration observed over 90 minute cycle. The rate presented is based on a partially completed cycle i.e. trial pit base depth adjusted to final recorded water depth. The rate is likely to be an overestimate and should therefore be treated as preliminary only.

Summary of infiltration test results undertaken following of BRE 365 Table 7-I:

7.13.4 Further testing would be required to fully assess the potential for soakaway drainage, with testing potentially extending over a number of days to achieve three full cycles of testing in accordance with the guidance. It should be noted that clean gravel backfill was required to maintain stability at TP09 and any future testing should be planned with the in mind.

7.14 **Pavement Foundation**

- 7.14.1 As part of the scheme development it is understood that hardstanding areas will be constructed at or about existing ground level. In situ California Bearing Ratio (CBR) value for the subgrade has been determined from dynamic cone penetrometer testing in accordance with CS 229 Data for Pavement Construction. Results of these tests are presented as Appendix F and indicate a CBR value of 10% would be appropriate.
- 7.14.2 It is recommended that the design values are validated with in situ testing immediately prior to construction. Furthermore, it is recommended that the formation level is trimmed and rolled following the requirements outlined in the Specification for Highway Works Series 600.

7.14.3 The silty nature of the Devensian Till deposits will render them moisture susceptible with small increases in moisture content giving rise to a rapid loss of support to construction plant. It is therefore recommended that the sub-base is laid as soon as practicable following establishment of formation.

8 Tier 2 Generic Quantitative Risk Assessment

8.1 Objectives

- 8.1.1 The objective of this generic quantitative risk assessment (GQRA) is to further assess the potential contaminant linkages (PCLs) identified by the preliminary risk assessment using the following:
 - The findings of the intrusive site investigation and resulting site specific ground and hydrogeological model.
 - Laboratory analysis of soils and groundwater.

8.2 Fieldwork Observations

8.2.1 Fieldwork observations on the potential for contamination and the underlying ground conditions did not identify any new contaminant sources or significant pathway alterations to the anticipated ground model.

8.3 Laboratory Testing Rationale

- 8.3.1 Laboratory testing has been scheduled by targeting potential contaminant linkages identified within the iCSM and observations made during fieldworks. The sampling and testing strategy is based on a judgemental approach.
- 8.3.2 The testing of the general Made Ground deposits was undertaken across various locations to gain spatial coverage over the site and to characterise the strata encountered. Testing included a broad suite of analysis due to the potential for unknown contamination to be present.
- 8.3.3 No other contaminant sources were identified within the iCSM and subsequent fieldworks with the exception of asphalt surfacing. Testing for the presence/absence of coal tar is outside of the current brief but is recommended prior to redevelopment in order to refine the risk assessment.

8.4 Generic Assessment Criteria

- 8.4.1 Assessment of laboratory test data has been carried out using published generic assessment criteria (GACs). The GACs act as screening values to provide a 'trigger' to an assessor that soil concentrations above these limits might present an unacceptable risk.
- 8.4.2 Various GAC sources are used within this report. Key assumptions are made in the derivation of screening values in regard to their use and application, and exposure modelling is based on precautionary national scenarios. This generic approach can result in an overly conservative assessment; therefore, the assessor is required to review the outcome of the GQRA screening in the context of the site specific CSM and identified potential contaminant linkages.
- 8.4.3 Asbestos does not currently have published GACs which can be used for generic assessment purposes, at this stage a present/absent trigger limit has been adopted.
- 8.4.4 Specific details regarding the published GAC sources chosen and any parameter refinements made are summarised within Appendix K, along with the order of preference where multiple GAC sources are available. The exposure models adopted are discussed in the relevant sections below.

8.5 Human Health GQRA (soils and vapour)

8.5.1 The results of the human health screening assessment for soils and vapours are detailed in Appendix K. The following table outlines the exposure models adopted, along with summarising the outcome of each screening assessment.

Receptor	Exposure Model	Outcome
All human health receptors	Presence of asbestos	No suspected ACMs observed during fieldworks. No fibres detected through laboratory analysis.
Proposed users	Residential without homegrown produce	1 sample showing multiple PAH exceedances. 2 samples showing singular PAH exceedances. All other results below GAC screening values.
Construction operatives	Acute occupational exposure (assumed no PPE worn)	No exceedances.
Adjacent site users and the public	Acute off-site public exposure during construction phase	No exceedances.

 Table 8-A:
 Human health GQRA models and outcomes

8.5.2 The table below summarises the instances where contaminants have exceeded the generic screening criteria.

Receptor	Strata	Contaminant	Contaminant Locations & Te Depths		GAC (mg/kg)
			BH02 – 0.90m	0.43	
		Dibenzo(a,h)anthracene	TB02B – 0.25m	0.33	0.31
			TP08 – 0.25m	20	
	Made	Benzo(a)anthracene		110	11
	Ground	Benzo(a)pyrene		120	5.3
		Benzo(b)fluoranthene	TP08 – 0.25	160	3.9
		Chrysene		130	30
		Indeno(1,2,3-cd)pyrene		85	45

 Table 8-B:
 Human health GQRA exceedances

8.6 Proposed Site Users Risk Assessment (soils and vapour)

8.6.7 All reported concentrations of contaminants are below the relevant generic assessment criteria for human health receptors with the exception of PAH. In two locations, minor exceedances of dibenzo(a,h)anthracene were detected, which is consistent with the findings of the Integral Geotechnique report, which identified marginal exceedances of benzo(k)fluoranthene and dibenzo(a,h)anthracene in one of six samples when compared to a guideline values associated with a residential without homegrown produce exposure model. This is considered likely to be representative of general site conditions.

- 8.6.8 Testing of a sample of Made Ground taken from TP08 at 0.25m identified multiple PAH exceedances at concentrations ranging from 20-160mg/kg, which are significantly higher than the concentrations recorded in the other 11 samples that have been tested from the site (by both Integral Geotechnique and Soiltechnics). No obvious source of PAH was observed within the soils and given the presence of asphalt surfacing immediately above the soils that were sampled, it is considered likely the concentrations are a result of cross contamination within the sample. Furthermore, the recorded concentrations are reflective of coal tar within the surfacing. These concentrations are not considered representative of the general Made Ground.
- 8.6.9 Overall, some sporadic and low-level PAH contamination has been identified within the Made Ground, however as concentrations are only marginally above GACs and within the analytical margin of error, these concentrations do not pose a risk to health. Some Topsoil-type soils were encountered in the central part of the site, which were noted to be free of deleterious material and potentially suitable for re-use. Confirmation testing should be undertaken before such soils are reused within soft landscaping.
- 8.6.10 Although no ACMs were observed during this investigation, Integral Geotechnique did note some ACM fragments (cement sheeting) located on the grassed embankment during their works. On this basis, sporadic and localised surface contamination could remain. All ACM surface debris will require removal.
- 8.6.11 In addition, although testing of asphalt for coal tar is outside of the current brief, however the concentrations of PAH within TP08 are indicative of coal tar, with benzo(a)pyrene in excess of 50mg/kg. Based on development proposals, the access road and car park are likely to remain and therefore, while the risk from coal tar is relatively low while it remains bound in place, the risk to end users will increase through road wear and damage. It is recommended that testing of asphalt surfacing is undertaken to confirm it is the source of the elevated PAHs and to inform a detailed remedial strategy.

8.7 Construction Workers Risk Assessment

- 8.7.1 Analysis indicates that contaminant levels do not pose an acute risk to construction workers. In general, standard PPE and hygiene protocols for working on brownfield sites is considered adequate to mitigate against the potential risk from contaminants on site, and no special precautions are required.
- 8.7.2 Although no ACMs were observed during this investigation, Integral Geotechnique did note some ACM fragments (cement sheeting) located on the grassed embankment during their works. On this basis, sporadic and localised surface contamination should be anticipated and will require consideration in the construction phase health and safety plan. As with any brownfield site, there is also the potential to encounter further asbestos containing materials, and a discovery strategy should be in place as standard.
- 8.7.3 It is possible that coal tar is present within the existing asphalt based on the concentrations of PAH identified within TP08. Further testing is recommended to determine the presence/absence of coal tar derived material and thus any remedial measures required. Alternatively, all material should be assumed to contain coal tar as a precaution.

8.7.4 In general, standard PPE and hygiene protocols for working on brownfield sites is considered adequate to mitigate against the potential risk from contaminants on site, and no special precautions are required.

8.8 Adjacent Site Users Risk Assessment

- 8.8.1 Based upon the laboratory results and our understanding of the site, there is not considered to be an unacceptable level of risk to adjacent site users, both during construction and following completion of the development.
- 8.8.2 However, it is possible that coal tar is present within the existing asphalt on site and further testing is recommended to confirm this assessment and determine any remedial requirements. Careful management will be required during any removal of any coal tar to limit the risk to adjacent site users. Consideration will also need to be given to the risk of any such material remaining insitu.

8.9 Controlled Waters Risk Assessment

- 8.9.1 Whilst geology on site is granular in nature and pathways to controlled waters are present, no evidence of significant contamination has been encountered within the proposed development area.
- 8.9.2 Due to the low to moderate sensitivity of the site and relatively low levels of contamination observed through field observations and total soil testing, Soiltechnics are of the opinion that the site does not pose an unacceptable level of risk to controlled waters. Risks to groundwater associated with coal tar will likely be reduced either through further testing to confirm absence, or removal or encapsulation of the source following an approved remediation strategy.

8.10 Water Supply Pipes

- 8.10.1 A full site investigation as set out in the UK Water Industry Research (UKWIR) document '*Guidance* for the selection of Water supply pipes to be used in Brownfield sites' has not been undertaken.
- 8.10.2 The UKWIR document advises a trigger concentration of 0.125mg/kg for the 'extended VOC (volatile organic compounds) suite', which includes the PAH (polycyclic aromatic hydrocarbons) suite that has been included in the soil analysis during this investigation.
- 8.10.3 The maximum summed concentration of PAH congeners from individual samples obtained from the site at likely pipe depths (0.50m to 1.50m bgl) exceeds the trigger concentration of 0.125mg/kg and on this basis the installation of protective barrier-pipes in below ground water infrastructure is recommended as a precaution, unless service trenches are over-dug and backfilled with suitable clean materials.
- 8.10.4 In all instances, it is advised to consult the water company for advice to determine if protective pipe is necessary or if further assessment and investigation works are warranted. Irrespective of the assessment made here, water companies may insist on barrier pipe being installed. Once the initial consultation has taken place, Soiltechnics can support you in any further assessments that may be required.

8.11 Updated Conceptual Site Model (uCSM)

8.11.1 Following on from the discussions above, an updated conceptual site model has been tabulated overleaf.

environmental - geotechnical - building fabric

RECEPTOR: PROPOSED END USERS						
Potential Source	Contaminants of Concern	Pathway	Tier 2 Risk Assessment (probability of harm x consequence)	Discussion		
Asbestos at surface	Asbestos	Inhalation of dusts	Risk: Moderate (likely – medium)	ACMs have previously been noted at surface on the central embankment. Although no obvious ACMs were noted during this investigation, the presence of sporadic fragments is possible. Removal of any ACMs encountered is required, likely through hand picking.		
Made Ground	Metals, polycyclic aromatic hydrocarbons (PAH), asbestos	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Low (unlikely – medium)	Following removal of coal tar asphalt and immediately underlying soils (or encapsulation), residual PAH concentrations are not considered to pose a risk to health. Soft landscaping constructed using either site-won Topsoil (subject to suitability for use verification) and/or imported Topsoil will further reduce risk of exposure to PAH in the Made Ground.		
Organic contaminants associated with Made Ground	PAHs, total petroleum hydrocarbons (TPH)	Permeation into drinking water pipes	Risk: Moderate/Low (low – medium)	PAHs have been identified within Made Ground at water pipe installation depths (0.5-1.5m) at low concentrations but exceeding water supply pipe thresholds. On this basis, it is likely barrier pipes will be required.		
Asphalt	Coal tar	Ingestion, inhalation and contact with soils, dusts and vapours	Risk: Moderate/Low (low – medium)	Although the asphalt on site has not been tested for the presence of coal tar, high PAH concentrations have been identified in shallow soils potentially cross contaminated with asphalt during excavation. If the source of the PAH is the overlying asphalt, the concentrations of benzo(a)pyrene are indicative of the presence of coal tar. Specific testing is recommended to confirm this assessment and refine the risk.		

Table 8-C:uCSM – Proposed End Users

RECEPTOR: CONSTRUCTION WORKERS							
Potential Source	Contaminants of Concern	Pathway	Tier 2 Risk Assessment (probability of harm x consequence)	Discussion			
General Made Ground	Asbestos fibres and ACMs	Inhalation of dusts	Risk: Low (unlikely – medium)	No asbestos has been detected in any samples of Made Ground.			

Table 8-D:uCSM – Acute Exposure to Construction Workers

environmental • geotechnical • building fabric

RECEPTOR: ADJACENT SITE USERS DURING THE CONSTRUCTION PHASE						
Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion		
General Made Ground	Asbestos fibres and ACMs	Inhalation of dusts	Risk: Low (unlikely – medium)	No asbestos has been detected in any samples of Made Ground.		
able 8-E: uCSM – Acute	e Exposure to Adjacent Site Use	ers				
RECEPTOR: CONTROLLED WA	ATERS					
Potential Source	Contaminants of Concern	Pathway	Tier 1 Risk Assessment (probability of harm x consequence)	Discussion		
Mada Cround	Motols DALIS TOUS	Leaching and lateral migration (Surface water)	Risk: Low (unlikely – medium)			
Made Ground	Metals, PAHs, TPHs	Leaching and vertical migration (Groundwater)	Risk: Low (unlikely – medium)			

Table 8-F:uCSM – Controlled Waters Risk

8.12 Risk Assessment Conclusions

8.12.1 The updated CSM has identified potential contaminant linkages which exceed the low-risk threshold and require further investigation, mitigation, or remediation. These are discussed in further detail below.

Contaminant Source	Receptor	Recommended Action	Discussion
Asbestos at surface	All human receptors	Remediation	Sporadic fragments of ACMs could remain at surface. If present it will require segregation and removal. Specialist visual inspection recommended.
Elevated organic contaminants within the Made Ground	Drinking water infrastructure	Remediation	There is a requirement for installation protective barrier pipes for drinking water.
Asphalt	All human receptors	Remediation/disposal	It is considered likely that coal tar is present within the asphalt of the access road and car park. Testing of the asphalt is recommended to confirm this assumption and refine the risk assessment and determine any mitigation measures required. Subject to detailed remedial strategy, asphalt containing coal tar could be reused and left in-situ by adopting overlay or stabilisation techniques. Excavated tar-bound material can be reused providing it is stabilised and mixed with a binder using ex-situ cold processes. Careful management during the removal of such material will also be required to limit the risk to adjacent site users and construction operatives.

Table 8-G: GQRA Risk Assessment Conclusions

- 8.12.2 Subject to further testing and refinement of the risk assessments a Remediation Strategy is likely to be required to detail the measures to be taken, along with including the verification plan for all necessary works.
- 8.12.3 Anticipated remedial requirements of the project are unlikely to be inherently complex, and therefore an Options Appraisal is not considered necessary.
- 8.12.4 Once all investigations and remedial works are completed (and assuming that remedial works are considered necessary following any further works/risk assessment refinement), a Verification Report will also be required.

8.13 Unexpected and Previously Unencountered Contamination

- 8.13.1 With the development of any site, there is a residual risk of contamination being found that is unexpected or has not been encountered during investigation or other siteworks.
- 8.13.2 Should any previously unencountered and unexpected contamination be encountered, works should be temporarily halted and Soiltechnics informed. The Consultant should then assess the situation to determine what remedial action is required and inform the Local Authority at the earliest opportunity.

8.13.3 It is often a requirement of Local Authority planning conditions that the building/demolition contractor has a contamination discovery/contingency strategy in place for dealing with unexpected contamination. Soiltechnics are pleased to provide advice on such a strategy if required.

43

9 Soil and Waste Management

9.1 Sustainability

- 9.1.1 Where possible, disposal of soils to landfill should be avoided in preference for more sustainable alternatives. Such alternatives are set out below and rely on appropriate planning and design.
- 9.1.2 Soiltechnics can provide additional support and guidance to assist in overall material management and soil waste minimisation upon request.

9.2 Waste Hierarchy

9.2.1 Under the Waste Regulations, there is a requirement to apply (where reasonable) the waste management hierarchy, which is summarised below. Within the hierarchy, soil disposal to landfill should be limited to the necessary minimum.

Stage (in order of preference)	Example application
Prevention / Reduce	Design, planning, Site Waste Management Plans (SWMP).
Reuse	Reuse of soils under exemption, permit or Materials Management Plan (MMP), sorting at the point of excavation, screening of excavated material.
Recycling	Recycling aggregate, waste segregation, screening and sorting.
Recovery	Remediation works, transfer to a Soil Treatment Facility
Pre-treatment	Non-hazardous and hazardous soils do not need to be treated, where such treatment would not reduce the volume of waste.
Disposal	If the waste hierarchy steps outline above are followed, the remaining waste can be disposed of to a landfill without any further treatment.

Table 9-A: Waste management hierarchy

9.3 Liability Of Waste Management

- 9.3.1 Part III of the Finance Act was amended in 2018 to extend the scope of landfill tax to cover any site (not exclusively landfills) operating without an appropriate environmental permit, exemption, or MMP.
- 9.3.2 These changes have given HMRC the powers to work with the Environment Agency to identify noncompliant sites and pursue and penalise the person(s) illegally disposing of waste, and anyone who knowingly facilitates the disposal. This includes sites filling site-won soils which are surplus to requirement.

9.4 Materials Management

- 9.4.1 In terms of the development, where reasonably practicable, landfill disposal should be minimised through the reuse of site-won materials on site, or off-site transfer of surplus soils to other development schemes or Soil Treatment Facilities. Early consideration of the site's overall material balance at the design stage is also critical in reducing the need for off-site disposal, limiting costs, and increasing the overall sustainability of the development.
- 9.4.2 Where Made Ground soils are to be reused onsite or materials transferred between sites, a Materials Management Plan (MMP) or Waste Exemption is recommended.

9.4.3 The process of an MMP allows soils that are suitable for reuse and have a certainty of use to not be considered a waste, and therefore not fall under the waste regulations. This scheme is self-regulated within the industry and is supported in principle by the Environment Agency.

9.5 Waste Characterisation governance

9.5.1 The classification of soils for disposal to landfill is undertaken in accordance with WM3 (v1.2GB), and a Waste Acceptance Criteria assessment (WAC) undertaken in accordance with the limits in Annex II of the Landfill Directive (Directive 1999/31/EC).

9.6 Waste Populations

9.6.1 Based on the site observations, development proposals and laboratory results, the following potential soil waste populations have been identified for preliminary assessment purposes:

Potential Waste Population	Description
Topsoil	Firm dark brown, slightly gravelly, organic, clay
Made Ground	Light brown and light grey sand and gravel of, brick, concrete and sandstone and soft to firm dark grey and black slightly gravelly clay. Gravel of brick and concrete.
Clean naturally occurring soils	Natural, uncontaminated clays and sands.

Table 9-B: Potential waste populations

- 9.6.2 Although no asbestos has been identified within soils at the site, fragments of ACM were identified at surface during previous works. Any residual visually identifiable fragments of ACM should be picked out and segregated for disposal as hazardous waste.
- 9.6.3 It is possible that fragments of ACM will be present within near surface Topsoil/Made Ground soils although given they have not been identified at this stage, these are likely to be random and infrequent occurrences at low levels.
- 9.6.4 Where suspected ACMs are visible to the naked eye and waste disposal is necessary, a hazardous waste classification applies. The material should be segregated at the point of excavation and placed in a covered stockpile prior to disposal. Delineation of impacted materials should be feasible by visual inspection in a watching brief by a competent specialist, this would also facilitate the bulk segregation and localised handpicking of ACMs to reduce the overall volume of asbestos waste.

9.7 Sampling And Testing

- 9.7.1 The hazardous waste classification assessment has been undertaken by adopting the maximum recorded concentration of each compound from all the samples tested within the identified waste population, as outlined in WM3, Approach D.
- 9.7.2 For the Waste Acceptance Criteria (WAC) assessment, a representative composite sample was obtained by combining soils from multiple exploratory holes:
 - CS01: Made Ground
- 9.7.3 The rate of testing has been chosen to provide a preliminary waste categorisation only.

9.8 Waste Characterisation

- 9.8.1 Where testing has been carried out, the waste classification assessment sheets are enclosed within Appendix L, and a summary of the findings is presented in the table below.
- 9.8.2 Observations from the fieldwork indicate that the underlying natural soils are not impacted by contamination, and therefore are considered suitable for disposal as non-hazardous waste in an inert landfill site without the requirement for further testing (delete or amend this is you have contamination e.g. hydrocarbons of natural soils).
- 9.8.3 Due to the elevated organic content of topsoil materials in general, they are typically unsuitable for disposal at an inert landfill, therefore disposal to a non-hazardous waste landfill site is likely to be the appropriate disposal route. However, topsoil is also a nationally limited resource and efforts should be made to avoid landfill disposal where possible. Where topsoil is in surplus, it should be separated from the underlying natural soils and set aside to be recovered elsewhere, for instance through a Direct Transfer scenario or to a Soil Treatment Facility under the DoW CoP.
- 9.8.4 As previously discussed, high concentrations of PAH were measured within TP08. Given these are significantly higher than concentrations recorded in 11 other samples (Integral Geotechnique and Soiltechnics), they are not considered representative of the general Made Ground. Asphalt surfacing was present immediately above the soils that were sampled, and it is considered likely the concentrations are a result of cross contamination within the sample.
- 9.8.5 It should be noted that the combined sample submitted for WAC testing was a combined sample of Made Ground, including soils excavated from TP08.

Potential Waste Population	Hazardous Classification (LoW code)	Landfill Classification	Comments
Topsoil	Non-hazardous (17-05-04)	Inert	N/A
Made Ground (excluding TP08)	Non-hazardous (17-05-04)	Non hazardous	Soils considered non-hazardous based on current WAC testing but cannot be classified as inert by virtue of elevated PAH (likely associated with Made Ground from TP08). Additional WAC testing is recommended as it may be possible to reclassify soils as inert as there were no other exceedances.
Made Ground at TP08	Hazardous (17-05-03*)	Stable non-reactive hazardous waste cell within a non-hazardous waste landfill site	Hazardous by virtue of elevated PAH Re-testing recommended if soil in this area is proposed for disposal with careful segregation of asphalt surfacing, which could enable reclassification as non-hazardous.
Clean naturally occurring soils	Non-hazardous (17-05-04)	Inert	N/A

Table 9-C: Waste characterisation summary

9.9 Managing Reclaimed Asphalt

- 9.9.1 A near surface sample taken from immediately under an asphalt covered area contained exceedances of PAH indicative of coal tar. On this basis, it is recommended that samples of asphalt from across the site be tested to determine the presence/absence of coal tar in order to inform mitigation measures and off-site disposal costs, if relevant.
- 9.9.2 The 2019 ADEPT guidance 'Managing Reclaimed Asphalt –Highways and Pavements' provides further information on the reuse, treatment, recycling, and disposal of the material.

9.10 Application Of Advice

- 9.10.1 Where assessments have been carried out of soils currently in-situ at the time of investigation and not of stockpiled waste soils, they should be treated as provisional only.
- 9.10.2 There is no obligation on any waste operator to accept our waste characterisation assessments. Landfill operators may consider your waste to fall under a different classification and/or may require additional testing of waste soils prior to acceptance. It is therefore recommended that this report along with the chemical results is provided to the preferred facility to confirm (or otherwise) it can accept the waste.
- 9.10.3 It should be noted that there remains the potential for unexpected or previously unencountered contamination to be encountered. Any such materials intended for waste disposal should be segregated and tested to determine the appropriate classification and disposal route.

9.11 Further Recommendations

- 9.11.1 As the waste classifications provided are preliminary only and based on limited sampling of soils insitu, it is recommended to undertake additional sampling and testing to fully characterise the waste soils intended for disposal. This should include further WAC testing of general Made Ground to determine whether the classification can be reduced to inert.
- 9.11.2 The overall frequency of testing should be dependent upon the composition, volume and variability of the material excavated.
- 9.11.3 At this stage, ACMs have only been observed sporadically at surface in the centre of the site. However, it is possible that fragments of ACM will be present within near surface Topsoil/Made Ground soils. Where suspected ACMs are visible to the naked eye, the material should be segregated at the point of excavation and placed in a covered stockpile prior to disposal. Further testing and/or delineation by a competent specialist will be required.

10 Recommendations for further works

10.1.1 The following table summarises the additional works which should be undertaken prior to commencement of any construction works and in support of the planning conditions.

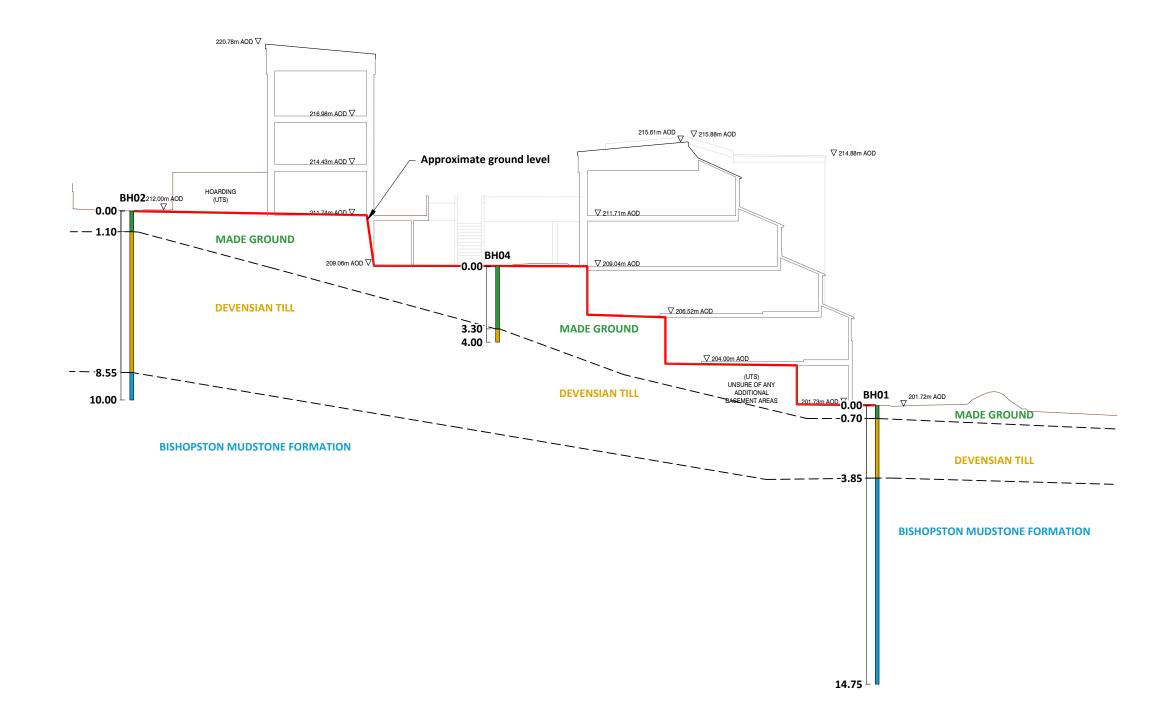
Aspect	Delivered By	Description	Necessity
Asphalt/coal tar	Soiltechnics	Testing has indicated that asphalt on site may contain coal tar. Testing of surfacing is recommended to determine the presence/absence of coal tar and, if present, delineate the extent.	RECOMMENDED
Discovery Strategy	Principal Contractor	The Principal Contractor should have a discovery strategy in place in the event of exposing unexpected or previously unencountered contamination. Soiltechnics should be informed at the earliest opportunity to undertake an assessment, and to inform the Local Authority as appropriate.	REQUIRED
Asbestos	3 rd Party	Visual inspection of the ground surface and buildings and advice on any required mitigation measures is recommended ahead of demolition.	RECOMMENDED
Infiltration testing	Soiltechnics	Further infiltration testing to BRE 365 to determine feasibility of soakaways and SUDS and provide design values.	RECOMMENDED

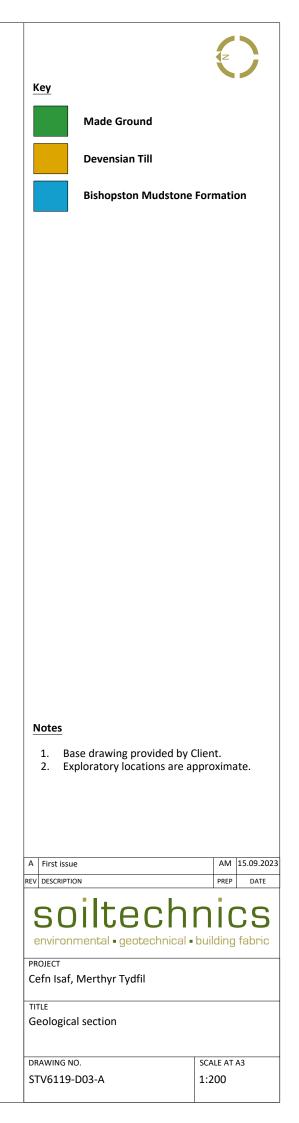
Table 10-A: Recommended Further Works (Pre-Commencement)

10.1.2 The following table summarises the additional works which should be undertaken during the enabling and construction works phases to support the safe development of the site.

Aspect	Delivered By	Description	Necessity
Waste classification	Soiltechnics/ 3 rd Party	Based on current testing, Made Ground soils can be disposed of to non-hazardous landfill. However, it is considered likely the PAH, which resulted in an exceedance of inert concentrations, is the result of asphalt contamination. It is recommended further WAC testing be undertaken to determine if Made Ground soils can be reclassified as inert.	RECOMMENDED
Installation barrier pipe	3 rd Party	The Principal Contractor should liaise with the statutory undertaker to confirm the requirement for barrier pipe installation and associated verification.	REQUIRED
Re-use of site won Topsoil	Soiltechnics	Site-won Topsoil intended for reuse within landscaped areas should be tested to confirm suitability for use.	RECOMMENDED
Imported soil	Soiltechnics	If it is proposed to import Topsoil within landscaping areas, it should be tested to confirm it is suitable for use.	RECOMMENDED

 Table 10-B:
 Recommended Further Works (Enabling Works & Construction Phase)




Appendix A Drawings

STV6119-R01 Rev A

Appendix B Exploratory Hole Logs: Trial Pits

Key to legends, columns & water observations Trial pit records

soiltechnics

environmental • geotechnical • building fabric

Key to legends

Composi	Composite materials, soils and lithology							
	Topsoil		Made Ground	ಁಁಁಁಁ	Boulders		Chalk	
	Clay		Coal	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cobbles		Concrete	
	Gravel		Limestone		Mudstone	a shta shta sh shta shta a shta shta a shta sh	Peat	
	Sand		Sandstone		Silt	× × × × × × × × × × × × × × × × × × ×	Siltstone	

Note: Composite soil types are signified by combined symbols.

Key to 'test results' and 'sampling' columns

Test res	ult	Sampling
Depth	Records depth that the test was carried out (i.e.: at 2.10m or between 2.10m and 2.55m)	From (m) To (m)
	PP – Pocket penetrometer result reported as an equivalent undrained shear strength (kN/m²) by applying a factor of 50.	
Result	SV – Hand held shear vane result reported as an undrained shear strength (kN/m ²). Where multiple readings are taken at the same level the average value is shown on the log. * Signifies that instrument limit reached.	Туре

Sampling							
From (m) To (m)	Record	s depth of sampling					
	D	Disturbed sample					
	В	Bulk disturbed sample					
	ES	Environmental sample					
Туре	W	Water sample					
.,pc	U	Undisturbed thick-walled sample 100mm diameter sampler					
	UT	Undisturbed thin walled sample 100mm diameter sampler					
	UTF	Failed undisturbed sample					

Water observations

Described at foot of log and shown in the 'water strike' column.

Water level observed after specified delay in drilling

Water strike

Density

Density recorded in brackets determined by qualitative field assessment or inferred from density testing and soil descriptions from across the site (i.e.: [Medium dense]).

soiltechnics

STRATA						IN SITU	TESTING		SAMPLING	G
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD) LEGEND		WATER STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
PAVING SLAB (MADE GROUND)	Æ	0.05								
Medium dense brown gravelly clayey SAND. Gravel is fine to medium subrounded to subangular sandstone.	/	0.35								
(MADE GROUND)	Æ	0.55								
TRIAL PIT TERMINATED AT 0.35m										
	F									
	_	_								
	-									
	E									
	E									
	F									
	-									
	-	-								
	_									
	_									
	-									
	F									
		-								
	_									
	-									
	F									
	E									
	-	-								
	-									
	F									
	E									
	_									
	<u> </u>	_								
	_									
	-									
	F									
	F									

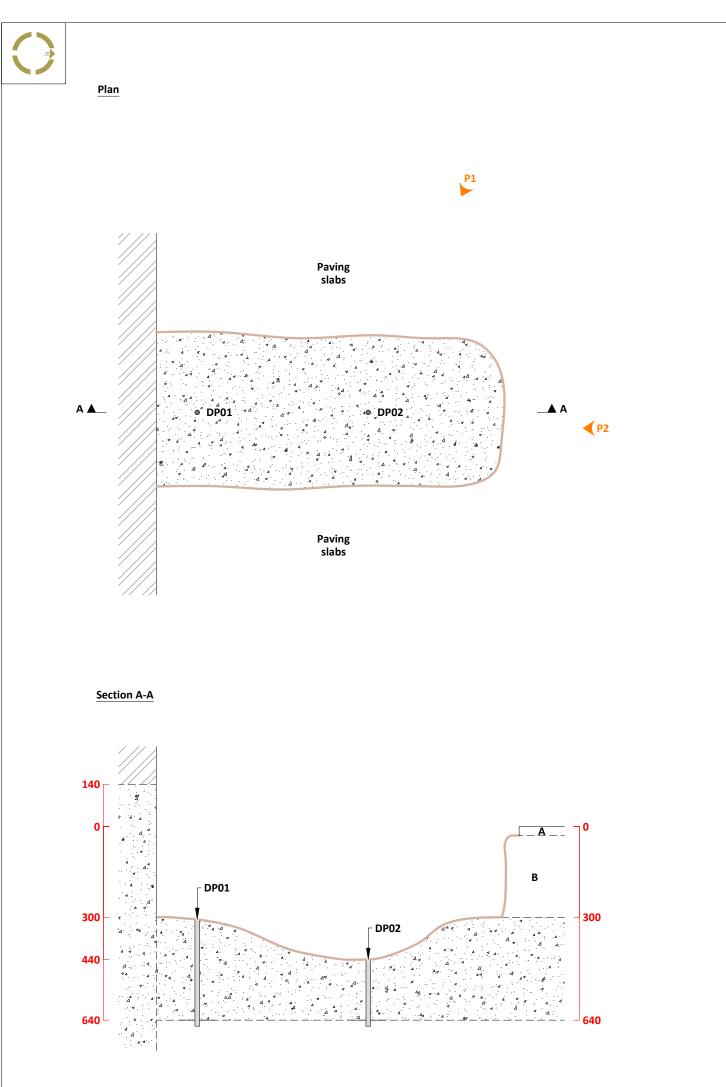
Notes	Title	Dimensions (w x l)	Date(s)
Trial pit terminated due to service, suspected gas line.	Trial pit record	0.30m x 0.30m	01/08/2023
	Method	Logged by	Sheet number
	Hand tools	RF	Sheet 1 of 1
Groundwater observations	Level (m OD)	Compiled by	Revision
No groundwater encountered.	-	AM	A
	Co-ordinates	Checked by	TD01
	-	SC	TP01

soiltechnics

STRATA						TESTING	:	SAMPLING	G
	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TY
	0.20								Γ
TRIAL PIT TERMINATED AT 0.20m	E								
	-								
	E								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	<u> </u>								
	E								
	<u>–</u>								
	_								
	ic CLAY. Gravel is coarse subrounded sandstone.	DEPTH (m) REDUCED LVL (m OD) LEGEND TYPE / DEPTH (m) ic CLAY. Gravel is coarse subrounded sandstone. 0.20 Image: Classical content of the second content o	In the second standstone. I	water water water bepth REDUced LvL (m OD) ic CLAY. Gravel is coarse subrounded sandstone. 0.20	WATER WATER TYPE / DEPTH TYPE / M(m) TYPE / DEPTH (m) TYPE / M(m) RESULT FROM (m) TO (m) ic CLAY. Gravel is coarse subrounded sandstone. 0.20 Image: Classical state in the state i				

Notes Trial pit terminated due to service, suspected gas line.	Title	Dimensions (w x l)	Date(s)
	Trial pit record	0.30m x 0.40m	01/08/2023
	Method	Logged by	Sheet number
	Hand tools	RF	Sheet 1 of 1
Groundwater observations No groundwater encountered.	Level (m OD)	Compiled by	Revision
	-	AM	A
	Co-ordinates	Checked by SC	TP07

soiltechnics


STRATA							SAMPLING		ŝ
DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	WATER STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
ASPHALT									
(ASPHALT)	0.20						0.25		ES
[Loose] light grey slightly sandy GRAVEL of fine to coarse subrounded to subangular sandstone.	0.30								
(MADE GROUND) Grey sandy GRAVEL of fine to coarse subangular to subrounded mudstone.			-ee						
(MADE GROUND)	/-								
(MADE GROUND) [Loose] orangish red gravelly clayey SAND with occasional cobbles of limestone. Gravel is fine to coarse subrounded to subangular sandstone.	_/ -						0.80		В
(DEVENSIAN TILL)	_		ف ف						
(Devensian fill)									
[Medium dense] yellowish brown mottled orange and brown slightly gravelly silty SAND with occasional boulders of limestone. Gravel is fine to medium subrounded sandstone. (DEVENSIAN TILL)	1.20		* * * * * * *				1.30		В
	-		* * * * *				1.70		В
	_		$_{\times}^{\times}$ $_{\times}^{\times}$						
	2.30		×. ×. × .×. ×						
TRIAL PIT TERMINATED AT 2.30m	- 2.30								
	_								
	_								
	-								
	<u> </u>								
	-								
	_								
	_								
	-								
	_								
	_								
	E								
	-								
	E								
	-								
	<u> </u>								
	-								
	-								
	F								
	-								
	E								

Notes	Title	Dimensions (w x l)	Date(s)
Infiltration testing performed. Continual collapse of trial pit sides during infiltration testing widening pit by 0.55m on north and south sides.	Trial pit record	0.80m x 2.10m	01/08/2023
	Method	Logged by	Sheet number
	Machine excavator	RF	Sheet 1 of 1
Groundwater observations Small accumulation of groundwater at base of trial pit.	Level (m OD)	Compiled by AM	Revision A
	Co-ordinates -	Checked by SC	TP08

soiltechnics

STRATA				IN SITU TI WATER		resting	STING SAMPLING		
DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
ASPHALT (ASPHALT)	0.15								
Light grey sandy GRAVEL of fine to medium subrounded to subangular sandstone. (MADE GROUND)	- 0.30								
(Index GROUND) Soft dark grey slightly gravelly CLAY. Gravel is fine to medium subrounded to subangular brick and concrete. (MADE GROUND)	- 0.70								
[Dense] orangish brown gravelly clayey SAND. Gravel is fine to coarse subrounded sandstone. (DEVENSIAN TILL)									
(JEVENSIAN TILL)	-								
TRIAL PIT TERMINATED AT 1.40m	_ 1.40								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	_								
	-								
	_								
	_								
									L

Notes	Title	Dimensions (w x l)	Date(s)
Trial pit stabilised using coarse gravel backfill. Infiltration testing performed.	Trial pit record	0.75m x 1.40m	01/08/2023
	Method	Logged by	Sheet number
	Machine excavator	RF	Sheet 1 of 1
Groundwater observations	Level (m OD)	Compiled by	Revision
No groundwater encountered.	-	AM	A
	Co-ordinates	Checked by	TDOO
	-	SC	TP09

Photographic records

P2

Key:

- A. PAVING SLAB.
- B. Black sandy clayey fine to medium subrounded to subangular GRAVEL of mudstone. (MADE GROUND)
- Observed features ---- Assumed features Excavation outline Location and orientation of photograph P1 🕨 Concrete Brickwork · Þ.,

Drill probe (plan and section views)

Notes

- 1. Dimensions shown in millimetres.
- 2. No groundwater encountered.
 - 3. Concrete obstruction fully penetrated at DP01 and DP02.

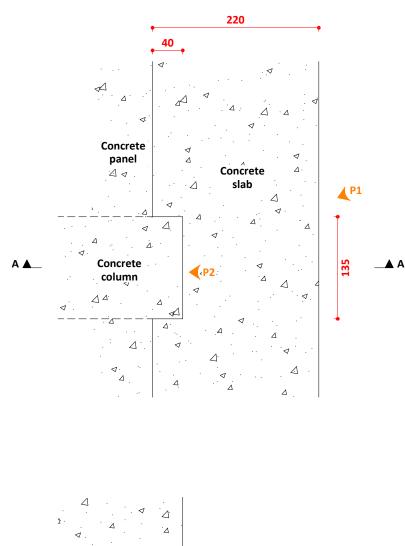
Samples - Disturbed (D) / Environmental (ES) / Bulk (B)

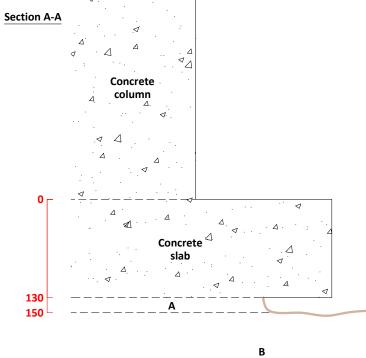
• 0.25 - ES

A	First issue		RF	KD	22.08.2023		
REV	DESCRIPTION		LOGD	PREP	DATE		
		tech					
1	PROJECT Cefn Isaf, Merthyr Tydfil						
TIT	ΓLE						
Tr	rial pit record						
M	ETHOD		DATE	OF W	ORKS		
Ha	and tools		03.0	8.20	23		
PR	OJECT NO.	SCALE AT A3	LOCA	TION	REFERENCE		
ST	V6119	1:12.5	TP0	1B			

Plan

Photographic records


Key:

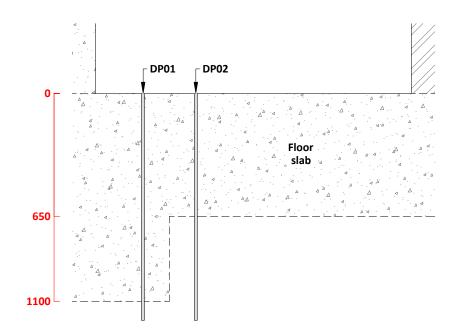

- A. BRICK, SLATE and CONCRETE cobbles.
- B. Brown slightly gravelly CLAY. Gravel is fine to medium subrounded to subangular flint and concrete. (MADE GROUND)
- Observed features ---- Assumed features Excavation outline Location and orientation of photograph P1 🕨

· Þ. Concrete

Notes

- 1. Dimensions shown in millimetres.
- 2. No groundwater encountered.
- 3. Excavation extent limited due to vegetation and instability of slop

	Α	First issue		RF	KD	22.08.2023
	REV	DESCRIPTION		LOGD	PREP	DATE
		1. A.			•	
		รกป	tech	n	11	S
		5011			IC	
	e	environmenta	l • geotechnical	• buil	ding	fabric
	PR	OJECT				
	Ce	efn Isaf, Merth	yr Tydfil			
	ТП	TLE				
	Tr	ial pit record				
	M	THOD		DATE	OF W	ORKS
pe.	Ha	and tools		02.0	8.20	23
P 0.						
	PR	OJECT NO.	SCALE AT A3	LOCA	TION	REFERENCE
	ST	V6119	1:5	TP0	2	

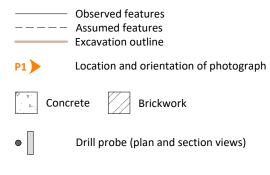


Plan

_ _ △ ⊲ ۰. ۵ õ A 🛦 ____ __**A** • DP01 • DP02 Assumed 8 extent of slab thickening • DP05 • DP03 8 • DP04 • DP06 ÷۵, ⊿ ' 250 280 . Aa **1670 P**2 . ₫ . ⊿.

A P1

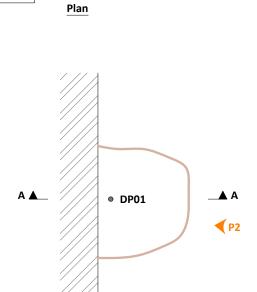
Section A-A



Photographic records

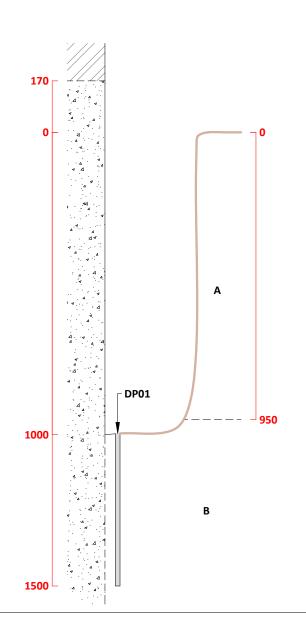
Drill probe log

Location	Description
DP01	Concrete penetrated 1100mm dept
DP02	Concrete penetrated 650mm depth
DP03	Concrete penetrated 950mm depth
DP04	Concrete penetrated 500mm depth
DP05 & DP06	Concrete penetrated 400mm depth


Notes

- 1. Dimensions shown in millimetres.
- 2. No groundwater encountered.

P2


oth, no further obstruction to 1200mm. th, no further obstruction to 1200mm. th, no further obstruction to 1200mm. th, no further obstruction to 800mm. th, no further obstruction to 800mm.

A	First issue		RF	KD	18.08.2023		
REV	DESCRIPTION		LOGD	PREP	DATE		
	soiltechnics environmental • geotechnical • building fabric						
PR	PROJECT						
Ce	Cefn Isaf, Merthyr Tydfil						
TI	TITLE						
TI	Trial pit record						
М	METHOD			DATE OF WORKS			
H	Hand tools			07.08.2023			
PR	OJECT NO.	SCALE AT A3	LOCA	OCATION REFERENCE			
S	FV6119	1:20	TP03				

4P1

Section A-A

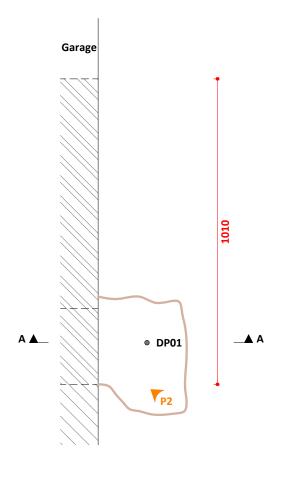
Photographic records

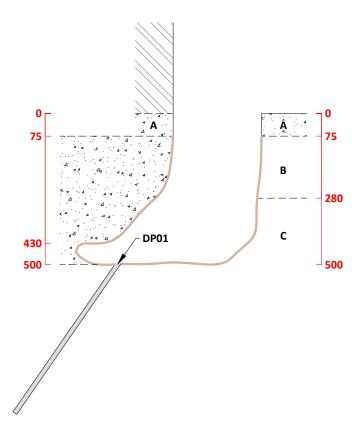
Key:

Α.

Α.	Grey sandy slightly clayey fine to coarse subrou (MADE GROUND)
В.	COBBLES of concrete. (MADE GROUND)
	Observed features Assumed features Excavation outline
P1)	Location and orientation of photograph
P v. 	Concrete Brickwork
•	Drill probe (plan and section views)
	s Dimensions shown in millimetres. No groundwater encountered.

2. No groundwater encountered.


Samples - Disturbed (D) / Environmental (ES) / Bulk (B) • 0.75 - ES


andy slightly clayey fine to coarse subrounded to subangular GRAVEL of brick, concrete and metal.

A	First issue		RF	KD	22.08.2023			
REV	DESCRIPTION		LOGD	PREP	DATE			
soiltechnics								
PROJECT Cefn Isaf, Merthyr Tydfil								
ТП	TITLE							
Tr	Trial pit record							
M	METHOD			DATE OF WORKS				
Ha	Hand tools			03.08.2023				
PR	OJECT NO.	SCALE AT A3	LOCA	TION I	REFERENCE			
ST	V6119	1:12.5	TP0	4				

Plan

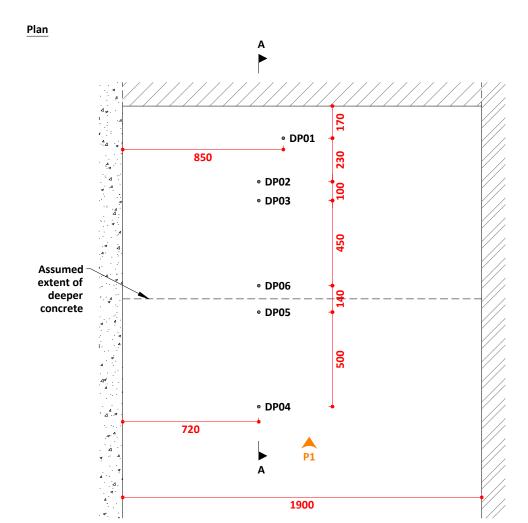
Section A-A

Photographic records

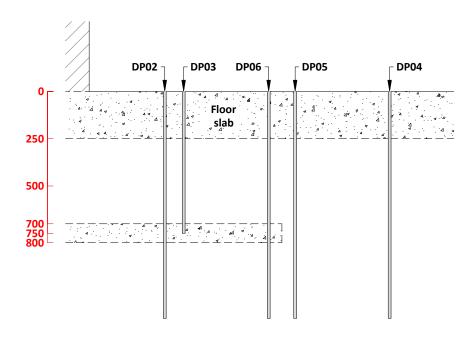
▲P1

- Key:
- A. Light grey unreinforced CONCRETE.
- B. Soft brown slightly sandy slightly gravelly CLAY. Gravel is fine to medium subrounded to subangular concrete and brick. (MADE GROUND)
- C. Firm brown CLAY. (DEVENSIAN TILL)
- Observed features ---- Assumed features Excavation outline
- Location and orientation of photograph P1 🕨
 - Blockv Concrete Brickwork
- Drill probe (plan and section views)

Notes

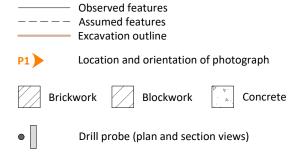

- 1. Dimensions shown in millimetres.
- 2. No groundwater encountered.

Samples - Disturbed (D) / Environmental (ES) / Bulk


- 0.1 ES 0.3 D

A	First issue		RF	KD	22.08.2023	
REV	DESCRIPTION		LOGD	PREP	DATE	
	soil	tech	n	ic	CS	
environmental • geotechnical • building fabric						
PROJECT Cefn Isaf, Merthyr Tydfil						
TITLE						
Trial pit record						
М	ETHOD		DATE	OF W	ORKS	
Hand tools			01.08.2023			
lk (B)						
PR	OJECT NO.	SCALE AT A3	LOCA	TION F	REFERENCE	
S	FV6119	1:12.5	TP0	5		
	REV REV PR CC TI TI Hi PR	REV DESCRIPTION SOIII environmenta PROJECT Cefn Isaf, Merth TITLE Trial pit record METHOD	REV DESCRIPTION Solitech environmental - geotechnical PROJECT Cefn Isaf, Merthyr Tydfil TITLE Trial pit record METHOD Hand tools PROJECT NO. SCALE AT A3	REV DESCRIPTION LOGD Soiltechn LOGD environmental - geotechnical - buil PROJECT Cefn Isaf, Merthyr Tydfil TITLE Trial pit record METHOD Hand tools PROJECT NO.	REV DESCRIPTION LOGD PREP Soiltechnical PREP environmental geotechnical PROJECT Cefn Isaf, Merthyr Tydfil TITLE Trial pit record METHOD DATE OF WO Hand tools 01.08.20 PROJECT NO. SCALE AT A3	

Section A-A



Photographic records

Drill probe log

	Location	Description
	DP01	Concrete penetrated 250mm depth 1050mm depths, no further obstruct
	DP02	Concrete penetrated 250mm depth 800mm depths, no further obstruct
	DP03	Concrete penetrated 250mm depth depth, terminated at 750mm depth
	DP04 & DP05	Concrete penetrated 250mm depth
	DP06	Concrete penetrated 250mm depth 800mm depths, no further obstruct

Notes

- 1. Dimensions shown in millimetres.
- 2. No groundwater encountered.

th, second layer of concrete between 700mm and uction to 1200mm.

th, second layer of concrete between 700mm and ction to 1200mm.

th, second layer of concrete encountered at 700mm th due to suspected reinforcement bar.

th, no further obstruction to 1200mm.

th, second layer of concrete between 500mm and ction to 1200mm.

A	First issue		RF	KD	18.08.2023			
RE	/ DESCRIPTION		LOGD	PREP	DATE			
soiltechnics environmental • geotechnical • building fabric								
PROJECT Cefn Isaf, Merthyr Tydfil								
Т	TITLE							
Т	Trial pit record							
N	METHOD			DATE OF WORKS				
н	Hand tools			03.08.2023				
	ROJECT NO.	SCALE AT A3			REFERENCE			
S	TV6119	1:20	TP0	6				

Appendix C Exploratory Hole Logs: Boreholes

Key to legends, columns & water observations Boreholes

soiltechnics

environmental • geotechnical • building fabric

Key to legends

Composi	te materials, soils	s and litho	ology				
	Topsoil		Made Ground	ಂಂಂ	Boulders		Chalk
	Clay		Coal		Cobbles		Concrete
	Gravel		Limestone		Mudstone	રું સ્પ્રીત્ સ્પ્રીત સ્ત સ્પ્રીત સીત સીત રું સીત સીત સીત	Peat
	Sand		Sandstone		Silt	× × × × × × × × × × × × × × × × × × ×	Siltstone

Note: Composite soil types are signified by combined symbols.

Key to 'test results' and 'sampling' columns

Test res	ult		Samplin	g	
Depth	Records depth that the test was carried out (i.e.: at 2.10m or between 2.10m and 2.55m)		From (m) To (m)	Record	ds depth of sampling
	PP – Pocket penetrometer result reported as an equivalent undrained shear strength (kN/m²) by			D	Disturbed sample
	applying a factor of 50.			В	Bulk disturbed sample
	SV – Hand held shear vane result reported as an undrained shear strength (kN/m ²).			ES	Environmental sample
	Where multiple readings are taken at the same level the average value is shown on the log.		Туре	W	Water sample
Result	* Signifies that instrument limit reached	-	., pc	U	Undisturbed thick-walled sample 100mm diameter sampler
	(uncorrected) ^{1,2,3} SPT(c) – Standard Penetration Test result (solid cone) (N value) (uncorrected) ^{1,2,3}			UT	Undisturbed thin walled sample 100mm diameter sampler
	UT – Undisturbed sample 100mm diameter			UTF	Failed undisturbed sample
	sampler with number of blows of driving equipment required to obtain sample				

Note 1: Seating blows recorded in brackets.

Note 2: Casing depth records depth of casing when SPT or SPT(c) was carried out.

Note 3: Water depth records depth of water when SPT or SPT(c) was carried out.

Water observations

Described at foot of log and shown in the 'water strike' column.

Water level observed after specified delay in drilling

☑ Water strike

Installation details

	Gravel filter		Bentonite
	Slotted pipe		Unslotted pipe
	Arisings	1931	Grout
$\left \right $	Extensometer magnet		Vibrating wire piezometer

Density

Density recorded in brackets determined by qualitative field assessment or inferred from density testing and soil descriptions from across the site (i.e.: [Medium dense]).

soiltechnics

DESCRIPTION OPEN (m)	ALL	STRATA			WATER		CORI	١G			 SPT TE	STING	 OTHER IN S	TU TESTING		SAMPLING	i
Colored agrees (fullier's description): 0.68 0.75 0 </td <td>INSTALL</td> <td>DESCRIPTION</td> <td></td> <td>LEGEND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FI</td> <td>RESULT</td> <td></td> <td></td> <td>RESULT</td> <td></td> <td></td> <td>TYPE</td>	INSTALL	DESCRIPTION		LEGEND						FI	RESULT			RESULT			TYPE
		(CONCRETE)	Æ														
Image: Second and SAVEs with cabble [differ's discription]. 1.00 2.50 4.00 0 <td< td=""><td></td><td>(MADE GROUND)</td><td>/<u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		(MADE GROUND)	/ <u> </u>														
Interversion Interversion 1.50<		(MADE GROUND)	H														
Standstone. 3.85 (DEVENSIAN TLL) 2.50 - 4.00 60 0 0 Standstone. 3.85 4.00 0 0 0 (GEVENSIAN TLL) 2.50 - 4.00 60 0 0 0 0 (GEVENSIAN TLL) 2.50 - 4.00 60 0 <td< td=""><td></td><td>(DEVENSIAN TILL)</td><td>Ē</td><td>× × ×</td><td></td><td>1 00 2 50</td><td>75</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>1.50</td><td>1.90</td><td>В</td></td<>		(DEVENSIAN TILL)	Ē	× × ×		1 00 2 50	75	0	0						1.50	1.90	В
Grey sandy GRAVEL of fine to medium subrounded to subangular sandstone. 3.85 4.00 100 100 50 Medium strong light grey becoming grey thinly to medium bedded fine grained arenaccous SANDSTONE. 4.00 - 5.00 100 100 50 between 4.5m and 4.5m depth, vertically inclined closed fracture and medium spaced bedding fractures. 5.00 - 6.00 90 85 20 between 7.5m and 8.15m depth, vertically inclined closed fracture and medium spaced bedding fractures. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fracture and medium spaced bedding fractures. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fracture and medium spaced bedding fractures. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fracture and medium spaced bedding fractures. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fracture accessional brown 6.00 - 7.50 75 60 0 860 8		sandstone.	E E	× × × × ×		1.00 - 2.30	/5	0									
Grey sandy GRAVEL of fine to medium subrounded to subangular sandstone. 3.85 4.00 100 100 50 Medium store [k1] stores of x mod 5.0m depth, vertically inclined closed fracture and medium spaced bedding fractures. 3.85 4.00 5.00 6.00 7.50 90 85 20 between 7.5m and 7.25m depth, vertically inclined closed fracture occasional brown weethered suffices. 5.00 6.00 7.50 90 40 860 8				× × × × ×													
Grey sandy GRAVEL of fine to medium subrounded to subangular sandstone. 3.85 4.00 100 100 50 Medium store [k1] storey becoming grey thinly to medium bedded fine grained arenaccous SANDSTONE. 4.00 - 5.00 100 100 50 between 4.5 m and 5.5m depth, vertically inclined closed fractures, form 2.20ml wide, clean and widey yeard closed fractures, form 2.20ml wide, clean and widey 5.00 - 6.00 90 85 20 between 7.5m and 7.25m and 8.15m depth, vertically inclined closed fractures, form 2.20ml wide, clean and widey 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fractures occasional brown weathered suffices. 7.50 - 9.00 95 90 40 between 7.5m and 8.15m depth, vertically inclined closed fractures, form 2.25m depth, vertically inclined closed fractures are weathered suffices. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fractures are weathered suffices. 7.50 - 9.00 95 90 40 860 8			<u> -</u>	^* * * * * *		2.50 - 4.00	60	0	0								
Grey sandy GRAVEL of fine to medium subrounded to subangular sandstone. 3.85 4.00 4.00 Medium strong light grey becoming grey thinky to medium bedded fine grained areas cous SANDSTONE. 4.00 Medium strong light grey becoming grey thinky to medium space bedding fractures, simm - 20mm wide, clean and widely graves are wreathered brown. 4.00 between 5.4m and 6.1m depth, vertically inclined loged fractures. 5.00 - 6.00 90 85 20 between 7.5m and 8.15m depth, vertically inclined loged fractures. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined loged fractures. 7.50 - 9.00 95 90 40 8.60 8			E	× × ×				-							3.75	4.00	D
arenaceous SANDSTONE. 4.00 - 5.00 100 100 50		(BISHOPSTON MUDSTONE FORMATION)		· · · · · ·													
3mm - Snm wide, clean. 5.00 - 6.00 90 85 20 - between 5.m and 5.5m depth, cleanly spaced bedding fractures, fores are weathered brown. 5.00 - 6.00 90 85 20 - between 5.m and 7m depth, very close clean bedding fractures. 6.00 - 7.50 75 60 0 - between 7.5m and 8.15m depth, vertically inclined closed fractures. 7.50 - 9.00 95 90 40 - between 8.6m and 9m depth, medium spaced, closed, clean bedding fractures. 6.00 - 7.50 75 60 0		arenaceous SANDSTONE. (BISHOPSTON MUDSTONE FORMATION)				4.00 - 5.00	100	100	50								
spaced. Closed vertical fractures, faces are weathered brown. 5000000000000000000000000000000000000		3mm - 5mm wide, clean.	Ē			F 00 (00	00	05	20						5.30		в
between 5.5m and 7m depth, very close clean bedding fractures. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fractures. 7.50 - 9.00 95 90 40 between 8.6m and 9m depth, medium spaced, closed, clean bedding fractures. 8.60 B			Ē			5.00 - 6.00	90	85	20								
between 7m and 7.25m depth, vertically inclined closed fracture. 6.00 - 7.50 75 60 0 between 7.5m and 8.15m depth, vertically inclined closed fractures. 7.50 - 9.00 95 90 40 between 8.6m and 9m depth, medium spaced, closed, clean bedding fractures. 8.60 8 8 8			Ē														
between 7.5m and 8.15m depth, vertically inclined closed fractures occasional brown weathered surfaces. Image: Control of the second s		between 6.5m and 7m depth, very close clean bedding fractures.	Ē			6.00 - 7.50	75	60	0								
between 8.6m and 9m depth, medium spaced, closed, clean bedding fractures.		between 7m and 7.25m depth, vertically inclined closed fracture.	Ē														
		between 7.5m and 8.15m depth, vertically inclined closed fractures occasional brown weathered surfaces.	Ē														
between 8.6m and 9m depth, medium spaced, closed, clean bedding fractures.]	Ē	::::		7.50 - 9.00	95	90	40								
CONTINUED ON NEXT SHEET		between 8.6m and 9m depth, medium spaced, closed, clean bedding fractures.	F												8.60		в
		CONTINUED ON NEXT SHEET															

Notes	Title		Date(s)
Inspection pit excavated to 1.2m depth.	Borehole record		07/08/2023
	Method Comacchio 205	Logged by RF	Sheet number Sheet 1 of 2
Groundwater observations Groundwater observations obscured by drilling techniques.	Level (m OD) -	Compiled by AM	Revision A
	Co-ordinates	Checked by SC	BH01

soiltechnics

ALL	STRATA				WATER		CORI	NG				SPT TES	TING		OTHER IN S	TU TESTING		SAMPLING	
INSTALL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LECEND	STRIKES	DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FI	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Recovered as fine to medium subrounded to subangular slightly clayey GRAVEL of siltstone. (BISHOPSTON MUDSTONE FORMATION)	9.50		· · · · · · · · · · · · · · · · · · ·		9.00 - 10.50	70	40	0										
	Weak grey thinly to thickly bedded argillaceous SILTSTONE with closely spaced to medium spaced bedding fractures occasionally infilled with soft grey slightly sandy clay. (BISHOPSTON MUDSTONE FORMATION)			× ×		10.50 - 12.00	100	95	40								10.60		В
	<i>at 11.75m depth. fracture infilled with dark grey slightly gravelly CLAY. Gravel is fine subrounded to subangular siltstone.</i> Very strong grey SANDSTONE with vertically inclined open fractures between 12.00m - 12.80m. (BISHOPSTON MUDSTONE FORMATION)					12.00 - 13.50	65	55	25								11.90		В
	Very weak to weak dark grey SILTSTONE closely spaced, open and clean bedding fractures. (BISHOPSTON MUDSTONE FORMATION) BOREHOLE TERMINATED AT 15.00m	14.00		· · · · · · · · · · · · · · · · · · ·		13.50 - 15.00	65	50	0										

Notes	Title		Date(s)
Inspection pit excavated to 1.2m depth.	Borehole record		07/08/2023
	Method Comacchio 205	Logged by RF	Sheet number Sheet 2 of 2
Groundwater observations Groundwater observations obscured by drilling techniques.	Level (m OD) -	Compiled by AM	Revision A
	Co-ordinates -	Checked by SC	BH01

soiltechnics

ALL	STRATA			WATER		CORII	NG				SPT TE	STING		OTHER IN SI	TU TESTING		SAMPLING	i
INSTALL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	STRIKES	DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FI	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	PAVING SLAB (MADE GROUND)	0.05		Š														
	Firm black slightly sandy slightly gravelly CLAY. Gravel is fine to medium subrounded to subangular concrete and brick. (MADE GROUND)	- - - - - 1.10			0.00 - 1.20	35	0	0								0.90		ES
	Orangish brown gravelly silty SAND. Gravel is fine to medium subrounded to angular sandstone. Suspected cobbles throughout. (DEVENSIAN TILL)		***** ******															
			× × ×	- X X	1.20 - 2.70	60	0	0								1.90		В
		E	×.~~**	×	2.70 - 3.00	90	0	0								2.90		в
		Ē	×.~~~	×												3.00	8.00	В
		Ē	×.~~~** ×.~~~**	×														
		4.10	×.~ו ×.~ו	×														
	Orangish brown sand and cobbles recovered as GRAVEL of fine to coarse subrounded to subangular sandstone [driller's description]. Poor recovery, assumed Devensian Till. (DEVENSIAN TILL)				3.00 - 8.00	0	0	0										
		8.55			8.00 - 8.50	50	10	0								8.40		D
	Strong grey sandstone recovered as GRAVEL of fine to coarse sub angular sandstone	F 8.35	* * <u>*</u>		8.50 - 9.00	55	30	0										

CONTINUED ON NEXT SHEET			
Notes	Title		Date(s)
	Borehole record		07/08/2023
	Method	Logged by	Sheet number
	Rotary core	RF	Sheet 1 of 2
Groundwater observations	Level (m OD)	Compiled by	Revision
No groundwater encountered.	-	AM	А
	Co-ordinates	Checked by	BH02
	-	SC	DRUZ

soiltechnics

ALL	STRATA				WATER		CORIN	IG				SPT TES	TING		OTHER IN S	TU TESTING		SAMPLING	à
INSTALL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FI	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	ТҮРЕ
	with occasional pockets of fine gravelly clay. (BISHOPSTON MUDSTONE FORMATION) 	9.50				9.00 - 10.00	10	0	0										
	(BISHOPSTON MUDSTONE FORMATION) BOREHOLE TERMINATED AT 10.00m																		

Notes	Title		Date(s)
	Borehole record		07/08/2023
	Method	Logged by	Sheet number
	Rotary core	RF	Sheet 2 of 2
Groundwater observations	Level (m OD)	Compiled by	Revision
No groundwater encountered.	-	AM	А
	Co-ordinates	Checked by	DUOD
	-	SC	BH02

soiltechnics

ALL	STRATA				WATER		CORIN	IG				SPT TES	TING		OTHER IN SI	TU TESTING		SAMPLING	
	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FI	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Grass onto firm brown slightly gravelly organic CLAY. Gravel is fine to medium subrounded to subangular sandstone. (TOPSOIL) Firm brown slightly gravelly CLAY. Gravel is fine to medium subrounded to subangular	(m) 0.30 0.55	LVL (m OD)			(m)		(%)			DEPTH (m)		DEPTH (m)	LEVEL (m)	DEPTH (m)		(m)		

Notes Borehole terminated due to concrete obstruction.	Title Borehole record			
	Method	Logged by	Sheet number	
	Hand tools	RF	Sheet 1 of 1	
Groundwater observations No groundwater encountered.	Level (m OD)	Compiled by	Revision	
	-	AM	A	
	Co-ordinates -	Checked by SC	BH03A	

soiltechnics

ALL	STRATA		WATER		CORII	NG				SPT TES	STING		OTHER IN SI	TU TESTING		SAMPLING	6		
INSTALL	DESCRIPTION			STRIKES	DEPTH (m)	TCR (%)	SCR (%)	RQD (%)	FI	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE	
SN	Grass onto firm brown slightly gravelly organic CLAY. Gravel is fine to medium subrounded to subangular sandstone.	DEPTH (m) 0.55	REDUCED LVL (m OD)	LEGEND	SIRKES		TCR (%)	SCR (%)		FI	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)		TYPE / DEPTH (m)	RESULT			ТУРЕ

Notes Borehole terminated due to concrete obstruction.	Title Borehole record			
	Method	Logged by	Sheet number	
	Hand tools	RF	Sheet 1 of 1	
Groundwater observations No groundwater encountered.	Level (m OD)	Compiled by	Revision	
	-	AM	A	
	Co-ordinates	Checked by SC	BH03B	

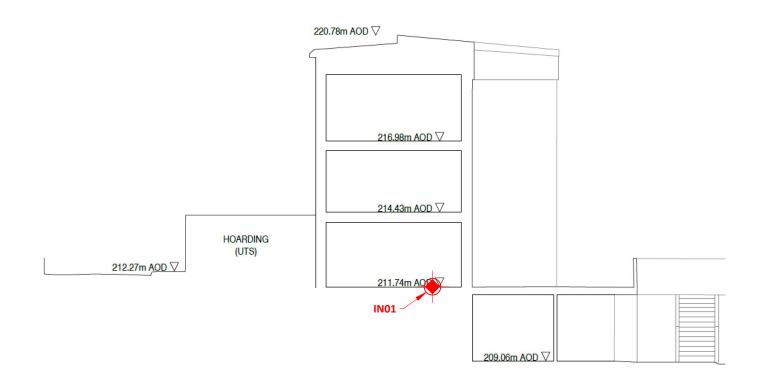
soiltechnics

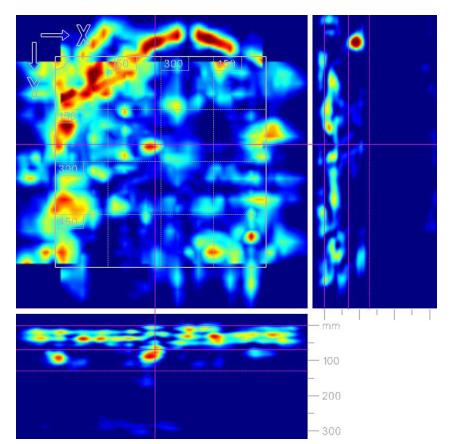
ALL	STRATA					SPT TESTING				TU TESTING	SAMPLING		
INSTALL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Made ground (Topsoil) [driller's description]. (TOPSOIL) (Crushed aggregates [driller's description].	- 0.20 - 0.40											
	\ (MADE GROUND) Crushed aggregates. Blackish grey sand and gravel, brick and cobbles [driller's description]. (MADE GROUND)	-											
	Dark grey sandy GRAVEL of fine to medium subrounded to subangular limestone. (MADE GROUND)	1.00 									1.00		ES
	Medium to coarse subrounded to subangular GRAVEL of limestone, concrete and brick. (MADE GROUND)	- - 1.70 - - 2.00									1.80		D
	Soft dark grey slightly gravelly sandy CLAY. Gravel is fine to medium subrounded to subangular sandstone. (MADE GROUND)										2.25		ES
	Orangish brown gravelly clayey SAND. Gravel is fine to medium subrounded to subangular sandstone. (DEVENSIAN TILL)	- 3.30 									3.50	4.00	в
	BOREHOLE TERMINATED AT 4.00m	4.00 											
		- - - -											
		_ _ _ _											

Notes Inspection pit excavated to 1.0m depth.	Title Dynamic Windowless Sampling record				Date(s) 07/08/2023 - 08/08/2023
			Method	Logged by	Sheet number
	Range (m) Recovery (%)		Windowless sampling	RF	Sheet 1 of 1
Groundwater observations No groundwater encountered.	1.00 - 2.50 2.50 - 4.00	70 40	Level (m OD)	Compiled by	Revision
No groundwater encountered.			-		A
			Co-ordinates -	Checked by SC	BH04

Appendix D

Exploratory Hole Logs: Concrete Cores


Plan: (Not to scale)



Concrete core log							
Depth (mm)	Description						
0 - 100	Brownish grey SCREED.						
100 - 315	Grey reinforced CONCRETE with aggregates up to 30r 10mm diameter reinforcement bar located at 240mm						
	Corehole terminated at 315mm depth, encountering						

Section: (Not to scale)

0mm in diameter. <2% air voids up to 5mm diameter. m depth.

Made Ground of clayey gravels at base

Scan analysis:

Scan inconclusive.

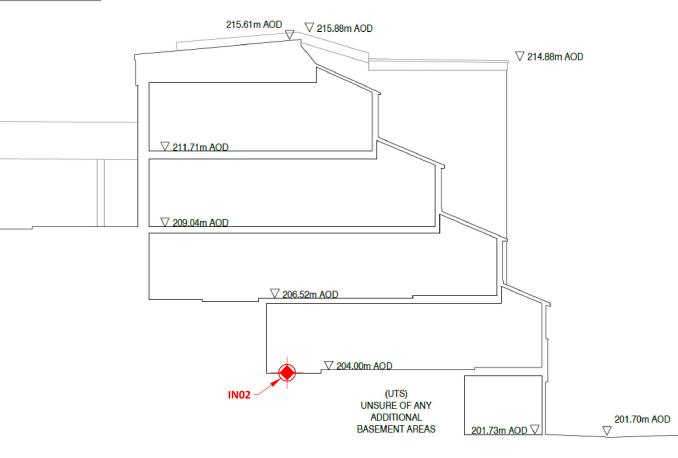
Notes
1. 100mm diameter core barrel used.

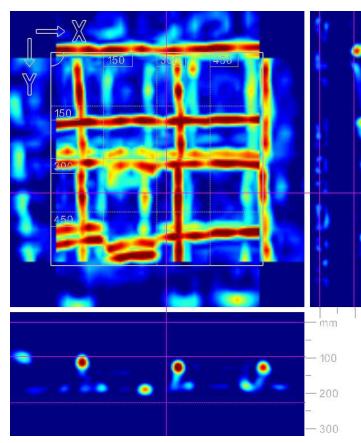
A	First issue	RF	KD	05.09.2023
REV	DESCRIPTION	LOGD	PREP	DATE
	soiltech	n	ic	CS

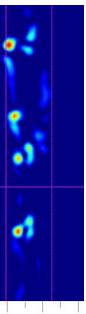
environmental • geotechnical • building fabric

PROJECT Cefn Isaf, Merthyr Tydfil

TITLE		
Floor scan inves		
METHOD		DATE OF WORKS
Diamond tipped	core barrel and	08.08.2023
Hilti PS1000 scar	า	
PROJECT NO.	SCALE AT A3	LOCATION REFERENCE
STV6119	Not to scale	IN01




Plan: (Not to scale)

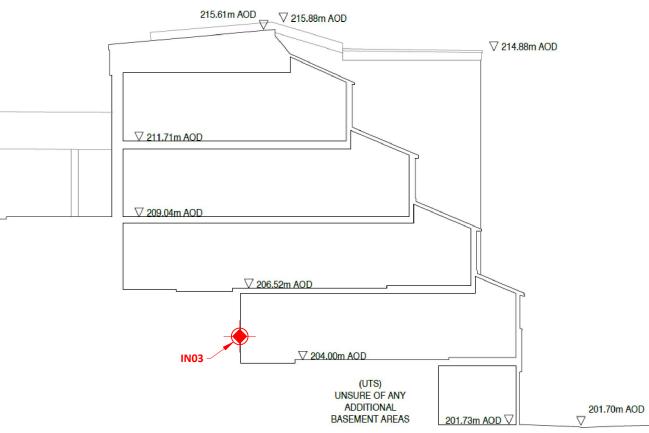


Section: (Not to scale)

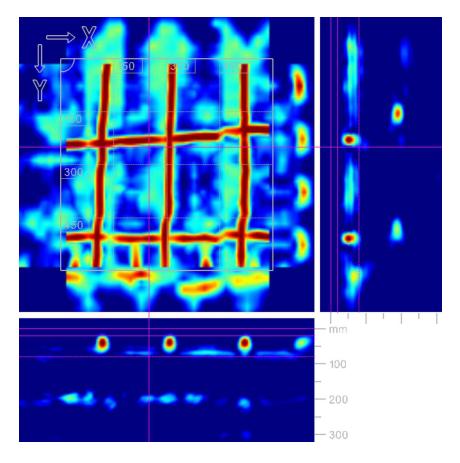
Concrete core log								
Depth (mm)	Description							
0 - 300	Light grey reinforced CONCRETE. Aggregates up to 20mm diameter. <2% air voids up to 5mm diameter. 15mm reinforcement bar located at 90mm depth. 25mm reinforcement bar located at 150mm depth.							
Corehole terminated at 0.3m depth, encountering Made Ground of sands and gravels at base								

Scan analysis:

Reinforcement at 100-150mm depth with 200-230mm centres.


Notes
1. 100mm diameter core barrel used.

A First issue		RF	KD	05.09.2023					
REV DESCRIPTION		LOGD	PREP	DATE					
soiltechnics environmental • geotechnical • building fabric									
PROJECT									
Cefn Isaf, Merth	ıyr Tydfil								
TITLE									
Floor scan inve	stigation								
METHOD		DATE	OF W	ORKS					
Diamond tipped	core barrel and	08.0	8.20	23					
Hilti PS1000 scan									
PROJECT NO.	LOCA	TION	REFERENCE						
STV6119	Not to scale	IN02	2						



Plan: (Not to scale)

Depth (r 0 - 245

Concrete core log

Depth (mm)	Description						
0 - 245	Grey reinforced CONCRETE. Aggregates up to 15mm diameter. <2% air voids up to 2mm diameter. 20mm reinforcement bar located at 50mm and 165mm depths.						
Corehole terminated at 0.245m depth, encountering soils, Suspected							

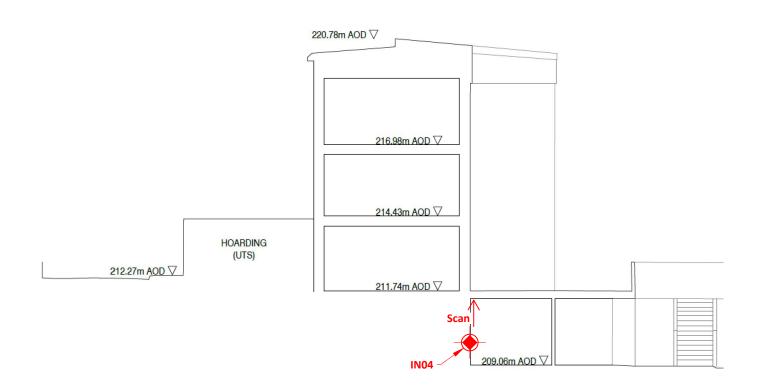
Made Ground at base

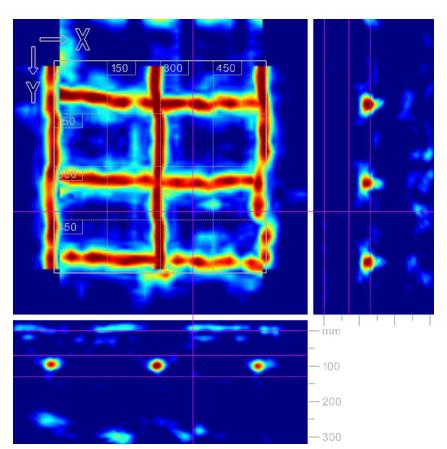
Scan analysis:

Reinforcement at 40mm to 50mm depth. Centres at 200mm to 240mm.

Notes 1. 100mm diameter core barrel used.

A	First issue		RF	KD	05.09.2023						
REV	DESCRIPTION		LOGD	PREP	DATE						
	بازم	- o o b	5	:							
	soiltechnics										
e	environmenta	l • geotechnical	• buil	ding	fabric						
PR	OJECT										
Ce	efn Isaf, Merth	yr Tydfil									
ТП	ΓLE										
F	loor scan inves	stigation									
M	THOD		DATE	OF W	ORKS						
Di	amond tipped	core barrel and	08.0	8.20	23						
Hi	Hilti PS1000 scan										
PR	OJECT NO.	LOCA	TION I	REFERENCE							
S1	V6119	Not to scale	INOS	3							





Concrete core	e log
Depth (mm)	Description
0 - 240	Brown reinforced CONCRETE. Aggregates up to 15mm 15mm reinforcement bar located at 80mm depth. 10m depths.
	Corehole terminated at 0.24m depth, encounterin

Section: (Not to scale)

m diameter. <2% air voids up to 2mm diameter. Omm reinforcement bar located at 90mm and 185mm

ng suspected Made Ground at base.

Scan analysis:

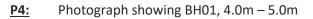
Reinforcement at 300mm and 200mm centres at a depth of ~80-100mm.

Notes
1. 100mm diameter core barrel used.

Α	First issue		RF	KD	05.09.2023
REV	DESCRIPTION		LOGD	PREP	DATE
soiltechnical - geotechnical - building fa					
PROJECT Cefn Isaf, Merthyr Tydfil					
тп	TLE				
F	loor scan inve	stigation			
М	ETHOD		DATE	OF W	ORKS
	iamond tipped ilti PS1000 scar	core barrel and n	08.0	08.20	23
DR	OJECT NO.	SCALE AT A3	LOCA	TION I	REFERENCE
			IN04		

Appendix E Photographic Records

P1: Photograph showing BH01 Location


P2: Photograph showing Concrete encountered in BH01

Title	Photo sheet number	Appendix
Photographic records of boreholes	Р3	E

P3: Photograph showing BH01, 1.0m – 4.0m

Title	Photo sheet number	Appendix
Photographic records of boreholes	Р3	E

P5: Photograph showing BH01, 5.0m – 7.5m

P6: Photograph showing BH01, 7.5m – 10.5m

Title	Photo sheet number	Appendix
Photographic records of boreholes	P3	E

P7: Photograph showing BH01, 10.5m – 13.5m

P8: Photograph showing BH01, 13.5m – 15.0m

Title	Photo sheet number	Appendix
Photographic records of boreholes	Р3	E

P9: Photograph showing BH02, 0.0m – 3.03m

P10: Photograph showing BH02, 3.0m - 9.0m

Title	Photo sheet number	Appendix
Photographic records of boreholes	Р3	E

P11: Photograph showing BH02, 8.0m – 10.0m

P12: Photosheet showing BH04, 1.0m – 4.0m

Title	Photo sheet number	Appendix
Photographic records of boreholes	Р3	E

P1: Photograph showing Eastern end of central courtyard

P2: Photograph showing North Eastern site boundary

Title	Photo sheet number	Appendix
Photographic records of the general site	P1	E

P3: Photograph showing western site of central courtyard

P4: Photograph showing Northern courtyard looking west

Title	Photo sheet number	Appendix
Photographic records of the general site	P1	E

<u>P5:</u> Photograph showing western boundary fencing

P6: Photograph showing garages located on sites notheastern boarder

Title	Photo sheet number	Appendix
Photographic records of the general site	P1	E

P7: Photograph showing access road running along site western boundary

P8: Photograph showing southern carpark area

Title	Photo sheet number	Appendix
Photographic records of the general site	P1	E

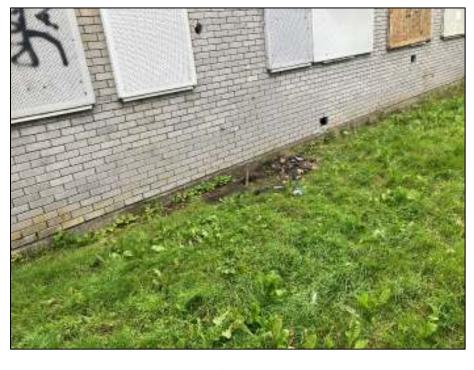
P1: Photograph showing TP01 Location

P2: Photograph showing TP01, service tape

Title	Photo sheet number	Appendix
Photographic records of Trial Pits	P2	E

P3: Photograph show TP01B Location

P4: Photograph showing concrete obstrction at base of TP01B



Title	Photo sheet number	Appendix
Photographic records of Trial Pits	Ρ2	E

P5: Photograph showing TP03 Location

P6: Photograph showing location of TP04

Title	Photo sheet number	Appendix
Photographic records of Trial Pits	P2	E

P8: Photograph showing TP05 Location

Title	Photo sheet number	Appendix
Photographic records of Trial Pits	P2	E

P9: Photograph showing TP05

soiltechnics

environmental - geotechnical - building fabric

P10: Photograph of TP06 Location

Title	Photo sheet number	Appendix
Photographic records of Trial Pits	P2	E

P11: Photograph showing TP07 Location

soiltechnics

environmental - geotechnical - building fabric

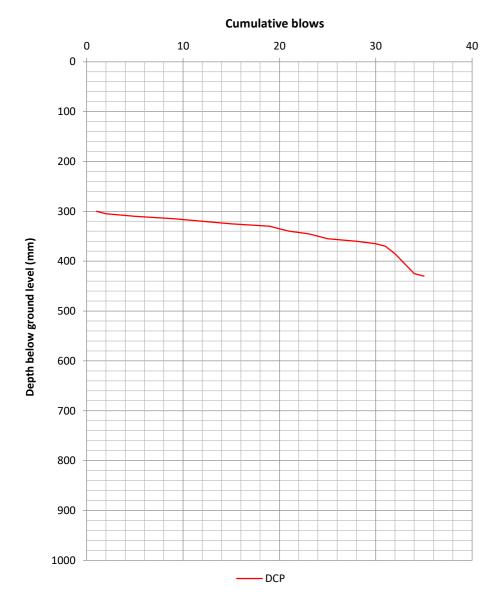
P12: Photograph showing gas main encountered in TP07

Title	Photo sheet number	Appendix
Photographic records of Trial Pits	P2	E

Title	Photo sheet number	Appendix
Photographic records of Trial Pits	P2	E

Appendix F Dynamic Cone Penetrometer Results

environmental - geotechnical - building fabric


Dynamic Cone Penetrometer (DCP) summary

Location	Layer No.	CBR (%)	Thickness (mm)	Start depth (mmBGL)	Base depth (mmBGL)
DCP01	1	105.3	65	285	350
DCP01	2	37.1	80	350	430
DCP02	1	2.3	200	0	200
DCP03	1	10.6	190	0	190
DCP04	1	1.7	200	0	200
DCP04	2	13.1	185	200	385

Dynamic Cone Penetrometer (DCP) test

Location	Date of test	Start depth (mm)	Zero reading (mm)	Operator
DCP01	08/08/2023	285	340	RF

Plot showing number of blows against depth

Notes

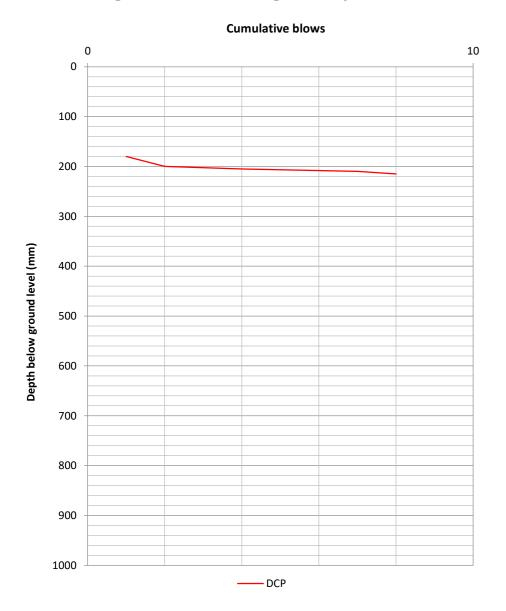
1. Test procedure following Highways England Document CS229 Data for Pavement Assessment.

Plot showing CBR (%) against depth

Calculations

Log10 (Uncorrected (UC) CBR) = 2.48 - 1.057Log10(mm/blow)

Layer No.	
1	
2	


Layer properties

CBR (%)	Thickness (mm)	Start depth (mmBGL)	Base depth (mmBGL)
105.3	65	285	350
37.1	80	350	430

Dynamic Cone Penetrometer (DCP) test

Location	Date of test	Start depth (mm)	Zero reading (mm)	Operator
DCP02	08/08/2023	0	85	RF

Plot showing number of blows against depth



Notes

1. Test procedure following Highways England Document CS229 Data for Pavement Assessment.

2. Refusal on assumed concrete obstruction.

Plot showing CBR (%) against depth

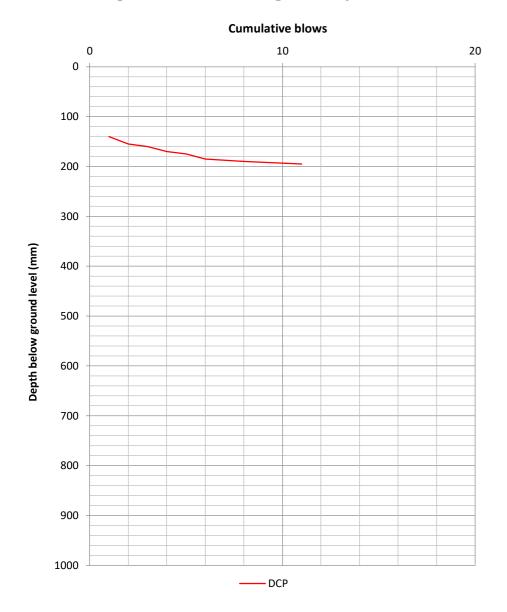
Calculations

Log10 (Uncorrected (UC) CBR) = 2.48 - 1.057Log10(mm/blow)

1

Layer

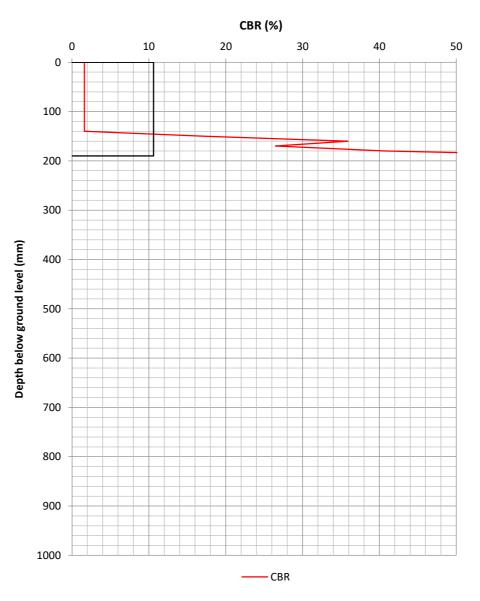
No.


Layer properties

CBR (%)	Thickness (mm)	Start depth (mmBGL)	Base depth (mmBGL)
2.3	200	0	200

Dynamic Cone Penetrometer (DCP) test

Location	Date of test	Start depth (mm)	Zero reading (mm)	Operator
DCP03	08/08/2023	0	55	RF


Plot showing number of blows against depth

Notes

1. Test procedure following Highways England Document CS229 Data for Pavement Assessment.

Plot showing CBR (%) against depth

Calculations

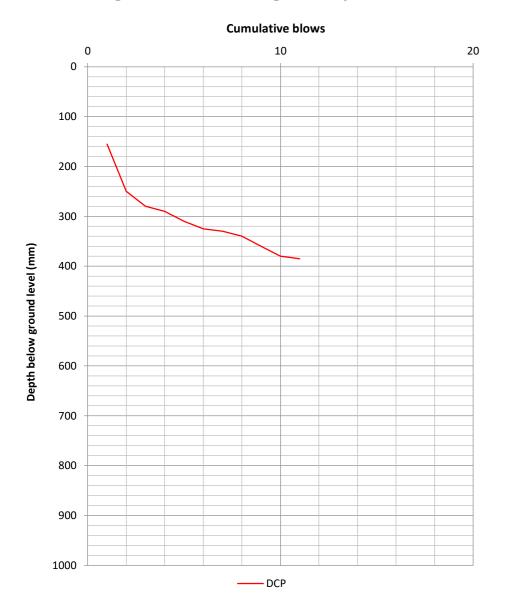
Log10 (Uncorrected (UC) CBR) = 2.48 - 1.057Log10(mm/blow)

Created: 02/11/2023

Layer properties

Layer

No.


1

CBR (%)	Thickness (mm)	Start depth (mmBGL)	Base depth (mmBGL)
10.6	190	0	190

Dynamic Cone Penetrometer (DCP) test

Location	Date of test	Start depth (mm)	Zero reading (mm)	Operator
DCP04	08/08/2023	0	110	RF

Plot showing number of blows against depth

Notes

1. Test procedure following Highways England Document CS229 Data for Pavement Assessment.

Plot showing CBR (%) against depth

Calculations

Log10 (Uncorrected (UC) CBR) = 2.48 - 1.057Log10(mm/blow)

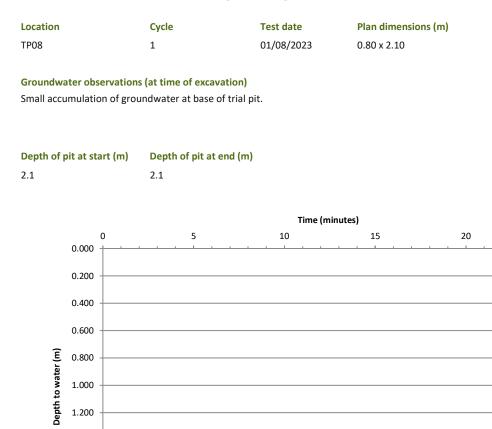
No.

2

Layer

Layer properties

CE	3R (%)	Thickness (mm)	Start depth (mmBGL)	Base depth (mmBGL)
1.	7	200	0	200
13	8.1	185	200	385


Appendix G In situ Permeability Testing Results

STV6119-R01 Rev A

soiltechnics environmental - geotechnical - building fabric

25

Soil infiltration test (following BRE Digest 365 2016)

Test abandoned due to rising water level caused by collapse of trial pit sides.

1.400

1.600

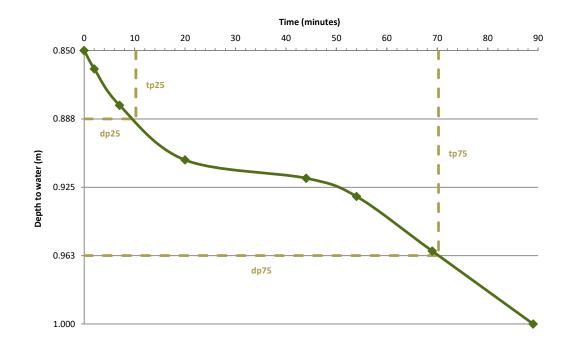
1.800

2.000

soiltechnics environmental - geotechnical - building fabric

Soil infiltration test (following BRE Digest 365 2016)

Location	Cycle	Test date	Plan dimensions (m)
TP09	1	01/08/2023	0.75 x 1.40


Groundwater observations (at time of excavation)

No groundwater encountered.

Depth of pit at start (m) Depth of pit at end (m)

1.4

 $f = \frac{V_{p\,75 - 25}}{a_{p\,50} \times t_{p\,75 - 25}}$

$V_{P^{75}-25}$ Effective storage volume of water between 75% (dp75) and 25% (dp25) effective depth	0.07875	m³
a_{P50} Internal surface area up to 50% effective depth and including the base	1	m²
t_{p75} – t_{p25} Time for the water level to fall from 75% to 25% effective depth	3600	S
f Soil infiltration rate	1.59E-05	m/s

Appendix H Geotechnical Laboratory Test Results

STV6119-R01 Rev A

DETERMINATION OF LIQUID AND PLASTIC LIMITS

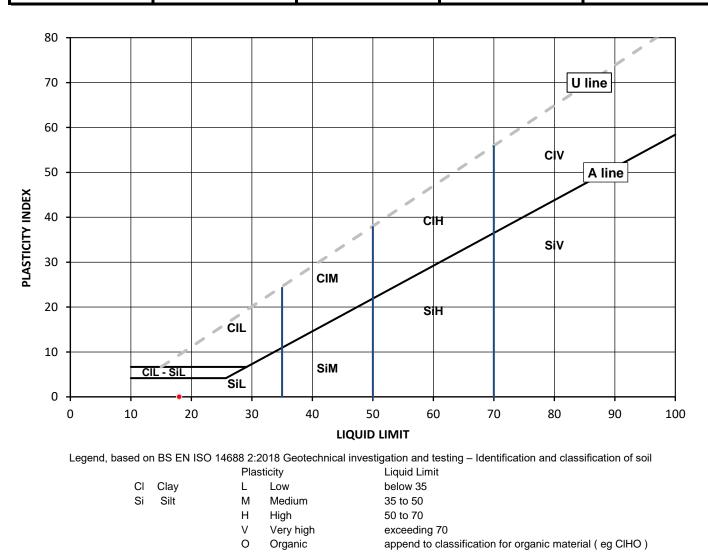
Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Depth Top [m]: 3.75

Depth Base [m]: 4.00

Sample Type: D


Soiltechnics Limited Client Reference: STV6119 Client: **Client Address:** Job Number: 23-50614-1 Cedar Barn, White Lodge, Date Sampled: 07/08/2023 Walgrave, Northampton, NN6 9PY Date Received: 11/08/2023 Contact: Admin Date Tested: 21/08/2023 Site Address: Cefn Isaf, Merthyr Tydfill Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Laboratory Reference:2779162Hole No.:BH01Sample Reference:BH013.752

Sample Reference: BH013.752 Sample Description: Grey sandy GRAVEL

Sample Preparation: Tested after washing to remove >425 µm

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[Ip] %	BS Test Sieve
0.5	18	NP	NP	18

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks: NP - non plastic

Signed:

KataRyna

Kozier

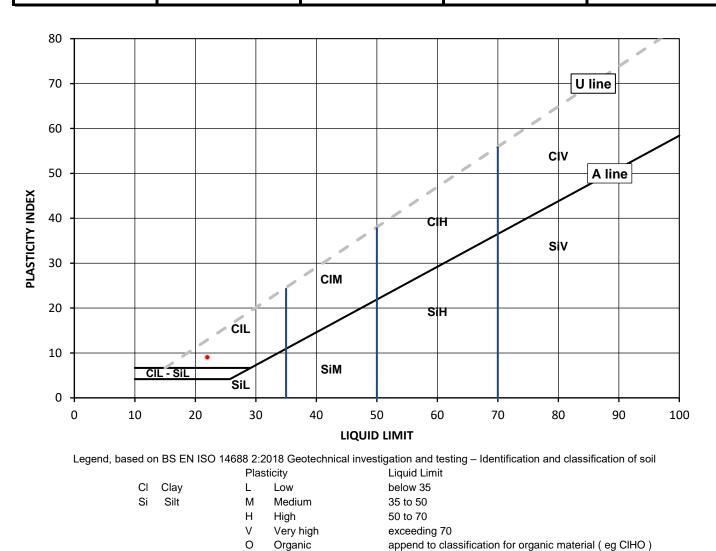
Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

> Depth Base [m]: Not Given Sample Type: D



Client: Soiltechnics Limited Client Reference: STV6119 **Client Address:** Job Number: 23-50614-1 Cedar Barn, White Lodge, Walgrave, Northampton, Date Sampled: 07/08/2023 NN6 9PY Date Received: 11/08/2023 Contact: Admin Date Tested: 21/08/2023 Site Address: Cefn Isaf, Merthyr Tydfill Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Depth Top [m]: 8.40

Laboratory Reference:	2779167
Hole No.:	BH02
Sample Reference:	BH028.405
Sample Description:	Brown gravelly clayey SAND

Sample Preparation: Tested after washing to remove >425 µm

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[Ip] %	BS Test Sieve
7.5	22	13	9	49

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

KataRyna

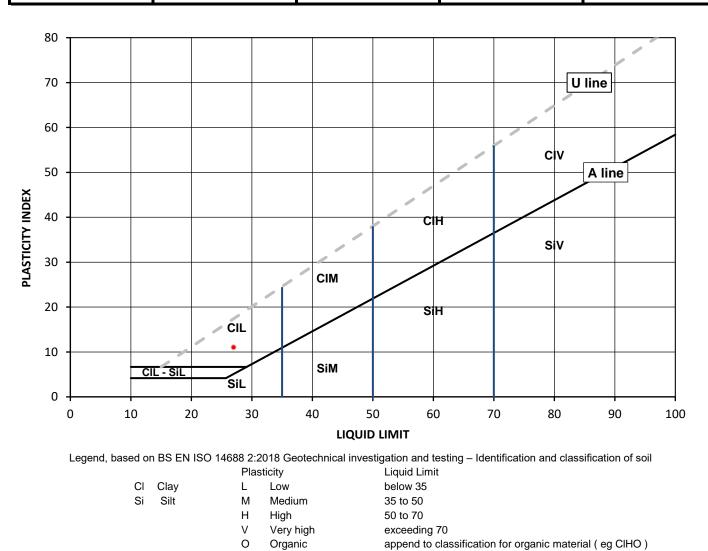
DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Depth Base [m]: Not Given

Sample Type: D



Client: Soiltechnics Limited Client Reference: STV6119 **Client Address:** Job Number: 23-50614-1 Cedar Barn, White Lodge, Walgrave, Northampton, Date Sampled: 01/08/2023 NN6 9PY Date Received: 11/08/2023 Contact: Admin Date Tested: 21/08/2023 Site Address: Cefn Isaf, Merthyr Tydfill Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Depth Top [m]: 0.30 L

Laboratory Reference:	2779169
Hole No.:	TP05
Sample Reference:	TP050.302
Sample Description:	Brown gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425 µm

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[Ip] %	BS Test Sieve
13	27	16	11	64

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analyti

for and on behalf of i2 Analytical Ltd

KataRyna

Kozier

SUMMARY REPORT

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119 Job Number: 23-50614-1 Date Sampled: 01/08 - 07/08/2023 Date Received: 11/08/2023 Date Tested: 21/08/2023 Sampled By: Not Given

 4041

 Client:
 Soiltechnics Limited
 Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

 Client Address:
 Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY
 Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

 Contact:
 Admin

 Site Address:
 Cefn Isaf, Merthyr Tydfill

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

ac-MR

			Sample	9				Content 7-2 [W]	ontent 17892-1 ']		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Con BS 1377-2 [Water Con BS EN ISO 17 [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2779162	BH01	BH013.752	3.75	4.00	D	Grey sandy GRAVEL	Atterberg 1 Point	0.5		18	18	NP	NP					
2779167	BH02	BH028.405	8.40	Not Given	D	Brown gravelly clayey SAND	Atterberg 1 Point	7.5		49	22	13	9					
2779168	BH04	BH041.803	1.80	Not Given	D	Brownish grey GRAVEL		3.0										
2779169	TP05	TP050.302	0.30	Not Given	D	Brown gravelly very sandy CLAY	Atterberg 1 Point	13		64	27	16	11					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

SUMMARY REPORT

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119 Job Number: 23-50614-1 Date Sampled: 01/08 - 07/08/2023 Date Received: 11/08/2023 Date Tested: 21/08/2023 Sampled By: Not Given

4041Client:Soiltechnics LimitedClient Address:Cedar Barn, White Lodge,
Walgrave, Northampton,
NN6 9PYContact:AdminSite Address:Cefn Isaf, Merthyr Tydfill

IAC-MR

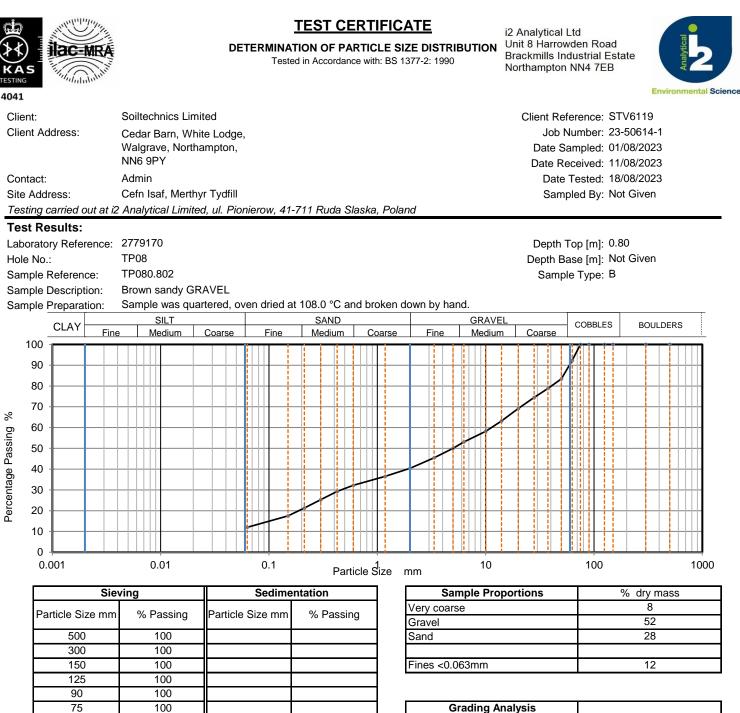
Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

KA

TESTING

		Sample									
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2779162	BH01	BH013.752	3.75	4.00	D	Grey sandy GRAVEL		0.5	Sample was quartered, oven dried at 106 °C		
2779167	BH02	BH028.405	8.40	Not Given	D	Brown gravelly clayey SAND		7.5	Sample was quartered, oven dried at 108.3 °C		
2779168	BH04	BH041.803	1.80	Not Given	D	Brownish grey GRAVEL	Brownish grey GRAVEL 3.0 Sample was quartered,		Sample was quartered, oven dried at 108.3 °C		
2779169	TP05	TP050.302	0.30	Not Given	D	Brown gravelly very sandy CLAY		13 Sample was quartered, oven dried at 10			


Comments:

Signed:

Kata Dyna Koziej Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 30/08/2023 GF 099.17

Grading Analysi	s	
D100	mm	75
D60	mm	11.3
D30	mm	0.461
D10	mm	
Uniformity Coefficient		> 180
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

0.063 12 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

92

83

79 75

69

63

58

53

50

46

40

37

32

29

25

21 18

Remarks:

63

50

37.5

28 20

14

10

6.3

5

3.35

2

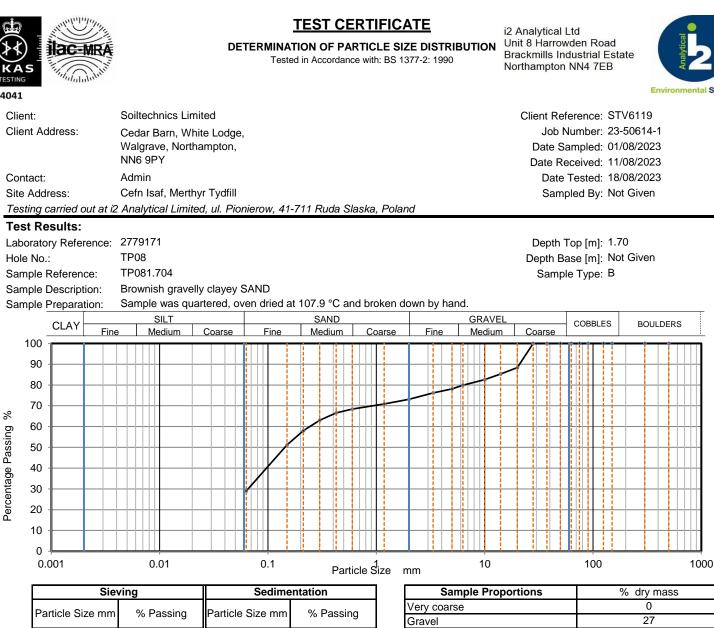
1.18

0.6

0.425

0.3

0.212


0.15

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Katarzyna Koziel

Katapyna

Slev	ing	Sedime	itation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	88		
14	85		
10	83		
6.3	80		
5	78		
3.35	76		
2	73		
1.18	71		
0.6	68		
0.425	67		
0.3	63		
0.212	58		
0.15	51]	
0.063	30	7	

		v
Gravel		27
Sand		43
Fines <0.063mm		30
Grading Analysis		
D100	mm	28

Grading Analysis	~	
D100	mm	28
D60	mm	0.243
D30	mm	0.0633
D10	mm	
Uniformity Coefficient		> 3.9
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Katapyna

4041

SUMMARY REPORT

DETERMINATION OF POINT LOAD STRENGTH

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119 Job Number: 23-50614-1 Date Sampled: 08/08/2023 Date Received: 11/08/2023 Date Tested: 29/08/2023 Sampled By: Not Given

 4041

 Client:
 Soiltechnics Limited

 Client Address:
 Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY

 Contact:
 Admin

 Site Address:
 Cefn Isaf, Merthyr Tydfill

 Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Iac-MR

"Inhalu

Test results

KΑ

TESTING

			Sample	2				ence	Test see	Type SRM			Dime	nsions		Earres	nt De		t Load th Index
	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	w	Dps mm	Dps' mm	Force P kN	B Equivalent B diameter, De	ls MPa	Is(50) MPa
2779165	BH01	BH0111.906	11.90	Not Given	В	Grey QUARTZITE	WC = 0.4%	1	D	U	YES	69.7	89.6	89.0	85.0	40.8	87.3	5.35	6.87
2779165	BH01	BH0111.906	11.90	Not Given	В	Grey QUARTZITE	WC = 0.4%	2	А	U	YES	-	89.8	66.0	58.0	34.2	81.4	5.15	6.42
2779166	BH01	BH0113.307	13.30	Not Given	В	Light grey QUARTZITE	WC = 0.2%*	1	D	U	YES	62.3	89.5	89.0	80.0	50.0	84.6	6.99	8.85
2779166	BH01	BH0113.307	13.30	Not Given	В	Light grey QUARTZITE	WC = 0.2%*	2	А	U	YES	-	89.6	70.0	64.0	50.0	85.4	6.85	8.72
Note: # non accredited; Test Type: D: Diametrat, A - Axia, I - Irregular Lump, B - Block; Direction: L - parallel to glaves q weakness, P - perpendicular to planes q weakness, U - unknown or random; Dimensions: Dispose - Distance between planes (planes resparation), Dype - is alliver (see and W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De50)0.45 for all tests									n Date:	14/0	3/2023	- 14/03/	/2024						
Comments:		erminated at 50 able load.) kN loa	id. Unat	ole to dete	ermine maximum Point Load Strength – result	reported at maximum												

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

SUMMARY REPORT

DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH OF ROCK MATERIALS

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119 Job Number: 23-50614-1 Date Sampled: 08/08/2023 Date Received: 11/08/2023 Date Tested: 29/08/2023 Sampled By: Not Given

4041Client:Soiltechnics LimitedClient Address:Cedar Barn, White Lodge,
Walgrave, Northampton,
NN6 9PYContact:AdminSite Address:Cefn Isaf, Merthyr Tydfill

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

			Sample	2					Specime	en Dimen	sions (2)	Bulk		Uniaxia	al Compre	ssion (3)	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	UCS
			m	m				mm	mm			Mg/m3	%		Mpa/s		Мра
2779163	BH01	BH018.604	8.60	Not Given	В	Grey QUARTZITE	Duration of test exceeded time specified in ISRM method, 2007, p153, part1.	89.9	253.6	2.8	Vertical	2.54	0.4	as received	0.1574	MS + AC	173
						sted for UCS, 2 - ISRM p86 clause (vii), Caliper method used f ction machine: VJ Tech AUTOCON - VJT 51-3011; Mode of fa							mination o	f Uniaxial Compres	sive Stren	gth (UCS)) of Rock

Comments:

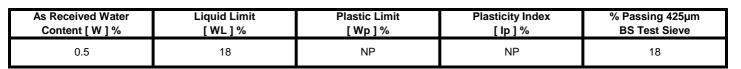
Signed:

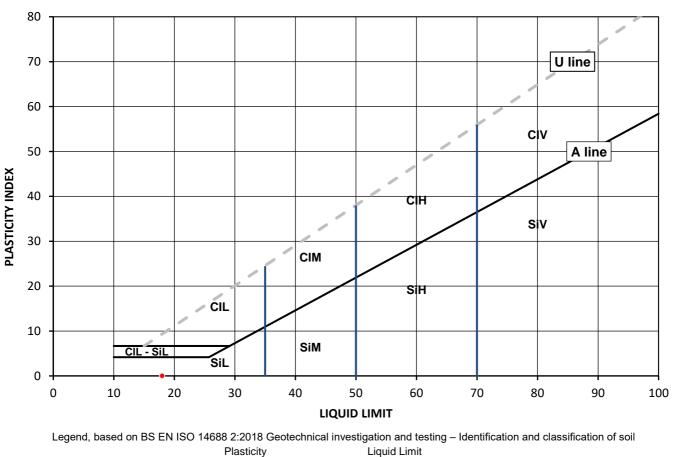
Katasyna

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5


i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Client:	Soiltechnics Limited	Client Reference: STV6119
Client Address:	Cedar Barn, White Lodge,	Job Number: 23-50614-2
	Walgrave, Northampton,	Date Sampled: 07/08/2023
	NN6 9PY	Date Received: 11/08/2023
Contact:	Admin	Date Tested: 21/08/2023
Site Address:	Cefn Isaf, Merthyr Tydfill	Sampled By: Not Given
Testing carried out at	i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference	: 2779162	Depth Top [m]: 3.75
Hole No.:	BH01	Depth Base [m]: 4.00
Sample Reference:	BH013.752	Sample Type: D

Grey sandy GRAVEL Sample Description:

Tested after washing to remove >425 μm Sample Preparation:

Silt	М
	Н
	V
	0

L

Low

High Very high

Medium

Organic

Liquid Limit below 35 35 to 50 50 to 70 exceeding 70 append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

CI

Si

Clay

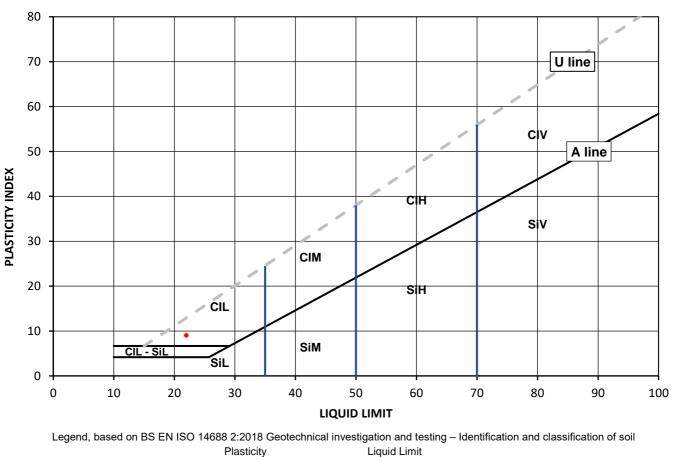
Remarks:

NP - non plastic

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist**

Date Reported: 21/09/2023


DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Olivert		
Client:	Soiltechnics Limited	Client Reference: STV6119
Client Address:	Cedar Barn, White Lodge,	Job Number: 23-50614-2
	Walgrave, Northampton,	Date Sampled: 07/08/2023
	NN6 9PY	Date Received: 11/08/2023
Contact:	Admin	Date Tested: 21/08/2023
Site Address:	Cefn Isaf, Merthyr Tydfill	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2779167	Depth Top [m]: 8.40
Hole No.:	BH02	Depth Base [m]: Not Given
Sample Reference:	BH028.405	Sample Type: D
Sample Description:	Brown gravelly clayey SAND	

Sample Preparation: Tested after washing to remove >425 µm

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
7.5	22	13	9	49

Clay	L
Silt	Μ
	н
	V
	0

Low Medium

High Very high

Organic

Liquid Limit below 35 35 to 50 50 to 70 exceeding 70 append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

CI

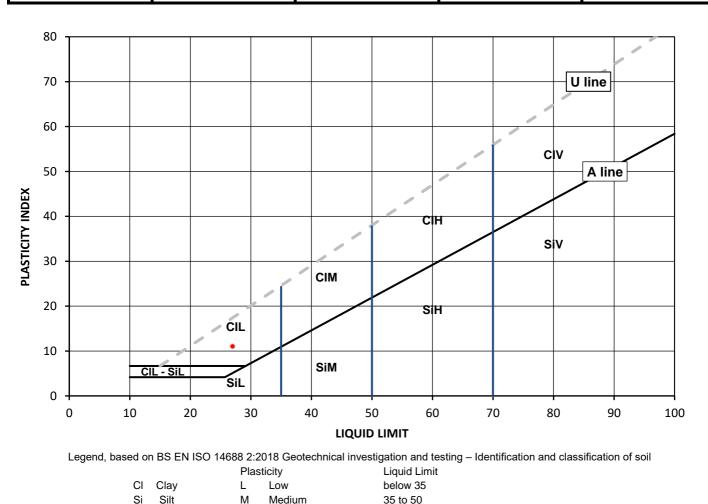
Si

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior Reporting Specialist

Date Reported: 21/09/2023


DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Soiltechnics Limited Client Reference: STV6119 Client Address: Job Number: 23-50614-2 Cedar Barn, White Lodge, Walgrave, Northampton, Date Sampled: 01/08/2023 NN6 9PY Date Received: 11/08/2023 Contact: Admin Date Tested: 21/08/2023 Site Address: Cefn Isaf, Merthyr Tydfill Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2779169 Depth Top [m]: 0.30 **TP05** Depth Base [m]: Not Given Hole No.: TP050.302 Sample Reference: Sample Type: D Sample Description: Brown gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425 µm

As Received Water
Content [W] %Liquid Limit
[WL] %Plastic Limit
[Wp] %Plasticity Index
[Ip] %% Passing 425µm
BS Test Sieve1327161164

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

н

V

0

High

Very high

Organic

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

50 to 70

exceeding 70

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 21/09/2023

append to classification for organic material (eg CIHO)

SUMMARY REPORT

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119

Job Number: 23-50614-2

Date Received: 11/08/2023

Date Tested: 21/08/2023

Sampled By: Not Given

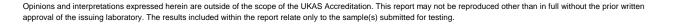
Date Sampled: 01/08 - 07/08/2023

 Client:
 Soiltechnics Limited
 Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

 Client Address:
 Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY
 Contact:
 Admin

 Site Address:
 Cefn Isaf, Merthyr Tydfill
 Cefn Isaf, Merthyr Tydfill

 Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland
 Poland


Test results

4041

			Sample	5				tent W]	tent 892-1		Atte	rberg			Density		#		
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]		Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#		
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%		
2779162	BH01	BH013.752	3.75	4.00	D	Grey sandy GRAVEL	Atterberg 1 Point	0.5		18	18	NP	NP						
2779167	BH02	BH028.405	8.40	Not Given	D	Brown gravelly clayey SAND	Atterberg 1 Point	7.5		49	22	13	9						
2779168	BH04	BH041.803	1.80	Not Given	D	Brownish grey GRAVEL		3.0											
2779169	TP05	TP050.302	0.30	Not Given	D	Brown gravelly very sandy CLAY	Atterberg 1 Point	13		64	27	16	11						

Note: # Non accredited; NP - Non plastic

Comments:

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 234.16

SUMMARY REPORT

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119 Job Number: 23-50614-2 Date Sampled: 01/08 - 07/08/2023 Date Received: 11/08/2023 Date Tested: 21/08/2023 Sampled By: Not Given

 Client Address:
 Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY

 Contact:
 Admin

 Site Address:
 Cefn Isaf, Merthyr Tydfill

 Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Soiltechnics Limited

Test results

4041

Client:

			Sample	2							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2779162	BH01	BH013.752	3.75	4.00	D	Grey sandy GRAVEL		0.5	Sample was quartered, oven dried at 106 °C		
2779167	BH02	BH028.405	8.40	Not Given	D	Brown gravelly clayey SAND		7.5	Sample was quartered, oven dried at 108.3 °C		
2779168	BH04	BH041.803	1.80	Not Given	D	Brownish grey GRAVEL		3.0	Sample was quartered, oven dried at 108.3 °C		
2779169	TP05	TP050.302	0.30	Not Given	D	Brown gravelly very sandy CLAY		13	Sample was quartered, oven dried at 108.3 °C		

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 21/09/2023

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Clien Clien	it: it Addres	s:				s Lim n, Wh			ge,																		С									119 614·	-2			
			W		ave, l	North																														'202 '202				
Cont	act:		Ac	lmin																									Dat	te .	Tes	ste	d:	18/	/08/	202	3			
Site /	Address		Ce	efn Is	saf, N	Merth	nyr T	ydfi	ill																				Sa	mp	lec	зB	sy:	No	t G	iven	I			
Testi	ing carrie	ed out at	i2 Ar	nalyt	ical I	Limite	ed, ι	ıl. F	Pion	iero	ow, ·	41-7	711	Rud	la S	lasł	кa,	Pola	ana																					
Test	t Resul	is:																																						
Labo	ratory R	eference	: 27	7917	70																							De	eptł	h T	ор	[m	n]:	0.8	0					
Hole	No.:		TF	2 08																																iven	I			
Sam	ple Refe	rence:	TF	9080	.802																							S	Sam	nple	еT	ур	e:	В						
Sam	ple Desc	ription:	Br	own	sand	dy Gł	RAV	ΈL																																
Sam	ple Prep	aration:	Sa	ampl	e wa	is qua	artei	red,	ov	en d	dried	d at	108	.0 °	C ar	nd k	oro	ken	do١	wn I	by	ha	nd.																	
	CL				SILT									SAN									-	GR							С	OBE	BLE	s		BOU	LDE	RS		T
1	00 -	· Fi	ine	N	/lediu	m	Co	arse	e		Fine		M	lediu	ım		Co	arse		F	ine	;		Me	diu	m	(Coa	rse									-		
																			Т												Ζ									
	90							+									Ħ		╈											$\overline{\mathbf{V}}$	Ť						+			
	80			+++				_				-	-	-			╢	-	+	_		\vdash	-			-	-			1				+	_	-	+			-
	70																4											1												
2																											1													
5	60												Ť.				T		T										1	T										Ē.
800	50			+++			-	+			-	-	1			\vdash	╫	-	+	-		-	4			+	-	+	+	+					-	-	+			H
	40						_	_			-	_		<u> </u>			4		_	4	1		_			-		-						+	_	_				-
נמ	30																╢																							
5																																								
	20							+					1	1			Ħ		+																	-				
	10			+++			-	+	+	-		-	-	-			╢	-	+	_		+			-	-	-	╬	-	+				-	-	-	+			H
	0										1						Ц								L				ļ			Ц								Ц
	0.001			(0.01					(0.1				Part	icle	s1	ize	mı	m				1	0							10	00						1(00
		Si	ievin	g						S	edir	nen	tatio	on									-	le l	Pro	ро	rtic	ons			T			(%	dry ı	ma	SS		_
	Particle	Size mi	m	% F	Pass	ing	Р	artio	cle	Siz	e m	m	%	Pa	ssin	ng				ery		bars	se													8				
	<u> </u>	500	_		100	-	_ -					_				-	_			irav anc											+					52 28				_
		300	-		100		╢					-					-			anc	<u>د</u>										+					20				
		150			100		╢												F	ines	s <	:0.0	063	mn	n											12				
		125			100																																			
		90			100																																			
		75			100		╢					+										G	ira	din	g A	na	ys	is			╞									
		63 50			92 83		╢					+								100 60	J									nm	_					75				
		50 37.5	-		83 79		╢					+					┥			60 30										חד חשר	_					11. 0.46				—
		28			75		╢					╉					┥			30 10										וווו mn	_					0.40	, 1			—
		20			69		┢														orm	nity	C	beff	icie	ent					1					> 18	30			
		14			63																			oeffi							Ť									
		10			58				_	_																				cie	ent	ca	lcu	late	ed i	n ac	cco	rda	nce	ә
		6.3			53							\bot							W	ith	BS	S EI	NI	so	14	688	3-2:	201	18											
	<u> </u>	5	+		50		╢																																	
	<u> </u>	3.35 2	+		46 40		-																																	
	<u> </u>	.18	+		37		╢										\neg																							
		0.6	+		32																																			
		.425			29																																			
		0.3			25																																			
		.212			21																																			
		062			18																																			
		060			10		1																																	

12 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

0.063

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist**

for and on behalf of i2 Analytical Ltd

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Con Site Test	nt Address: tact: Address: ting carried out a t Results:	Soiltechnics Lim Cedar Barn, Wh Walgrave, North NN6 9PY Admin Cefn Isaf, Merth at i2 Analytical Limite	ite Lodge, ampton, yr Tydfill	1-711 Ruda Slas	ka, Pola	and	Job I Date S Date Ro Date Sam	ference: ST Number: 23- ampled: 01/ eceived: 11/ Tested: 18/ pled By: Nor	50614-2 08/2023 08/2023 08/2023 : Given
	pratory Reference	TP08						Top [m]: 1.7	
	No.: Ple Reference:	TP08 TP081.704					•	ase [m]: No le Type: B	Given
	ple Description:		V CLOVEV SAND				Samp	іе туре. Б	
	ple Preparation		rtered, oven dried	at 107.9 °C and	broken	down by hand			
Jan	· <u> </u>	SILT		SAND	broken	GRAVE	1		
	CLAY	Fine Medium	Coarse Fine	Medium	Coarse	Fine Medium		COBBLES	BOULDERS
	100								
	90								
	80								
	70								
%	60								
sing									
Jass	50								
Percentage Passing	40								
enta	30								
erc	20								
ц	10								
	0								
	0.001	0.01	0.1	Particle	1 e Size	mm 10		100	1000
		Sieving	Sedim	entation		Sample Pro	ortions	0	% dry mass
	Particle Size r		Particle Size mm			Very coarse			0
			Farticle Size min	70 Flassing		Gravel			27
	500	100				Sand		_	43
	300 150	100				Fines <0.063mm			30
	125	100							30
	90	100							
	75	100				Grading A	nalysis		
	63	100				D100	mn	n	28
	50	100			_	D60	mn		0.243
	37.5 28	100			_	D30 D10	mn		0.0633
	20	88			_	Uniformity Coefficient	mn	1	> 3.9
	14	85	-		-	Curvature Coefficier			2 0.0
	10	83				Uniformity and Curv	ature Coeffici	ent calculate	ed in accordance
	6.3	80				with BS EN ISO 146			
	5	78							
	3.35	76	-1						
	2	73							

30 Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

71

68

67

63

58

51

Remarks:

1.18

0.6

0.425

0.3

0.212

0.15

0.063

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist**

for and on behalf of i2 Analytical Ltd

4041

Client Address:

Client:

SUMMARY REPORT

DETERMINATION OF POINT LOAD STRENGTH

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STV6119 Job Number: 23-50614-2 Date Sampled: 08/08/2023 Date Received: 11/08/2023 Date Tested: 29/08/2023 Sampled By: Not Given

 Contact:
 Admin

 Site Address:
 Cefn Isaf, Merthyr Tydfill

 Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Soiltechnics Limited

NN6 9PY

Cedar Barn, White Lodge,

Walgrave, Northampton,

Test results

			Sample	9				ence	Test see	Type ISRM			Dime	nsions			nt De	Point Strengt	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	w mm	Dps mm	Dps' mm	Force P kN	Benivalent Bodiameter, De	ls MPa	ls(50) MPa
2779165	BH01	BH0111.906	11.90	Not Given	В	Grey QUARTZITE	WC = 0.4%	1	D	U	YES	69.7	89.6	89.0	85.0	40.8	87.3	5.35	6.87
2779165	BH01	BH0111.906	11.90	Not Given	В	Grey QUARTZITE	WC = 0.4%	2	A	U	YES	-	89.8	66.0	58.0	34.2	81.4	5.15	6.42
2779166	BH01	BH0113.307	13.30	Not Given	В	Light grey QUARTZITE	WC = 0.2%*	1	D	U	YES	62.3	89.5	89.0	80.0	50.0	84.6	6.99	8.85
2779166	BH01	BH0113.307	13.30	Not Given	В	Light grey QUARTZITE	WC = 0.2%*	2	A	U	YES	-	89.6	70.0	64.0	50.0	85.4	6.85	8.72
Dimensions: Dps - Distance be		on), Dps' - at failure (see ISR	M note 6), Lne -	Length from pla		ndicular to planes of weakness, U - unknown or random; e end W - Width of shortest dimension perpendicular to load, P;		E	Equipme	ent No.:	i2 4	341	Ca	alibratio	n Date:	14/0	3/2023	- 14/03/	2024
Comments:		erminated at 50 able load.) kN loa	d. Unab	le to dete	ermine maximum Point Load Strength – result	reported at maximum		Cierra			840	nika Sie						

Monika Siewior Reporting Specialist

for and on behalf of i2 Analytical Ltd

DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH OF ROCK MATERIALS

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

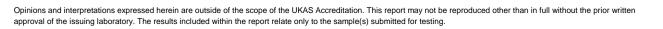
TESTING 4041

ac-M

"hilalala

Client:	Soiltechnics Limited
Client Address:	Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY
Contact:	Admin
Site Address:	Cefn Isaf, Merthyr Tydfill
- ·· · · · ·	10 Annahatis al Lingth al Al Dispisance 44 744 Deeds Ola

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland


Test results

			Sample	9					Specime	en Dimen	sions (2)	Bulk		Uniaxia	al Compre	ssion (3)	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	UCS
			m	m				mm	mm			Mg/m3	%		Mpa/s		Мра
2779163	BH01	BH018.604	8.60	Not Given	В	Grey QUARTZITE	Duration of test exceeded time specified in ISRM method, 2007, p153, part1. Sample is below	89.9	253.6	2.8	Vertical	2.54	0.4	as received	0.1574	MS + AC	173
2779164	BH01	BH0110.605	10.60	Not Given	В	Dark grey SILTSTONE	Sample is below recommended length to diameter ratio.	89.7	150.1	1.7	Vertical	2.57	0.6	as received	0.1584	MS + AC	72.7
						sted for UCS, 2 - ISRM p86 clause (vii), Caliper method used f tion machine: VJ Tech AUTOCON - VJT 51-3011; Mode of fa							mination c	f Uniaxial Compres	sive Streng	gth (UCS) of Rock

Comments:

Replaces Analytical Report Number 23-39195, issue no 1; Additional results of Determination Of Uniaxial

Compressive Strength Of Rock Materials

Monika Siewior **Reporting Specialist**

for and on behalf of i2 Analytical Ltd

Date Reported: 21/09/2023

Client Reference: STV6119 Job Number: 23-50614-2 Date Sampled: 08/08/2023 Date Received: 11/08/2023 Date Tested: 29/08 - 30/08/2023 Sampled By: Not Given

Admin Soiltechnics Limited Cedar Barn White Lodge Walgrave Northampton NN6 9PY Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: admin@soiltechnics.net

Analytical Report Number : 23-50618

Project / Site name:	Cefn Isaf, Merthyr Tydfil	Samples received on:	11/08/2023
Your job number:	STV6119	Samples instructed on/ Analysis started on:	11/08/2023
Your order number:	POR016163	Analysis completed by:	22/08/2023
Report Issue Number:	1	Report issued on:	22/08/2023
Samples Analysed:	4 soil samples		

Nonja Signed:

Dominika Warjan Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4 weeks from reporting
leachates	-	2 weeks from reporting
waters	-	2 weeks from reporting
asbestos	-	6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-50618 Project / Site name: Cefn Isaf, Merthyr Tydfil

Your Order No: POR016163

Lab Sample Number				2779178	2779179	2779180	2779181
Sample Reference				BH01	BH02	BH04	TP05
Sample Number				BH013.752	BH028.405	BH041.803	TP050.302
Depth (m)				3.75-4.00	8.40	1.80	0.30
Date Sampled				07/08/2023	07/08/2023	07/08/2023	01/08/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	100	87	74	< 0.1
Moisture Content	%	0.01	NONE	0.29	2.6	9.9	9.4
Total mass of sample received	kg	0.001	NONE	0.4	0.3	0.3	0.4

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.4	8.6	8.8	8.4
Total Sulphate as SO4	%	0.005	MCERTS	0.01	0.01	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0196	0.0073	0.0089	0.052
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	19.6	7.3	8.9	52
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	1.8	1.1	0.9	3
Total Sulphur	%	0.005	MCERTS	0.006	0.005	-	-
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	< 2.0	< 2.0	6.9

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	6.8
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	3.4

 $\label{eq:US} U/S = Unsuitable \ Sample \quad I/S = \ Insufficient \ Sample \quad ND = Not \ detected$

Analytical Report Number : 23-50618 Project / Site name: Cefn Isaf, Merthyr Tydfil

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2779178	BH01	BH013.752	3.75-4.00	Non Soil^^
2779179	BH02	BH028.405	8.4	Brown sand with stones.
2779180	BH04	BH041.803	1.8	Brown sand with stones.
2779181	TP05	TP050.302	0.3	Brown clay with gravel.

Analytical Report Number : 23-50618

Project / Site name: Cefn Isaf, Merthyr Tydfil

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	W	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

^^unaccredited sample matrix

Appendix I

Concrete Laboratory Test Results

STV6119-R01 Rev A

Kiwa CMT

Page 1 of 6

Soiltechnics Limi Cedar Barn White Lodge Walgrave Northants NN6 9PY	ted	Kiwa CMT Unit 5 Prime Park Way Prime Enterprise Park Derby DE1 3QB T +44 (0)1332 383333 E uk.cmt.enquiries@kiwa.com	
Date:	15 th August 2023	www.kiwa.co.uk/cmt	
Lab Ref:	70597		
Order Ref:	POR016142		
Originator:	Seb Crolla		
Site:	Cefn Isaf (STV6119)		
Samples:	4No concrete core samples, nominally 100mmØ were delivered, by the client, to Kiwa CMT on the 9 th August 2023. The core samples were individually referenced.		
_			

Requirements: Assess the 4No delivered concrete cores for density and compressive strength in accordance with BSEN12504-1:2019 and Depth of Carbonation in accordance with BS EN 14630:2006 (not UKAS accredited).

Results:

Ref	In-situ Density (Kg/m³)	Core Strength (N/mm ²)	Carbonation Depth (mm)
IN01	2460	60.1	<5mm
IN02	2400	89.5	<5mm
IN03	Unsuitable for compressive strength		<5mm
IN04	2400	47.6	<5mm

Detailed, individual, test certificates are appended.

Kiwa CMT 1. WH

I. Whitby Supervisor Building Products

Kiwa CMT

CORE TEST REPORT - AS RECEIVED

Client:	Soiltechnics Cedar Barn		Date:	15/08/2023	
	White Lodge Walgrave Northampton NN6 9PY		^ Site:	Cefn Isaf STV6119	
Laborator	y Ref. No.	70597.01	Max Length	As Received (mm)	300.0
^ Client Reference		IN01	Min Length	Min Length As Received (mm)	
^ Orientatio	n	Vertical	Diameter (m	ım)	94.0
Site Curin	g Condition	Average	In-Situ Dens	sity (kg/m3)	2460
Max. nom	. size of agg.	20mm	Excess Void	dage (%)	0.5
^ Date Drille	ed	08/08/2023	Length Afte	r Capping (mm)	99.0
Visual ins including	pection abnormalities	Normal	Length Diar Reinforcem		1.05
Condition	Of Storage	Sealed Container	Diameter of		
^ Date Cast		NK	0	0 0 0	
Date Teste	ed	15/08/2023	* Distance of bar axis from nearest end		_ est end
Moisture o	condition at test	As Received	Load At Fail	lure (kN)	417.2
			Core Streng	gth (N/mm²)	60.1

Validity of results over 60 N/mm2 cannot be guaranteed with Sulphur Capped specimens

Tested in accordance with BSEN 12504-1:2019

Method of preparation Condition on receipt Failure type and observations ^ Mix details Deviation from standard Sulphur Capping OK Normal Not Known None

Identified information supplied by the client (^) can affect the validity of the result. Results apply to the sample as received from the client. The results relate only to the items tested

que

Gary Peach Department Manager Building Products

Kiwa CMT

CORE TEST REPORT - AS RECEIVED

Client:	Soiltechnics Cedar Barn		Date:	15/08/2023	
	White Lodge Walgrave Northampton NN6 9PY		^ Site:	Cefn Isaf STV6119	
Laborator	y Ref. No.	70597.02	Max Length	n As Received (mm)	310.0
^ Client Reference		IN02	Min Length	Min Length As Received (mm)	
^ Orientatio	n	Vertical	Diameter (n	nm)	94.0
Site Curin	g Condition	Average	In-Situ Den	sity (kg/m3)	2400
Max. nom	size of agg.	20mm	Excess Voi	dage (%)	0.5
^ Date Drille	ed	08/08/2023	Length Afte	er Capping (mm)	97.0
Visual ins including	pection abnormalities	Normal	Length Dia	meter Ratio nent	1.03
Condition	Of Storage	Sealed Container	Diameter	•	
^ Date Cast		NK	13 0 0	30 0 0	-
Date Teste	ed	15/08/2023	* Distance of bar axis from nearest end		est end
Moisture o	condition at test	As Received	Load At Fai	lure (kN)	621.2
			Core Streng	gth (N/mm²)	89.5

Validity of results over 60 N/mm2 cannot be guaranteed with Sulphur Capped specimens

Tested in accordance with BSEN 12504-1:2019

Method of preparation Condition on receipt Failure type and observations ^ Mix details Deviation from standard Sulphur Capping OK Normal Not Known None

Identified information supplied by the client (^) can affect the validity of the result. Results apply to the sample as received from the client. The results relate only to the items tested

que

Gary Peach Department Manager Building Products

Kiwa CMT

CORE TEST REPORT - AS RECEIVED

Client:	Soiltechnics Cedar Barn		Date:	15/08/2023	
	White Lodge Walgrave Northampton NN6 9PY		^ Site:	Cefn Isaf STV6119	
Laborator	y Ref. No.	70597.04	Max Length	As Received (mm)	235.0
^ Client Reference		IN04	Min Length	Min Length As Received (mm)	
^ Orientatio	n	Vertical	Diameter (n	nm)	94.0
Site Curin	g Condition	Average	In-Situ Den	sity (kg/m3)	2400
Max. nom	. size of agg.	20mm	Excess Voi	dage (%)	1.0
^ Date Drille	ed	08/08/2023	Length Afte	er Capping (mm)	98.0
Visual ins including	pection abnormalities	Normal	Length Diameter Ratio		1.04
Condition	Of Storage	Sealed Container	Diameter	φ d*	
^ Date Cast		NK	13 10	40	1
Date Teste	ed	15/08/2023	0 0 * Distance of bar axis from nearest end		est end
Moisture o	condition at test	As Received	Load At Failure (kN)		330.5
			Core Streng	gth (N/mm²)	47.6

Tested in accordance with BSEN 12504-1:2019

Method of preparation Condition on receipt Failure type and observations ^ Mix details Deviation from standard Sulphur Capping OK Normal Not Known None

Identified information supplied by the client (^) can affect the validity of the result. Results apply to the sample as received from the client. The results relate only to the items tested

4-le

Gary Peach Department Manager Building Products

Appendix J Geoenvironmental Laboratory Test Results

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	23-27358-2		
Initial Date of Issue:	22-Aug-2023	Date of Re-Issue:	23-Aug-2023
Re-Issue Details:	This report has been revised and directly supersedes 23-27358-1 in its entirety		
Client	Soiltechnics Limited		
Client Address:	1st Floor Unit 9 Westpoint Enterprise Park Clarence Avenue Trafford Park Manchester M17 1QS		
Contact(s):	Admin		
Project	STV6119 Cefn Isaf Merthyr Tydfil		
Quotation No.:		Date Received:	15-Aug-2023
Order No.:	POR016162	Date Instructed:	15-Aug-2023
No. of Samples:	7		
Turnaround (Wkdays):	5	Results Due:	21-Aug-2023
Date Approved:	22-Aug-2023		
Approved By:			
Sont	-		

Details:

Stuart Henderson, Technical Manager

Project: STV6119 Cefn Isaf Merthyr Tydfil

Client: Soiltechnics Limited		Che	mtest Jo	ob No.:	23-27358	23-27358	23-27358	23-27358	23-27358	23-27358	23-27358
Quotation No.:			est Sam		1688554	1688555	1688556	1688557	1688558	1688559	1688560
Order No.: POR016162			nt Samp		1	1	2	1	1	1	1
			ent Sam		BH020.901	Bh041.001	 BH042.252	TP0180.251	TP040.751	TP050.101	TP080.251
			ample Lo	-	BH02	BH04	BH04	TP01B	TP04	TP05	TP08
				e Type:	SOIL						
			Top De		0.9	1.0	2.25	0.25	0.75	0.10	0.25
				ampled:		07-Aug-2023	07-Aug-2023	03-Aug-2023	03-Aug-2023	01-Aug-2023	01-Aug-2023
				os Lab:	COVENTRY						
Determinand	Accred.	SOP	Units	LOD	COVENIN	COVENIN	GOVENNI	COVENIN	COVENIN	COVENIN	COVENIN
ACM Type	U	2192	- Crinto	N/A	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected						
Moisture	N	2030	%	0.020	17	6.1	26	6.9	11	29	3.6
pH	U	2010	,,,	4.0	8.4	8.9	8.1	8.9		6.9	9.3
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	0.60	< 0.40		1.6	< 0.40
Cyanide (Complex)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50
Cyanide (Free)	U	2300		0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50
Arsenic	U	2455	mg/kg	0.5	16	11	29	18		36	3.4
Beryllium	U	2455	mg/kg	0.5	0.7	< 0.5	1.3	0.5		0.9	< 0.5
Cadmium	U	2455	mg/kg	0.10	0.37	0.69	0.77	0.52		< 0.10	0.17
Chromium	U	2455	mg/kg	0.5	12	8.3	13	8.3		24	7.8
Copper	U	2455	mg/kg	0.50	42	11	40	21		27	5.3
Mercury	U	2455	mg/kg	0.05	0.45	0.05	0.38	0.14		0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	23	12	21	13		29	6.1
Lead	U	2455	mg/kg	0.50	120	92	97	200		42	27
Selenium	U	2455	mg/kg	0.25	0.91	0.52	1.0	0.51		0.71	0.25
Vanadium	U	2455	mg/kg	0.5	18	12	21	13		21	9.6
Zinc	U	2455	mg/kg	0.50	210	120	120	370		89	31
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50
LOI	U	2610	%	0.10	15	2.7	17	6.1		14	2.0
Organic Matter	U	2625	%	0.40	42	6.5	22	7.8		8.4	3.2
TPH >C6-C10	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0
TPH >C10-C21	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	130
TPH >C21-C40	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	310
Total TPH >C6-C40	U	2670	mg/kg	10	< 10	< 10	< 10	< 10		< 10	440
Naphthalene	U	2800	mg/kg	0.10	0.86	0.90	0.55	0.51		0.65	0.58
Acenaphthylene	N	2800	mg/kg	0.10	0.13	< 0.10	< 0.10	< 0.10		< 0.10	1.8
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.35		< 0.10	22
Fluorene	U	2800	mg/kg	0.10	0.15	< 0.10	< 0.10	0.37		0.14	20
Phenanthrene	U	2800	mg/kg	0.10	1.3	0.38	0.83	2.4		0.39	130
Anthracene	U	2800	mg/kg	0.10	0.27	< 0.10	< 0.10	0.61		0.11	34
Fluoranthene	U	2800	mg/kg	0.10	2.1	0.51	1.3	3.8		0.72	220
Pyrene	U	2800	mg/kg	0.10	1.9	0.35	1.1	2.5		0.56	150
Benzo[a]anthracene	U	2800	mg/kg	0.10	1.1	< 0.10	0.56	1.9		0.43	110
Chrysene	U		mg/kg	0.10	1.5	< 0.10	0.68	2.0		0.40	130

Project: STV6119 Cefn Isaf Merthyr Tydfil

Client: Soiltechnics Limited		Che	mtest Jo	b No.:	23-27358	23-27358	23-27358	23-27358	23-27358	23-27358	23-27358
Quotation No.:	(Chemte	est Sam	ple ID.:	1688554	1688555	1688556	1688557	1688558	1688559	1688560
Order No.: POR016162		Clie	nt Samp	le Ref.:	1	1	2	1	1	1	1
		Cli	ent Sam	ple ID.:	BH020.901	Bh041.001	BH042.252	TP0180.251	TP040.751	TP050.101	TP080.251
		Sa	ample Lo	ocation:	BH02	BH04	BH04	TP01B	TP04	TP05	TP08
			Sample	e Type:	SOIL						
			Тор Dep	oth (m):	0.9	1.0	2.25	0.25	0.75	0.10	0.25
			Date Sa	mpled:	07-Aug-2023	07-Aug-2023	07-Aug-2023	03-Aug-2023	03-Aug-2023	01-Aug-2023	01-Aug-2023
			Asbest	os Lab:	COVENTRY						
Determinand	Accred.	SOP	Units	LOD							
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	2.3	< 0.10	0.97	2.8		0.67	160
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	0.45	< 0.10	0.15	0.84		0.21	52
Benzo[a]pyrene	U	2800	mg/kg	0.10	1.4	< 0.10	0.53	1.8		0.48	120
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	1.5	< 0.10	0.46	1.3		0.36	85
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	0.43	< 0.10	< 0.10	0.33		< 0.10	20
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	1.2	< 0.10	< 0.10	1.1		0.33	64
Total Of 16 PAH's	N	2800	mg/kg	2.0	17	2.1	7.1	23		5.5	1300
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		0.15	< 0.10

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	23-27369-1		
Initial Date of Issue:	24-Aug-2023		
Re-Issue Details:			
Client	Soiltechnics Limited		
Client Address:	1st Floor Unit 9 Westpoint Enterprise Park Clarence Avenue Trafford Park Manchester M17 1QS		
Contact(s):	Admin		
Project	STV6119 Cefn Isaf, Merthyr Tydfill		
Quotation No.:		Date Received:	15-Aug-2023
Order No.:	POR16178	Date Instructed:	15-Aug-2023
No. of Samples:	1		
Turnaround (Wkdays):	7	Results Due:	23-Aug-2023
Date Approved:	24-Aug-2023		
Approved By:			
son			

Details:

Stuart Henderson, Technical Manager

Project: STV6119 Cefn Isaf, Mertl	hyr Tydfill								
Chemtest Job No:	23-27369						Landfill V	Vaste Acceptane	e Criteria
Chemtest Sample ID:	1688584							Limits	
Sample Ref:	1							Stable, Non-	
Sample ID:	CS010.001							reactive	
Sample Location:	CS01							hazardous	Hazardous
Top Depth(m):	0.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.00						Landfill	hazardous	Landfill
Sampling Date:	08-Aug-2023							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	М	%			1.2	3	5	6
Loss On Ignition	2610	М	%			2.2			10
Total BTEX	2760	М	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			330	500		
Total (Of 17) PAH's	2700	Ν	mg/kg			260	100		
рН	2010	М				8.7		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg			0.0080		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	S 10 I/kg
Arsenic	1455	U	0.011	0.0035	0.022	0.043	0.5	2	25
Barium	1455	U	0.031	0.10	0.063	0.93	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0012	< 0.0005	0.0024	0.0012	0.5	10	70
Copper	1455	U	0.0013	0.0088	0.0027	0.0014	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0037	0.0012	0.0073	0.014	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	0.0075	0.0046	0.015	0.049	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	0.0006	< 0.0005	0.0050	0.1	0.5	7
Zinc	1455	U	0.016	0.018	0.032	0.17	4	50	200
Chloride	1220	U	< 1.0	24	< 10	220	800	15000	25000
Fluoride	1220	U	0.17	0.16	< 1.0	1.6	10	150	500
Sulphate	1220	U	13	17	26	170	1000	20000	50000
Total Dissolved Solids	1020	Ν	80	360	160	3300	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	4.0	< 2.5	< 50	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	6.8

Leachate Test Information	
Leachant volume 1st extract/l	0.337
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.177

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix K Contamination Assessment Screening

STV6119-R01 Rev A

soiltechnics

Chronic human health risk (soils)

Proposed site user
Residential without homegrown produce
1.00%
C4SLs over S4ULs
Worst-case aliphatic/aromatic

	Guideline	Guideline	Max	Loc
Contaminant	source	value	value	De
		(mg/kg)	(mg/kg)	Dat
norganics - Metals				
Arsenic	C4SL	40	36	
Beryllium	S4UL	1.7	1.3	
Boron	S4UL	11000	1.6	
Cadmium	C4SL	150	0.77	
Chromium (III)	S4UL	910	24	
Chromium (VI)	C4SL	21	<lod< td=""><td></td></lod<>	
Copper	S4UL	7100	42	
Cyanide - Free	ATK	34	<lod< td=""><td></td></lod<>	
Lead	C4SL	310	200	
Mercury	S4UL	56	0.45	
Nickel	S4UL	180	29	
Selenium	S4UL	430	1	
Vanadium	S4UL	1200	21	
Zinc	S4UL	40000	370	
Inorganics - Asbestos				
Asbestos Type		N/A		
Asbestos Screen		N/A		
Inorganics - Soil Parameters				
Organic matter		N/A		
Organics - PAH & Phenol				
Acenaphthene	S4UL	3000	22	
Acenaphthylene	S4UL	2900	1.8	
Anthracene	S4UL	31000	34	
Benzo(a)anthracene	S4UL	11	110	
Benzo(a)pyrene	C4SL	5.3	120	
Benzo(b)fluoranthene	S4UL	3.9	160	
Benzo(ghi)perylene	S4UL	360	64	
Benzo(k)fluoranthene	S4UL	110	52	
Chrysene	S4UL	30	130	
Dibenz(a,h)anthracene	S4UL	0.31	20	
Fluoranthene	S4UL	1500	220	
Fluorene	S4UL	2800	20	
Indeno(1,2,3-cd)pyrene	S4UL	45	85	
Naphthalene	S4UL	2.3	0.9	
Phenanthrene	S4UL	1300	130	
Phenol	S4UL	440	0.15	
Pyrene	S4UL	3700	150	
Organics - Banded TPH (unspeciated)	3402	5700	100	
EC >6-EC10 (unspeciated)	S4UL	27	<lod< td=""><td></td></lod<>	
EC >10-EC21 (unspeciated)	S4UL	130	130	
EC >21-EC40 (unspeciated)	S4UL	1900	310	

	BH02	BH04	BH04	TP01B	TP04	TP05	TP08
)	0.90	1.00	2.25	0.25	0.75	0.10	0.25
	07/08/23	07/08/23	07/08/23	03/08/23	03/08/23	01/08/23	01/08/23
	16	11	29	18		36	3.4
	0.7		1.3	0.5		0.9	
	< 0.40	< 0.40	0.6	< 0.40		1.6	< 0.40
	0.37	0.69	0.77	0.52			0.17
	12	8.3	13	8.3		24	7.8
	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	
	42	11	40	21		27	5.3
	< 0.50						
	120	92	97	200		42	27
	0.45	0.05	0.38	0.14		0.05	
	23	12	21	13		29	6.1
	0.91	0.52	1	0.51		0.71	0.25
	18	12	21	13		21	9.6
	210	120	120	370		89	31

-	-	-	-	-	-	-
				No Asbestos		
Detected	Detected	Detected	Detected	Detected	Detected	Detected
42	6.5	22	7.8		8.4	3.2
< 0.10	< 0.10	< 0.10	0.35		< 0.10	22
0.13	< 0.10	< 0.10	< 0.10		< 0.10	1.8
0.27	< 0.10	< 0.10	0.61		0.11	34
1.1	< 0.10	0.56	1.9		0.43	110
1.4	< 0.10	0.53	1.8		0.48	120
2.3		0.97	2.8		0.67	160
1.2			1.1		0.33	64
0.45	< 0.10	0.15	0.84		0.21	52
1.5		0.68	2		0.4	130
0.43			0.33			20
2.1	0.51	1.3	3.8		0.72	220
0.15			0.37		0.14	20
1.5	< 0.10	0.46	1.3		0.36	85
0.86	0.9	0.55	0.51		0.65	0.58
1.3	0.38	0.83	2.4		0.39	130
< 0.10	< 0.10	< 0.10	< 0.10		0.15	< 0.10
1.9	0.35	1.1	2.5		0.56	150
< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0
< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	130
< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	310

soiltechnics

Chronic human health risk (soils)

Scenario											
End user		Proposed s	ite user								
Receptor		Residential	Residential without homegrown produce								
SOM		1.00%	.00%								
GAC Preference		C4SLs over	S4ULs								
Unspeciated TPH GAC		Worst-case	aliphatic/arom	atic							
	Guideline	Guideline	Max	Location	BH02	BH04	BH04	TP01B	TP04	TP05	TP08
Contaminant	Guideline	value	value	Depth (m)	0.90	1.00	2.25	0.25	0.75	0.10	0.25

soiltechnics

Chronic human health risk (soils)

Scenario											
End user		Proposed s	ite user								
Receptor		Residential	Residential without homegrown produce								
SOM		1.00%	.00%								
GAC Preference		C4SLs over	S4ULs								
Unspeciated TPH GAC		Worst-case	aliphatic/arom	atic							
	Guideline	Guideline	Max	Location	BH02	BH04	BH04	TP01B	TP04	TP05	TP08
Contaminant	Guideline	value	value	Depth (m)	0.90	1.00	2.25	0.25	0.75	0.10	0.25

Acute human health risk (soils)

Scenario	Off-site public exposure
Critical receptor	Young female child (1 to 2 years old)
Oral exposure	N/A
Demal exposure	N/A
Inhalation exposure	30 mins exposure to a child off-site, from dusts and vapours generated during excavation

	Cutheline		Guideline	Max	Location	BH02	BH04	BH04	TP01B	TP05	TP08
Contaminant	Guideline source	Principal pathway	value	value	Depth (m)	0.90	1.00	2.25	0.25	0.10	0.25
	Source		(mg/kg)	(mg/kg)	Date	07/08/23	07/08/23	07/08/23	03/08/23	01/08/23	01/08/23
Inorganics											
Arsenic	AGAC	Inhalation	7,000,000	36		16	11	29	18	36	3.4
Cadmium	AGAC	Inhalation	1,800,000	0.77		0.37	0.69	0.77	0.52	< 0.10	0.17
Cyanide - Free	AGAC	Inhalation	380	<lod< td=""><td></td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td></lod<>		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organics											
Benzene	AGAC	Inhalation	120								
Phenol	AGAC	**sat.**	**sat.**	0.15		< 0.10	< 0.10	< 0.10	< 0.10	0.15	< 0.10
Trichloroethene	AGAC	Inhalation	8,000								
Vinyl Chloride	AGAC	Inhalation	98								

Acute human health risk (soils)

Scenario	Occupational exposure (construction worker)
Critical receptor	Adult female worker
Oral exposure	Ingestion of soil and dusts over a single working day
Demal exposure	Soil being left on the skin for several hours, assumed no PPE worn
Inhalation exposure	30 mins exposure - worker standing adjacent to active excavation (assumed no RPE)

	Outlative		Guideline	Max	Location	BH02	BH04	BH04	TP01B	TP05	TP08
Contaminant	Guideline source	Principal pathway	value	value	Depth (m)	0.90	1.00	2.25	0.25	0.10	0.25
	Source		(mg/kg)	(mg/kg)	Date	07/08/23	07/08/23	07/08/23	03/08/23	01/08/23	01/08/23
Inorganics											
Arsenic	AGAC	Oral	7,000	36]	16	11	29	18	36	3.4
Cadmium	AGAC	Oral	12,000	0.77]	0.37	0.69	0.77	0.52	< 0.10	0.17
Cyanide - Free	AGAC	Oral & Inhalation	1,400	<lod< td=""><td>]</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td></lod<>]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organics]						
Benzene	AGAC	Inhalation	240]						
Phenol	AGAC	**sat.**	**sat.**	0.15]	< 0.10	< 0.10	< 0.10	< 0.10	0.15	< 0.10
Trichloroethene	AGAC	Inhalation	16,000]						
Vinyl Chloride	AGAC	Inhalation	220]						

Sheet 5 of 6

Phytotoxicity

Scenario

Land use

Grassed lawns

	Guideline	Guideline	Max	Location	BH02	BH04	BH04	CS01	TP01B	TP05	
Contaminant	source	value	value	Depth (m)	0.90	1.00	2.25	0.00 - 0.00	0.25	0.10	
	source	(mg/kg)	(mg/kg)	Date	07/08/23	07/08/23	07/08/23	08/08/23	03/08/23	01/08/23	
Soil parameters											
рН	BSI-u	8.5	9.3		8.4	8.9	8.1	8.7	8.9	6.9	
рН	BSI-I	5.5	6.9		8.4	8.9	8.1	8.7	8.9	6.9	
Potentially toxic element]							
Arsenic	SSIA	50]	16	11	29		18	36	
Cadmium	SSIA	3	0.77		0.37	0.69	0.77		0.52	< 0.10	
Chromium (III)	SSIA	600	24]	12	8.3	13		8.3	24	
Fluoride	SSIA	500									
Lead	SSIA	300	200]	120	92	97		200	42	
Mercury	SSIA	1.5	0.45]	0.45	0.05	0.38		0.14	0.05	
Molybdenum	SSIA	4]							
Selenium	SSIA	5	1		0.91	0.52	1		0.51	0.71	
Potentially toxic element (pH 5.5 to <6.0)]							
Copper	SSIA	170									
Nickel	SSIA	100									
Zinc	SSIA	200									
Potentially toxic element (pH 6.0 to <7.0)											
Copper	SSIA	225	27							27	
Nickel	SSIA	125	29							29	
Zinc	SSIA	200	89							89	
Potentially toxic element (pH >7.0)											
Copper	SSIA	330	42		42	11	40		21		
Nickel	SSIA	180	23		23	12	21		13		
Zinc	SSIA	300	370		210	120	120		370		

Appendix L Waste Characterisation Analysis

Waste acceptance

	Inert	Stable non-reactive		Location	CS01
Parameter	waste	hazardous waste in a non- hazardous landfill cell	Hazardous waste landfill	Depth (m)	0.00 - 0.00
	landfill	(SNRHW)	lanunn	Date	08/08/23
Parameters determined on the	e waste				
Total organic carbon	3	5	6	1	1.2
Loss on ignition			10]	2.2
BTEX	6]	< 0.010
PCBs (7 congeners)	1]	< 0.10
Mineral oil	500]	330
PAH (17 congeners)	100]	260
рН		6]	8.7
Acid neutralisation capacity (pr	16)	To be evaluated	To be evaluated		0.008
Limit values (mg kg ⁻¹) for comp	liance test usin	ng BN 12457-3 at L/S 10			
Arsenic	0.5	2	25]	0.043
Barium	20	100	300		0.93
Cadmium	0.04	1	5]	< 0.00011
Chromium (III)	0.5	10	70		0.0012
Copper	2	50	100]	0.0014
Mercury	0.01	0.2	2]	< 0.00005
Molybdenum	0.5	10	30]	0.014
Nickel	0.4	10	40]	< 0.0005
Lead	0.5	10	50]	0.049
Antimony	0.06	0.7	5]	< 0.0005
Selenium	0.1	0.5	7]	0.005
Zinc	4	50	200	1	0.17
Chloride	800	15,000	25,000	1	220
Fluoride	10	150	500	1	1.6
Sulphate	1,000	20,000	50,000	1	170
Total dissolved solids	4,000	60,000	100,000	1	3300
Phenol	1			1	< 0.50
Dissolved organic carbon	500	800	1000	1	< 50
Classifications]	
Waste classification					Non- hazardous
Landfill type					Non- hazardous

Key Notes:

1) The values for total dissolved solids (TDS) can be used alternatively to the values for sulphate and chloride.

2) Soils with TOC values over the limit value may still be accepted provided the DOC value falls are below it's respective limit value.

3) In a hazardous waste, either the TOC or LOI must be used.

Created: 03/11/2023

Waste acceptance

	Inert	Stable non-reactive	llana de la companya	Location	CS01
Parameter	waste	hazardous waste in a non- hazardous landfill cell	Hazardous waste landfill	Depth (m)	0.00 - 0.00
	landfill	(SNRHW)	lanum	Date	08/08/23
Parameters determined on the	waste				
Total organic carbon	3	5	6]	1.2
Loss on ignition			10]	2.2
BTEX	6]	< 0.010
PCBs (7 congeners)	1]	< 0.10
Mineral oil	500]	330
PAH (17 congeners)	100]	260
рН		6]	8.7
Acid neutralisation capacity (pH	6)	To be evaluated	To be evaluated		0.008
Limit values (mg kg ⁻¹) for comp	liance test usir	ng BN 12457-3 at L/S 10		1	
Arsenic	0.5	2	25	1	0.043
Barium	20	100	300	1	0.93
Cadmium	0.04	1	5]	< 0.00011
Chromium (III)	0.5	10	70	1	0.0012
Copper	2	50	100]	0.0014
Mercury	0.01	0.2	2]	< 0.00005
Molybdenum	0.5	10	30]	0.014
Nickel	0.4	10	40]	< 0.0005
Lead	0.5	10	50]	0.049
Antimony	0.06	0.7	5]	< 0.0005
Selenium	0.1	0.5	7]	0.005
Zinc	4	50	200]	0.17
Chloride	800	15,000	25,000]	220
Fluoride	10	150	500]	1.6
Sulphate	1,000	20,000	50,000]	170
Total dissolved solids	4,000	60,000	100,000]	3300
Phenol	1]	< 0.50
Dissolved organic carbon	500	800	1000]	< 50
Classifications					
Waste classification					Hazardous
Landfill type					SNRHW

Key Notes:

1) The values for total dissolved solids (TDS) can be used alternatively to the values for sulphate and chloride.

2) Soils with TOC values over the limit value may still be accepted provided the DOC value falls are below it's respective limit value.

3) In a hazardous waste, either the TOC or LOI must be used.

Created: 03/11/2023

Waste acceptance

	Inert	Stable non-reactive	II	Location	
Parameter	waste	hazardous waste in a non- hazardous landfill cell	Hazardous waste landfill	Depth (m)	
	landfill	(SNRHW)	landilli	Date	
Parameters determined on the wa	aste				
Total organic carbon	3	5	6]	
Loss on ignition			10]	
BTEX	6]	
PCBs (7 congeners)	1]	
Mineral oil	500]	
PAH (17 congeners)	100]	
рН		6]	
Acid neutralisation capacity (pH 6)		To be evaluated	To be evaluated		
Acid neutralisation capacity (pH 4)		To be evaluated	To be evaluated		
Limit values (mg kg ⁻¹) for compliar	nce test usin	g BN 12457-3 at L/S 10			
Arsenic	0.5	2	25]	
Barium	20	100	300	1	
Cadmium	0.04	1	5	1	
Chromium (III)	0.5	10	70	1	
Copper	2	50	100	1	
Mercury	0.01	0.2	2	1	
Molybdenum	0.5	10	30		
Nickel	0.4	10	40	1	
Lead	0.5	10	50		
Antimony	0.06	0.7	5	1	
Selenium	0.1	0.5	7		
Zinc	4	50	200	1	
Chloride	800	15,000	25,000		
Fluoride	10	150	500	1	
Sulphate	1,000	20,000	50,000]	
Total dissolved solids	4,000	60,000	100,000]	
Phenol	1]	
Dissolved organic carbon	500	800	1000]	
Classifications					
Waste classification					[drop-down]
Landfill type					pending

Key Notes:

1) The values for total dissolved solids (TDS) can be used alternatively to the values for sulphate and chloride.

2) Soils with TOC values over the limit value may still be accepted provided the DOC value falls are below it's respective limit value.

3) In a hazardous waste, either the TOC or LOI must be used.

Created: 03/11/2023

Appendix M Integral Geotechnique Ground Investigation Report

Merthyr Valleys Homes Limited

CEFN ISAF BLOCK REDEVELOPMENT, CEFN-COED-Y-CYMMER, MERTHYR TYDFIL

Site Investigation Report

14067/GNS/22/SI

CLIENT:	Merthyr Valleys Homes Limited	
PROJECT:	Cefn Isaf Block Redevelopment, Cefn- Coed-Y-Cymmer, Merthyr Tydfil	
TITLE:	Site Investigation Report	
JOB NO:	14067	
DOCUMENT REF:	14067/GNS/22/SI	

Revision	Purpose Description	Originated	Reviewed	Authorised	Date
0	Final	GNS	HP	RB	Sept' 22

Geotechnical Engineers:

Intégral Géotechnique (Wales) Limited Integral House 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX

Tel: 029 2080 7991

CONTENTS

1.0 INTRODUCTION

- 1.1 General
- 1.2 Proposed Development
- 1.3 Scope of Works
- 1.4 Limitations

2.0 THE SITE

- 2.1 Site Location and Description
- 2.2 Site Operations
- 2.3 Surrounding Land Use
- 2.4 Available Site Investigation Data
- 2.5 Consultations with Regulators

3.0 SITE HISTORY

4.0 SITE ENVIRONMENTAL SETTING

- 4.1 Physical Setting
- 4.2 Geology
- 4.3 Radon
- 4.4 Mining
- 4.5 Hydrology, Hydrogeology & Flood Risk
- 4.6 Landfill Sites
- 4.7 Potential Contamination
- 4.8 Other Environmental Issues

5.0 PRELIMINARY CONCEPTUAL SITE MODEL

- 5.1 Risk Assessment Framework
- 5.2 Conceptual Model Framework
- 5.3 Critical Sensitive Receptor Human Health
- 5.4 Critical Sensitive Receptor Controlled Waters
- 5.5 Potential Contaminant Sources
- 5.6 Potential Exposure Pathways
- 5.7 Summary of Conceptual Exposure Model

6.0 THE SITE INVESTIGATION

- 6.1 Fieldworks
- 6.2 Field Observations
- 6.3 Laboratory Chemical Testing
- 6.4 Laboratory Geotechnical Testing

7.0 GROUND CONDITIONS

- 7.1 Topsoil
- 7.2 Made Ground
- 7.3 Superficial Soils
- 7.4 Groundwater
- 7.5 Soil Infiltration Tests

8.0 CONTAMINATION

- 8.1 Averaging Areas
- 8.2 Soil Contamination

9.0 REVISED CONCEPTUAL EXPOSURE MODEL

10.0 RISK ASSESSMENT

- 10.1 Methodology
- 10.2 Source-Pathway-Receptor-Model
- 10.3 Human Health Risk Assessment
- 10.4 Risks to Vegetation
- 10.5 Groundwater Risk Assessment
- 10.6 Ground Gas Risk Assessment
- 10.7 Risks to Buildings and Materials Durability
- 10.8 Waste Disposal
- 10.9 Uncertainties

11.0 ENGINEERING CONSIDERATIONS & RECOMMENDATIONS

- 11.1 Details of Proposed Development
- 11.2 Site Preparation
- 11.3 Foundations and Floor Slabs
- 11.4 Excavations and Formations
- 11.5 Access Roads and Car Parking Areas
- 11.6 Drainage
- 11.7 Recommended Further Works

CONTENTS (CONTINUED)

APPENDICES

Appendix A	Windowless Sample Logs	
Appendix B	Hand Excavated Trial Pit Logs	
Appendix C	Soil Infiltration Tests	
Appendix D	Laboratory Chemical Test Results (Soils)	
Appendix E	Laboratory Geotechnical Test Results	
Appendix F	Summary of Chemical Results – Made Ground	

FIGURES

Figure 1 S	Site Location
------------	---------------

Figure 2 Site Plan

1.0 INTRODUCTION

1.1 GENERAL

Merthyr Valleys Homes Limited are proposing to redevelop a site at the site of the former Cefn Isaf Block, Cefn-Coed-Y-Cymmer, Merthyr Tydfil for residential end-use.

Intégral Géotechnique (Wales) Limited have been appointed as the Geotechnical Engineers to undertake an intrusive site investigation to enable a geotechnical and geoenvironmental appraisal of the site and provide a basis for design.

This report presents the findings of the intrusive site investigation and gives recommendations for the design of foundations, floor slabs and other geotechnical and geoenvironmental aspects of the project.

This report (including all appendices to it and any subsequent addendums or correspondence) has been prepared for the sole benefit, use and information of Merthyr Valleys Homes Limited and no third party is entitled or permitted to rely on it. This report may not be used, reproduced or circulated (in whole or part) for any purpose without the written consent of Intégral Géotechnique (Wales) Limited. Intégral Géotechnique (Wales) Limited shall not be liable to any third party who does not have such express written permission to rely on the report for any losses they may suffer.

1.2 **PROPOSED DEVELOPMENT**

The proposed development will comprise the demolition of the existing blocks of flats followed by the construction of a new scheme of flats, the layout of which has not been finalised. The development is likely to include an access road, car parking areas, areas of landscaping and possibly private garden areas.

1.3 SCOPE OF WORKS

A previous desk study report (ref: 14067/LP/22/DS dated July 2022) was used to make an initial assessment of the site and to design an intrusive site investigation to be carried out by Intégral Géotechnique (Wales) Limited.

The intrusive site investigation was designed in accordance with BS 5930:2015+A1:2020, the Code of Practice for Site Investigations and BS10175:2011+A2:2017, the code of practice for investigation of potentially contaminated sites.

1.3 SCOPE OF WORKS (CONTINUED)

The site investigation included:

- An intrusive investigation carried out on the 15th August 2022 comprising the drilling of six windowless sample holes, two hand excavated trial pits and soil infiltration tests within the hand excavated trial pits
- Sampling of soil/fill for laboratory chemical testing
- Sampling of natural soils for geotechnical testing

1.4 LIMITATIONS

This document is intended to be a working document for further development in discussion with all concerned including the Local Planning Authority, Natural Resources Wales, and the NHBC as appropriate.

"Contamination" is taken throughout the report to mean the "presence of one or more potentially harmful substances as a result of human activity". The use of the term in this way does not imply that harm is being or might be caused by the contamination. It should be noted that "contamination" can have different meanings under different regulatory regimes, for example, planning, building control and Part IIA of the Environmental Protection Act 1990. Naturally elevated concentrations of potentially harmful substances may also be of concern and the significance of any that have been found is also evaluated in this report.

It is important to recognise that there may be areas of contamination that have not been found, or that contaminants are present at concentrations above those that have been found. It is also important to recognise that contamination may be localised and that no investigation, however comprehensive, is capable of finding such occurrences other than by chance.

It should also be noted that vertical and lateral changes in ground conditions may be present between exploratory hole locations.

Access for the intrusive site investigation was limited at the time due to vacant buildings, areas of hardstandings, services, tight access and steep slopes.

Further investigation of the buildings or beneath building floor slabs at the time of the site investigation was outside the scope of work of this report, but is planned for in subsequent post demolition supplemental investigation works.

2.0 THE SITE

2.1 SITE LOCATION AND DESCRIPTION

The site is located at Cefn Isaf Block within Cefn-Coed-y-Cymmer approximately 2km northwest of Merthyr Tydfil town centre at a National Grid Reference of 303260, 207680, see Figure 1.

The site is irregular in shape and occupies an area of approximately 0.3 hectares. The boundaries of the site are defined by Wern Road to the west, Pontycapel Road and an existing garage block to the north and undeveloped land and existing residential development to the south and east. A site plan is presented in Figure 2.

The site is situated on land that generally slopes down from Pontycapel Road to the north towards the river to the south from an approximate maximum elevation of 212m AOD to an approximate minimum elevation of 202m AOD.

Development plateaux have been created for the flats with earthworks to create level areas accessed via steps and supported by retaining walls.

The current blocks of flats are constructed in two blocks orientated east to west across the site. An access road and car parking area are located within the southern area of the site.

There are grassed areas in between the two blocks of flats accessed via steps from Wern Road to the west. Steps also access the southern block via Wern Road to the south.

On the grass and grass and vegetation covered embankment there are fragments of cement bound asbestos noted within some general made ground and on the site surface. The location of this identified asbestos is detailed on Figure 2.

2.2 SITE OPERATIONS

The flats are still present within the site, but they are currently vacant.

2.3 SURROUNDING LAND USE

The surrounding areas are mainly developed for residential use with an existing school located beyond Pontycapel Road to the northeast.

2.4 AVAILABLE SITE INVESTIGATION DATA

Intégral Géotechnique (Wales) Limited have previously issued a desk study report reference 14067/LP/22/DS dated July 2022.

This report should be read in conjunction with the desk study report. Sections from the desk study report have been reproduced in this report for ease of reference.

2.5 CONSULTATIONS WITH REGULATORS

No consultations with regulators have been undertaken at this stage.

3.0 SITE HISTORY

The recent history of the site has been traced with the aid of an Envirocheck Report, a copy of which was included in the original desk study report. A precis of the site history is provided below.

The earliest edition of the map dated 1875 indicated the northern area of the site to be developed with buildings. The southern area remained undeveloped. Development continued to the west of the site along the road which formed the northern boundary and beyond the road which formed the western boundary. The areas to the south and east of the site remained undeveloped. A school was located beyond the road to the northeast of the site. Taf Fawr flowed approximately 90m to the southwest of the site and the Merthyr Branch of the Brecon and Merthyr Railway ran over the river on a viaduct located approximately 190m to the west. Cefn Coed-y-Cymmer was well-established to the north and northeast of the site.

The 1900-1904 edition of the map indicated the site and the surrounding areas to have remained relatively unchanged. The road to the north was now known as Pont-y-Capel Road and the road to the west was now known as Wern Road. The viaduct to the west was known as Cefn Viaduct. The school to the northeast had expanded slightly by this time.

The 1919-1920 edition of the map indicated that the site had remained unchanged. Development, mainly residential, continued to the north and west of the site as Cefn Coedy-Cymmer continued to expand. A sewage works including associated filter beds had been constructed adjacent to the river approximately 50m to the southeast of the site.

The edition of the map dated 1956-1980 indicated the buildings within the northern area of the site had been removed although some ruins remained within the northwest area. The southern area of the site remained undeveloped but was now crossed by a track on an approximately east to west orientation. Allotment gardens were indicated to the east of the site. Mounds of unknown deposited material were indicated approximately 10m to the southwest of the site.

The edition of the map dated 1963-1986 indicated the presence of a refuse tip across the northeast corner of the site with the rest of the site remaining unchanged. A row of buildings had been constructed along the road to the east of the site.

3.0 SITE HISTORY (CONTINUED)

The site and the surrounding areas remained relatively unchanged until the edition of the map dated 1979-1990. By this time the site had been developed with blocks of flats known as Cefn Isaf with the southern area of the site forming an access and car parking area for the flats. The flats first appeared on the map dated 1988. The immediate surrounding areas remained relatively unchanged. The railway line on the viaduct located to the west of the site was now dismantled.

The site remained relatively unchanged in between the late 1980's, when the flats were constructed, and the present day. Residential development continued to the east of the site between 2006 and 2008. The original school building to the northeast had been demolished by 2013 and a new school constructed by 2021.

4.0 SITE ENVIRONMENTAL SETTING

4.1 PHYSICAL SETTING

The site is located within a mainly residential setting in Cefn-Coed-y-Cymmer.

The site is situated on land that generally slopes down from Pontycapel Road to the north towards the river to the south from an approximate maximum elevation of 212m AOD to an approximate minimum elevation of 202m AOD.

Development plateaux have been created for the flats with earthworks to create level areas accessed via steps and supported by retaining walls. The changes in level have been achieved with the use of embankments and retaining walls.

4.2 GEOLOGY

The 1:50,000 and 1:10,560 scale (Sheet No. SO 00 NW) geological maps of the area indicate the majority of the site to be underlain by Bishopston Formation of the Carboniferous period. These rocks typically comprise mid to dark grey mudstones, commonly fossiliferous, with some beds of mid grey siltstone and beds of interbedded siltstone and mudstone. Also present are sporadic, minor pale grey quartzitic sandstones and rare thin coals. The northeast corner of the site is indicated to be underlain by Twrch Sandstone Formation also of the Carboniferous period. These rocks typically comprise quartz arenites and quartz conglomerates with minor mudstones.

A fault is indicated to cross the northeast corner of the site known as the Merthyr Church Fault, which downthrows to the southwest. Another unnamed fault crosses the northern area approximately perpendicular to the Merthyr Church Fault and downthrows to the north. The strata dip in the area are indicated to be shallow between 6° and 10° and in an approximately south easterly direction. There are no conjectural outcrops indicated within 1km of the site boundary.

Devensian Till deposits of the Quaternary period are indicated to overlie the solid strata. These deposits are typically poorly sorted and variable in nature comprising clays, sands and gravel.

A variable thickness of made ground is anticipated above the superficial deposits across the site associated with the development.

A summary of the anticipated geological succession is given below in Table 1.

4.2 GEOLOGY (CONTINUED)

Table 1: Summary of Anticipated Site Geology				
Geological unit	Horizon	Description		
Recent	Made ground	Various materials		
Quaternary	Devensian Till	Poorly sorted and variable clays, sands and gravel		
Carboniferous	Bishopston Formation	Mid to dark grey mudstones, commonly fossiliferous, with some beds of mid grey siltstone and beds of interbedded siltstone and mudstone. Also present are sporadic, minor pale grey quartzitic sandstones and rare thin coals		
	Twrch Sandstone Formation	Quartz arenites and quartz conglomerates with minor mudstones		

4.3 RADON

Information with regard to Radon Protective Measures was provided within the Envirocheck Report and the BGS Radon GeoReport as presented in Appendices A and B respectively of the original desk study. The reports state that the site is located within an intermediate probability area, as 1% to 3% of properties are above action level, and that therefore no radon protective measures would be necessary in the construction of new buildings within the site.

4.4 MINING

The site is located within a coal mining reporting area and therefore a CON29M Coal Mining Report was obtained from the Coal Authority a copy of which was included in Appendix C of the original desk study report.

The Coal Authority states that "the property is not within a surface area that could be affected by any past recorded underground coal mining."

As discussed previously there are no conjectural coal seam outcrops recorded within 1km of the site boundary.

The Coal Authority mining report confirms that there are "no recorded coal mine entries known to the Coal Authority within, or within 20 metres of, the boundary of the property."

4.4 MINING (CONTINUED)

The Coal Authority states that "*it is not aware of any damage due to geological faults or other lines of weakness affected by coal mining.*

The Coal Authority has "not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31 October 1994. There is no current Stop Notice delaying the start of remedial works or repairs to the property."

The Coal Authority is "not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991."

The Coal Authority has *"no record of a mine gas emission requiring action."* However, a mine gas risk assessment should always be undertaken within coal mining areas in order to satisfy the guidelines within CL:AIRE document Good Practice for Risk Assessment for Coal Mine Gas Emissions, dated October 2021.

The site is not located within a high-risk development area but based on the above guidelines a mine gas risk assessment should still be undertaken. The initial desk-based assessment of the site has been used in order to develop the level of mine gas risk within the site.

There are many sources of gas in mine workings including desorption of gas from coal and rocks, oxidation of coal, decomposition of old wood (such as pit props) and acidic mine drainage reacting with carbonate in the rocks around the seam or shaft. These gases, if produced within the old workings, would need a viable pathway to the surface such as a shaft or fractured rock above the workings.

The desk study shows that the site is not located within a high-risk development area. Shallow coal workings are not recorded and there are no potential shallow unrecorded workings beneath the site.

There are no mine entries located within 20m of the site boundary and with the Coal Authority interactive map indicating the nearest mine entries in excess of 500m away. It is therefore concluded that there are no viable pathways, via old shafts or adits, for any mine gas beneath, or within an influencing distance, of the site.

Two faults are indicated to cross the site. However, with no conjectural outcrops within 1km of the site boundary it is concluded that there are no viable pathways via fractured rock or fault zones.

4.4 MINING (CONTINUED)

Based on the desk-based research, the potential risk from coal mine gas emissions at the development site is considered below:

Figure 13.1 Decision Support Tool for Mine Gas Risk Assessment, included within CL:AIRE document Good Practice for Risk Assessment for Coal Mine Gas Emissions, dated October 2021 includes a flow chart to aid the risk assessment process and decision making.

Stage 1 of the flow chart asks if the site is within a Coal Authority defined Coal Mining Reporting Area. Since the site is located within a Coal Authority defined Coal Mining Reporting Area the flow chart then asks if all of the following statements are true:

- Mine entries >50m from site boundary
- Workings >150m depth
- No faults or other potential pathways connecting surface to deeper unflooded workings
- Outside area of past or probable shallow workings on Coal Authority viewer

Based on the information gained from the desk-based research, it is considered that the Stage 1 statements are true. The CL:AIRE document 'Good Practice for Risk Assessment for Coal Mine Gas Emissions dated October 2021' therefore classifies the site as being within a "Negligible Risk Zone" and states that mitigation is not required based on the proposed development of the site.

Based on the above information, the risk of mine gas migration to the proposed development is considered to be low, requiring no further consideration.

The Coal Authority Interactive map indicates that the site is not located within a high-risk development area. The professional opinion held by the Coal Authority at this time suggests "evidence of, or potential for, coal mining related features have been identified. It is unlikely that these features will impact on the stability of the enquiry boundary."

It is therefore concluded that there is not a risk of subsidence issues associated with the presence of shallow mining and therefore no further specific coal mining related investigation is required.

4.5 HYDROLOGY, HYDROGEOLOGY AND FLOOD RISK

The Envirocheck report provided in the original desk study recorded the nearest water feature to be located 83m to the southwest. The OS Water Network Lines map indicates this feature to be Taf Fawr. Taf Fechan is located 307m to the northeast, with both these features flowing into the River Taff located 621m to the southeast.

The Natural Resources Wales groundwater vulnerability map and aquifer database classifies the bedrock beneath the site as a Secondary 'A' Aquifer. Secondary 'A' Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

The Natural Resources Wales groundwater vulnerability map and aquifer database classifies the superficial deposits beneath the site as Secondary Aquifer-Undifferentiated. This classification is assigned in cases where it has not been possible to attribute either category A or B to a soil type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the material.

A perched water body could be encountered within the made ground or within the more granular superficial deposits.

It is considered possible that the existing site drainage could act as a pathway for potential surface contaminants.

There are no effective discharge consents recorded within 250m of the site boundary. The nearest consent is recorded 283m to the west where a sewage discharge from a domestic property is received by Taf Fawr.

The Envirocheck Report states that there are no water abstractions recorded within 250m of the site boundary. The nearest abstraction was recorded 406m to the east where a surface water abstraction from Taf Fechan was used +for industrial/commercial/energy/public services.

Tables 2 and 3 present a summary of the hydrological features and key hydrogeological nature of the site.

Table 2: Summary of Site Hydrology							
Feature	Distance from site	Flow Classification		Abstraction	Discharge		
Taf Fawr	83m southwest	South easterly	Inland river	No	River Taff		
Taf Fechan	307m northeast	South easterly	South easterly Inland river		River Taff		
River Taff	621m southeast	Southerly	Inland river	No	Cardiff Bay		
Surface run- off	On site	Flows into site drainage	N/A		Not known		
Site Drainage	On site	Not known	N/A	No	Not known		

4.5 HYDROLOGY, HYDROGEOLOGY AND FLOOD RISK (CONTINUED)

Geological	Aquifer	Aquifer Characteristics	Source	Groundwater
Unit	Classification		Protection Zone	Abstractions
Made ground	Not classified	Highly variable permeability and porosity. Perched water may be present with variable flow directions.	No	None
Devensian Till	Secondary Aquifer- Undifferentiated	Variable low to moderate permeability and porosity with intergranular flow possible. High clay content likely to restrict flow.	No	None
Bishopston Formation or Twrch Sandstone Formation	Secondary A Aquifer Variable moderate permeabili layers of interbedded siltstone a mudstone, quartzitic sandstone rare thin coals and quartz conglomerates		No	None

The Groundwater Vulnerability map of the area indicates the secondary bedrock aquifer to have a medium vulnerability. The pollutant speed is low with well-connected fractures.

The Natural Resources Wales Flood Risk map as presented within the Envirocheck Report indicates that the site is not at risk to extreme flooding from rivers or sea without defences.

The Natural Resources Wales Surface Water Flood Risk map as presented within the Envirocheck Report indicates that the site is not at a high-risk to surface water flooding (1 in 30-year flood extent)

4.5 HYDROLOGY, HYDROGEOLOGY AND FLOOD RISK (CONTINUED)

The BGS Groundwater Flooding Susceptibility map indicates the site to have limited potential for groundwater flooding to occur.

4.6 LANDFILL SITES

The Envirocheck Report indicates that there are no BGS recorded, historical or local authority recorded landfill sites or any licensed waste management facilities located within 500m of the site boundary.

It should be noted that a refuse tip was indicated within the northeast corner of the site on the historical maps circa 1960's. There is no official record of this refuse tip within the Envirocheck Report and therefore there are no details provided and the extent is unknown. It is likely to have comprised materials tipped on the surface with no evidence of potentially infilled land stated within the Envirocheck Report. These materials would have been cleared prior to site development of the current flats and infrastructure, but residual materials could remain.

4.7 POTENTIAL CONTAMINATION

Previous Uses

The various activities in the vicinity of the site which may have resulted in ground or water resource contamination on this site are listed below in Tables 4 and 5. A summary of the potential contaminants can be found in the tables.

4.7 POTENTIAL CONTAMINATION (CONTINUED)

Table 4: Potential Contaminants						
Land Use: Residential development and undeveloped land from 1880's						
Material/Process	Contamination/Hazard	Evidence				
Undeveloped southern areas possibly utilised as agricultural land	No potential contaminants	Historical maps				
Buildings constructed across the northern area likely to have been for residential use. Construction works would have disturbed the ground and may have utilised imported materials of unknown origin	Metals, semi metals, non- metals, PAH, asbestos	Historical maps				
Buildings subsequently demolished circa 1960's which would have caused further ground disturbance with potential residual building fabric remaining on site	Metals, semi metals, non- metals, PAH, asbestos and potential asbestos containing material (ACM) within and residual building fabric	Historical maps				
Evidence of a refuse tip within the northeast area of the site by the 1960's. Likely to have comprised materials locally tipped on the surface of the site	Metals, semi metals, non- metals, PAH, asbestos	Historical maps				
Land Use: Reprofiling works and cons	truction of Cefn Isaf Flats during	the 1980's				
Material/Process	Material/Process Contamination/Hazard Evidence					
Possible use of imported materials of unknown origin and earthworks associated with the construction of the flats which would have caused ground disturbance	Metals, semi metals, non- metals, PAH, asbestos	Historical maps				
Construction of the flats may have included the use of asbestos containing materials (ACM) within the building fabric	Asbestos containing materials (ACM)	Anecdotal but representative of age of construction				

Existing Uses

The residential flats which occupy the site are currently vacant. The existing site uses would not add any additional contamination concerns.

4.7 **POTENTIAL CONTAMINATION** (CONTINUED)

Adjacent Site Uses

Table 5: Potential Contaminants: Adjacent Site Uses						
Potential Contamination Source	Boundary	Associated Contaminants and Hazards				
Wern Road	Western	No Potential Contaminants				
Undeveloped land and individual detached residential properties	Southern	No Potential Contaminants				
Undeveloped land and residential properties with associated grounds	Eastern	No Potential Contaminants				
Pontycapel Road and a row of garages	Northern	No Potential Contaminants				

4.8 OTHER ENVIRONMENTAL ISSUES

The Envirocheck Report provided in the desk study report indicates that the Brecon Beacons, which is a fully designated National Park, is located 240m west of the site. No other environmentally sensitive land has been identified within 250m of the site boundary.

The Envirocheck Report provided in the desk study report indicates that there have been no pollution incidents to controlled waters recorded on site but two within 250m of the site boundary. The nearest incident was a Category 3-Minor Incident involving crude sewage recorded 119m to the southeast. Another minor incident was recorded 234m to the west involving mud/clay/soil due to a blocked sewer. No Category 2-Significant Incidents have been recorded within 500m of the site boundary.

There have been no substantiated pollution incidents registered on site or recorded within 250m of the site boundary. The nearest incident was recorded 288m to the west where contaminated water with suspended solids caused a significant impact on water and no impact on air or land.

There have been no prosecutions relating to controlled waters or to authorised processes recorded on site or within 1km of the site boundary.

There are two Contemporary Trade Directory Entries within 250m of the site boundary. A cemetery and crematorium are located 180m to the north and a garage is located 189m to the northeast.

4.8 OTHER ENVIRONMENTAL ISSUES (CONTINUED)

There is vegetation present within the site, and it is not known if any invasive plants are present. It may be prudent to undertake a full vegetation survey prior to development.

5.0 PRELIMINARY CONCEPTUAL SITE MODEL

5.1 RISK ASSESSMENT FRAMEWORK

In order to be consistent with current UK government policies and legislation, it is necessary to identify, assess, estimate, evaluate, and take appropriate action to deal with land contamination, in accordance with the procedures specified in the Environment Agency guidance Land Contamination Risk Management (LCRM) published in October 2020. This replaces the now withdrawn 'Model Procedures for the Management of Land Contamination CLR-11' (Environment Agency 2004).

The risk assessment process is designed to provide a reasoned, structured and pragmatic mechanism for the identification of any potential human health and controlled waters risks associated with land contamination and where necessary to develop a robust remediation strategy to ensure protection of the sensitive receptors (human health of future residents, controlled waters, etc).

In accordance with LCRM, the term 'land contamination' is defined as:

- All land affected by contamination land that might have contamination present which may, or may or may not, meet the statutory definition of contaminated land,
- Land determined as contaminated land under Part 2A of the Environmental Protection Act 1990.

LCRM provides a tiered approach to risk assessment, comprising a preliminary risk assessment (including the development of an initial conceptual site model), a generic quantitative risk assessment and a detailed quantitative risk assessment. For each tier of risk assessment, the following steps must be followed:

- 1. Identify the hazard establish contaminant sources,
- 2. Assess the hazard use a source-pathway-receptor linkage approach to determine if there is potential for unacceptable risk,
- 3. Estimate the risk predict what degree of harm or pollution may result and how likely it is to occur, and
- 4. Evaluate the risk decide whether a risk is unacceptable.

LCRM also provides definitions of the following terms:

 Hazard – a property or situation that in particular circumstances could lead to harm or pollution,

5.1 RISK ASSESSMENT FRAMEWORK (CONTINUED)

- Risk a combination of the probability, or frequency of occurrence of a defined hazard and the magnitude of the consequences of the occurrence,
- Risk assessment the formal process of identifying, assessing and evaluating the health and environmental risks that may be associated with a hazard,
- Risk management the formal process to identify, assess and determine the risks, and to select and take action to mitigate them.

The three essential elements to any risk are defined by LCRM as follows:

- A contaminant, or pollutant, that is in, on, or under the land and that has the potential to cause harm, or pollution (Source)
- A route by which a receptor is, or could be affected by a contaminant (Pathway)
- A receptor, i.e. something that could be adversely affected by a contaminant, for example a person, controlled waters, an organism, an ecosystem, or Part 2A receptors such as buildings, crops or animals (Receptor).

In order for there to be a potential risk, all three of the above elements must be present. If there is a source of contamination and a receptor (for example a resident or site user), then there is only a potential risk if there is a pathway linking the two. Such an active pathway is known as a relevant pollutant linkage. It is possible for the same contaminant to be linked to a receptor via a number of pathways, and hence it is important that all relevant pollutant linkages, to both human health and controlled waters, are separately identified on a site in order that a comprehensive conceptual model can be formed and ultimately a robust remediation strategy designed.

Current practice during Generic Quantitative Risk Assessment of land affected by contamination is to use generic soil screening values based on the appropriate proposed end use. These usually comprise risk based Soil Guideline values (SGVs) or Generic Assessment Criteria (GACs) derived by the Environment Agency's Contaminated Land Exposure Assessment Model (CLEA). The SGVs and the supporting technical guidance were developed in order to assist in the assessment of long term risk to human health from the exposure to contaminated soils.

Revised Statutory Guidance, published in 2012, to support Part 2A of the Environmental Protection Act 1990, introduced a new four category system for classifying land under Part 2A. Category 1 includes land where the level of risk is clearly unacceptable and Category 4 includes land where the level of risk posed is considered to be acceptably low. Under Part 2A, land would be determined as contaminated if it falls within Categories 1 or 2.

5.1 **RISK ASSESSMENT FRAMEWORK** (CONTINUED)

The revised Part 2A Statutory Guidance was accompanied by an Impact Assessment that identified a role for new 'Category 4 Screening Levels' (C4SLs) that would provide a simple test for determining when land is suitable for use and definitely not contaminated land. A Policy Companion Document including the C4SLs was published in March 2014 (England) and May 2014 (Wales).

The C4SLs have been based on the CLEA methodology and derived using the CLEA model, with modified toxicological and exposure parameters. To date, C4SLs have been released for six substances (arsenic, cadmium, chromium (VI), lead, benzo(a)pyrene and benzene).

The C4SLs have been derived on the assumption that where they exist, they will be used as generic screening criteria within generic quantitative risk assessment.

Following publication of the C4SLs, Land Quality Management (LQM), in conjunction with the Chartered Institute for Environmental Health (CIEH) released Suitable 4 Use Levels (S4ULs) in January 2015.

The S4ULs have been derived in accordance with UK legislation, and using a modified version of the Environment Agency's CLEA software. As such, the S4ULs are based on the concept of minimal or tolerable risk as described in Human Health Toxicological Assessment of Contaminants in Soil (Science Report SR2, Environment Agency 2009a).

S4ULs have been derived for a wider number of substances.

In addition to the existing SGVs, C4SLs and S4ULs, Atkins ATRISK^{soil} also provide a set of Soil Screening Values. These are currently intended to be used in conjunction with SGVs, although they intend to update these values in line with the C4SLs in due course.

We have reviewed all sets of values and intend to use the most appropriate assessment criteria as Tier 1 screening values in the first instance. Where a published S4UL is available, and considered appropriate, this will be used in the first instance.

5.2 CONCEPTUAL MODEL FRAMEWORK

The preliminary stage of the risk assessment process is to develop and define a conceptual site model, based on the desk study and any existing site investigation data. This is used to establish any potential contaminant sources, identify existing and future receptors and assess if there are any potentially active pathways by which a potential risk may be present.

5.2 CONCEPTUAL MODEL FRAMEWORK (CONTINUED)

The preliminary conceptual site model will be developed and refined as site specific data is gathered, such as actual ground conditions and chemical data, resulting in a more robust conceptual understanding of the site.

5.3 CRITICAL SENSITIVE RECEPTOR – HUMAN HEALTH

The proposed redevelopment of the site is for a residential end use. Therefore, the critical sensitive receptor from a human health perspective is an on-site residential receptor.

In accordance with S4UL/C4SL and CLEA guidance for a standard residential scenario, the critical sensitive receptor for a residential end use risk assessment is a female child, with exposure from 0 to 6 years.

The standard residential end-use conceptual model defined by S4UL/C4SL and CLEA is assumed to be suitable for the purposes of this assessment.

5.4 CRITICAL SENSITIVE RECEPTOR – CONTROLLED WATERS

Based on the proposed redevelopment of the site for a residential end use, and the findings of the desk study, the critical sensitive receptor from a controlled water perspective is groundwater within the Secondary 'A' Aquifer of the Bishopston Formation and the Twrch Sandstone Formation.

By considering groundwater as the critical sensitive receptor for controlled waters, the groundwater/hydrogeological risk assessment will also be protective of any nearby surface water features.

5.5 POTENTIAL CONTAMINANT SOURCES

As identified in the desk study, the northern area of the site was historically developed from the 1880's. There was also evidence of a refuse tip within the northeast area during the 1960's. Following demolition of these buildings the flats, that currently occupy the site, were constructed during the 1980's. There is evidence of earthworks within the site to create a level plateau for the construction of the flats.

The potential types of contaminants of concern are listed below:

5.5 POTENTIAL CONTAMINANT SOURCES (CONTINUED)

- Metals, semi-metals, and inorganics within the shallow made ground
- Polyaromatic hydrocarbons (PAH) within the shallow made ground
- Asbestos within the shallow made ground and the building fabric.

5.6 POTENTIAL EXPOSURE PATHWAYS

Potential exposure pathways for the critical receptors (both human health and controlled waters) are listed below:

- Dermal contact with soil and/or soil derived dust
- Ingestion of soil and/or soil attached to home-grown produce
- Ingestion of home-grown produce
- Inhalation of soil derived dust
- Inhalation of vapours indoor and outdoor air
- Leaching of contaminants from made ground to groundwater
- Transportation of contaminants within groundwater.

In addition, the following exposure pathways have also been considered:

- Ground gas generation and migration
- Building materials durability.

5.7 SUMMARY OF CONCEPTUAL EXPOSURE MODEL

A preliminary conceptual exposure model has been developed for the site. This is based on the findings of the desk study and historical review and includes all potential sources, pathways and receptors that may be present on site. Those that have been identified as being potentially active require further investigation in the form of sampling and testing of soils and groundwater, followed by appropriate risk assessment.

The preliminary conceptual exposure model will be reviewed and refined following the completion of the site works and laboratory testing.

The preliminary conceptual exposure model is presented below in Table 6.

5.7 SUMMARY OF CONCEPTUAL EXPOSURE MODEL (CONTINUED)

Source		Receptor	Pathway	Potentially Active	
Origin	Contaminant	Receptor	Faulway	Pathway?	
Made Ground of unknown origin and	Metals, semi-metals, non-metals, PAH, asbestos	Resident – human health	Dermal Contact with made ground/dust	~	
historical land uses			Ingestion of soil and/or soil attached to home-grown produce	×	
			Ingestion of home-grown produce	~	
			Inhalation of dust	\checkmark	
			Inhalation of vapours – indoor/outdoor	~	
	Metals, semi-metals, inorganics, PAH	Groundwater quality	Leaching from made ground	~	
	Metals, semi-metals, inorganics, PAH	Surface water quality	Transportation within groundwater	~	
Asbestos containing material (ACM) within the building fabric	Asbestos containing material (ACM)	Human health	Inhalation of dust/fibres	4	
Made Ground of unknown origin and natural ground	pH and water- soluble sulphate	Building Materials Durability	Direct contact	~	
Ground Gas – organic, gas producing materials present within site or adjacent to the site	Methane, carbon dioxide	Human health	Accumulation of gases in confined spaces, and/or migration off site, leading to asphyxiation, or risk of explosion		

6.0 THE SITE INVESTIGATION

6.1 FIELDWORKS

A site investigation was designed in accordance with BS 5930:2015+A1:2020, the Code of Practice for Site Investigations, BS10175:2011+A2:2017, the Code of Practice for Investigation of Potentially Contaminated Sites, and 'Development of Land Affected by Contamination: A Guide for Developers' prepared by Welsh Local Government Association (WLGA)/Natural Resources Wales (NRW) Land Contamination Working Group, 2017.

The site investigation was also designed to provide information to support and refine the preliminary conceptual site model/conceptual exposure model.

An investigation comprising the drilling of six windowless sample holes (WS1 to WS6), two hand excavated trial pits (HP1 and HP2) and soil infiltration tests in the trial pits was carried out on the 15th August 2022.

The windowless sample holes were located across the site and drilled to a maximum depth of 3.9m below existing ground level. The purpose of the windowless sample holes was to prove the shallow ground conditions and allow an assessment of the most appropriate foundation type for the proposed development. In situ strength testing (SPT/CPTs) was carried out in the windowless sample holes at 1.0m intervals and at the depth of refusal of the sampling equipment.

The hand excavated trial pits were excavated using hand tools to a depth of 1.0m below existing ground level. The soil infiltration tests were completed by adding clean water to each excavation and the fall in water level measured. Three cycles were completed at each trial pit location.

Representative soil samples were taken from the windowless sample holes for laboratory chemical and geotechnical testing (where sufficient sample was available) and placed in the appropriate sample containers deemed suitable for the analysis required. Strict protocols were adopted during this process to limit the cross contamination of samples.

The fieldworks were supervised by a qualified Geotechnical Engineer from Intégral Géotechnique (Wales) Limited who also logged the windowless sample holes and hand excavated trial pits and prepared their detailed engineering logs in accordance with the requirements of BS5930:2015+A1:2020. The engineering logs provide descriptions of the materials encountered in accordance with BSEN ISO 14688-1 (2002) and 14689-1 (2003) for soils and rocks respectively.

6.1 FIELDWORKS (CONTINUED)

The approximate locations of the windowless sample holes and hand excavated trial pits are shown on Figure 2, while their logs are presented in Appendices A and B. The results of the shallow soil infiltration tests are presented in Appendix C.

6.2 FIELD OBSERVATIONS

No visual or olfactory evidence of any contamination was observed during the drilling of the windowless sample holes or excavation of the trial pits.

Broken fragments of cement bound asbestos sheet was identified on the existing bank in the central area of the site. This location is provided on Figure 2.

6.3 LABORATORY CHEMICAL TESTING

Representative soil samples were taken from the windowless sample holes drilled across the site, stored at the appropriate temperature and dispatched to the laboratories of i2 Analytical for laboratory chemical testing within 24 hours.

The samples were tested for a range of contaminants that reflects the historical use of the site, the findings of the desk study and the preliminary conceptual site model/conceptual exposure model. A list of the soil testing carried out is given below:

Beryllium	Cadmium
Total Chromium	Hexavalent Chromium (VI)
Copper	Lead
Mercury	Nickel
Vanadium	Zinc
Arsenic	Boron
Selenium	Elemental Sulphur
Total Cyanide	Total Sulphate
Sulphide	Water Soluble Sulphate
рН	Monohydric Phenol
Polyaromatic Hydrocarbons (PAH)	Asbestos

The results of all the soil chemical testing is presented in Appendix D.

6.4 LABORATORY GEOTECHNICAL TESTING

Limited natural ground was retrieved in the windowless sample holes and consequently two natural soil samples obtained from the site were dispatched to the laboratories of Apex Testing Solutions (ATS) for analysis of pH and water-soluble sulphate and a single sample was issued for moisture content and atterberg limits.

The results of the geotechnical testing are provided in Appendix E.

The results indicate that the near surface natural soils comprised a reddish brown clayey, sandy gravel and are non-plastic and the location (WS1) and depth sampled (1.0m) below existing ground level.

7.0 GROUND CONDITIONS

The site investigation has identified a significant mantle of made ground over superficial glacial till deposits. It is important to note that the natural soils were only recorded in WS1, WS3 and WS6, with limited penetration into these materials possible.

7.1 TOPSOIL

Topsoil was recorded in WS4, WS5 and WS6 drilled in the existing grassed areas with recorded thicknesses of 0.4m, 0.4m and 0.05m. The topsoil generally comprised loose, brown, silty, slightly gravelly, organic rich sand. The gravel comprised fine to coarse, angular and subangular brick, ash, clinker and limestone.

7.2 MADE GROUND

Made ground was recorded at each exploratory point and where proven extended to depths of between 0.5m and 3.7m below existing ground level.

Hardcore like materials were locally recorded beneath existing hard standing, with these materials comprising limestone and igneous rock gravel.

It is important to note that the full thickness of made ground was only proven in WS1, WS3 and WS6.

The made ground was variable in strength/density and predominantly granular materials of a heterogenous nature and characterised by the presence of anthropogenic materials including fine to coarse gravel of ash, clinker, vesicular slag, ceramic, and brick, with variable concentrations of sandstone and limestone.

Locally, cobbles and suspected boulders were present in the made ground. These coarser materials are likely to be the cause of the refusal of the windowless sampling equipment at many of the locations that could not penetrate the made ground.

7.3 SUPERFICIAL SOILS

Natural superficial soils were recorded beneath the made ground in WS1 (at 0.5m depth), WS3 (at 3.7m depth) and WS6 (at 1.8m depth).

Where recorded the natural superficial soils were granular and described as loose, becoming dense, orange brown, red brown, light brown and grey, clayey or slightly silty, sandy gravel or gravel and cobbles of subangular to rounded sandstone and occasional limestone.

Limited penetration was recorded with the windowless sampling equipment in these materials. Uncorrected N values suggest that these materials rapidly becoming dense. It should be noted that cobbles and potential boulders in the natural soils can artificially elevate N values.

7.4 GROUNDWATER

No groundwater was recorded during the drilling of the windowless sample holes or the excavation of the shallow hand excavated trial pits.

The groundwater conditions are based on observations made at the time of the fieldwork. It should be noted that groundwater levels may vary due to seasonal and other effects.

7.5 SOIL INFILTRATION TESTS

Soil Infiltration tests were undertaken in HP1 and HP2 at 1.0m depth. These trial pits extended into the existing granular made ground and did not extend into the underlying natural soils/rocks.

Three rapid test cycles were completed in HP1. A design infiltration rate of 2.0×10^{-03} m/s recorded. Three rapid infiltration tests were also completed in HP2 which resulted in a design infiltration rate of 4.5×10^{-03} m/s

It should be noted that this initial testing should only be regarded as indicative. If it should be proposed to use soakaways for this site, then more extensive follow-up tests will be required and should fully comply with BRE 365, in order to confirm the suitability of the site and to satisfy the Local Authority.

The percolation testing results are specific to the location and depths at which the tests were carried out.

8.0 CONTAMINATION

8.1 AVERAGING AREAS

In order to assess the laboratory test results reliably and in context, the data have been grouped into an averaging area. An averaging area (or area of interest) is that area of soil to which a receptor is exposed or which otherwise contributes to the creation of hazardous conditions. This may be an area of historical industrial usage, a soil type, or a specific proposed end use.

In the case of this analysis, the averaging area has been determined according to the proposed residential end use.

8.2 SOIL CONTAMINATION

The Suitable 4 Use Levels (S4ULs) published by LQM have been adopted as critical concentrations against which soil contaminant concentrations can be compared. In the absence of additional published S4ULs, the Category 4 Screening Levels (C4SLs) derived by DEFRA and Soil Screening Values (SSVs) derived by Atkins ATRISK^{soil} for a residential with home grown produce end use have been adopted, where considered appropriate.

Since the results of the testing indicate total organic carbon content (TOC) in the range of 0.4% to 5.0%, therefore the results have been compared to the respective guidelines, where applicable, for 1% soil organic matter content.

The soil test results for made ground have been summarised and are shown in Appendix F.

8.2.1 Made Ground

The results of the laboratory testing indicate that most of the analysed chemical elements or compounds are present at concentrations below the appropriate thresholds. However, the initial screening indicates exceedances of several speciated PAH compounds.

It is also important to note that fragments of suspected cement bound asbestos sheeting was identified at the site surface within the central area of the site.

Elevated concentrations of the PAH compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene were recorded in a sample of made ground at 0.5m depth in WS5. The recorded values of 8.2mg/kg, 5.3mg/kg, 6.9mg/kg and 1.0mg/kg exceed their respective S4UL screening criteria of 7.2mg/kg, 5.3mg/kg, 6.9mg/kg and 0.24mg/kg respectively.

8.2 SOIL CONTAMINATION (CONTINUED)

8.2.2 In-situ Natural Ground

No visual or olfactory evidence of contamination of the in-situ natural ground was identified during the drilling of the windowless sample holes. At the time of writing this report no samples of natural ground had been tested. It is considered likely that concentrations of determinands within the natural ground are likely to be naturally occurring and as such, the natural ground poses no significant threat to human health or the environment.

9.0 REVISED CONCEPTUAL EXPOSURE MODEL

The preliminary conceptual exposure model has been reviewed and revised to reflect the findings of the site investigation and the results of the laboratory testing of soils, soil leachate, groundwater and gas monitoring. Pathways identified as a relevant pollutant linkage require appropriate risk assessment or mitigation measures (see Section 10).

Source				Preliminary		
Origin	Contaminant	Receptor	Pathway	Active Pathway? (see Sect. 5.7)	Relevant Pollutant Linkage	Justification/ Mitigation
Made Ground of unknown origin and	Metals, semi- metals, non- metals, PAHs	Resident – human health	Dermal Contact with made ground/dust	✓	√	Elevated concentrations of PAH
historical land uses	and asbestos		Ingestion of soil and/or soil attached to home-grown produce	4	√	compounds identified within the made ground – risk assess. Observed
			Ingestion of home-grown produce	~	1	asbestos product fragments at
			Inhalation of dust	×	~	site surface within the central areas of the site.
			Inhalation of vapours – indoor/outdoor	×	X	No sufficiently volatile contaminants identified.
	Metals, semi- metals, inorganics and PAHs	Groundwater quality	Leaching from made ground	×	✓	Contaminants in the made ground have the potential to leach to groundwater – risk assess

9.0 REVISED CONCEPTUAL EXPOSURE MODEL (CONTINUED)

Table 7: Revised Conceptual Exposure Model							
Sc Origin	Contaminant	Receptor	Pathway	Preliminary Active Pathway? (see Sect. 5.7)	Relevant Pollutant Linkage	Justification/ Mitigation	
	Metals, semi- metals, inorganics and PAHs	Surface water quality	Transportation within groundwater	¥		Contaminants may be transported from groundwater to surface water receptors – risk assess.	
Made Ground of unknown origin and natural ground	Metals, semi- metals, non- metals, PAHs, pH and Sulphates	Building Materials Durability	Direct contact	~	~	Building materials will be in contact with made ground – risk assess	
Ground Gas – organic, gas producing materials	Methane, carbon dioxide	Human health	Accumulation of gases in confined spaces, and/or migration off site, leading to asphyxiation, or risk of explosion	×	~	Potential gas producing materials present on site in the form of made ground – risk assess	

10.0 RISK ASSESSMENT

10.1 METHODOLOGY

The risk of pollution, health effects or environmental harm occurring as a result of ground contamination is dependent upon three principal factors:

- The scale of the contamination sources;
- The presence of sensitive "receptors", e.g. Humans: health of the general public, site occupiers, redevelopment workers. Environment: flora, fauna, etc;
- The existence of migration pathways by which contaminants can reach the sensitive receptors.

This section assesses each of these factors in order to evaluate the overall level of risk and potential harm to receptors. The receptor may be human, a water resource, an eco-system or construction materials. Pathways connecting a perceived hazard to a receptor are referred to as exposure pathways.

The sources of contamination and the links connecting the hazards to the sensitive receptors will represent the basis for the risk assessment.

10.2 SOURCE-PATHWAY-RECEPTOR MODEL

The preliminary conceptual site model was based on the findings of the desk study. This was later reviewed and refined according to the findings of the site investigation, allowing for the ground conditions encountered and the results of laboratory testing of soil and groundwater. Any pathways considered to be inactive were removed from the model and all remaining potentially active pathways require risk assessment.

The pathways shown as potentially active in the Revised Conceptual Site Model in Section 9.0 above have been assessed below.

10.3 HUMAN HEALTH RISK ASSESSMENT

10.3.1 Site in its Present Condition

The site does not pose any risks to casual visitors or trespassers. The site is secured from third party access.

10.3.2 Future Site Users

The contamination test results, and investigation observations show elevated concentration levels in the made ground (at shallow depth) of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene.

It is important to note that fragments of cement bound asbestos containing sheet were also identified at the ground surface on the embankment within the central area of the site.

Given the elevated PAH concentrations within the made ground and the presence of cement bound asbestos sheet at the site surface, it is considered that a potential risk to human health may exist via the following relevant pollutant linkages:

- Dermal contact,
- Ingestion of soil or soil derived dust,
- Ingestion of soil attached to homegrown produce,
- Ingestion of homegrown produce,
- Inhalation of soil bourn dust.

Given the presence of ACMs at the site surface, it is considered that a potential risk to human health may exist via the following relevant pollutant linkages:

- Dermal contact and resultant inhalation,
- Inhalation of soil bourn dust.

The inhalation of vapours pathways (indoor and outdoor air) are not considered to be active since the contaminants of concern identified are not sufficiently volatile.

The general approach for assessing the potential risk to a receptor is by a combination of qualitative and quantitative risk assessment.

A quantitative risk assessment would involve selecting and deriving generic assessment criterion to compare low risk substances, based on the fate, transport and toxicological properties and the exposure scenario being considered.

There are no published screening criteria values for asbestos, and neither are there any in preparation. As discussed in CIRIA Report C733 Asbestos in Soil and Made Ground: a Guide to Understanding and Managing Risks, agreement has yet to be reached in the UK on an appropriate toxicological criterion on which a screening value for asbestos could be based. It also states that 'based on current knowledge, it is believed that that a scientifically defensible UK GAC (generic acceptance criteria) for asbestos in soil cannot be developed or imported.'

It is therefore considered that a more qualitative assessment of the potential risk is appropriate, as asbestos is determined to be a non-threshold substance.

CIRIA Report C733 states that asbestos (asbestos containing materials and asbestos containing soils) only present a risk to health if airborne fibres are released into the atmosphere. The report goes on to state that the number of fibres released into the air from asbestos containing soils is likely to be influenced by a number of site-specific factors, as listed below.

- Characteristics of the asbestos (concentration, degree of heterogeneity, depth in relation to final ground level, volume/area, type, condition, extent of bonding, weathering, fraction of free fibres, shape of fibres);
- Characteristics of the soil (type, moisture content, surface vegetation, presence of hard standing)
- Weather (humidity, precipitation, temperature, ground freezing, wind speed and direction);
- Land use/soil disturbing activities (behaviour of receptors, distance between receptor and source, types of activity, duration/frequency of activity, dust mitigation measures).

The depth below ground level of the asbestos containing soils is imperative to the potential risk posed. CIRIA Report C733 states that in the absence of significant physical disturbance, exposure to airborne asbestos fibres from soil will be from friable materials or asbestos fibres present at, or very close to, the soil surface (the soil – air interface).

Materials that have been buried, or are below the soil surface, will pose a lower, or less immediate, risk as these materials are unable to release airborne fibres unless brought to the soil surface by physical activity/disturbance.

It is considered that the remedial works required at the site should include reduction of any encountered asbestos containing materials (ACM) by hand picking in-situ by an asbestos awareness trained contractor. The ACM picked from the site and any soil matrix will require disposal to a licenced tip.

In order to break the identified potential exposure pathways between the made ground and the future site end users, it will be necessary to place a capping layer of a minimum thickness of 600mm of clean imported subsoil and topsoil, placed on top of a hi-vis geotextile separation/alert membrane in all gardens and areas of soft landscaping.

The thickness of this capping layer will have to be agreed with the regulators.

10.3.3 Construction Workers

The presence of elevated concentrations of PAHs in the made ground and asbestos containing materials at the site surface indicate a potential risk to construction workers. Appropriate measures are therefore recommended for works involving the made ground materials which are known to be present beneath the site.

During site preparation and construction works, the soils should be dampened down to minimise the potential for soils to dust and subsequent release of any asbestos fibres.

During exposure of soils, the exposed surface should be inspected by asbestos awareness trained contractors and the surface should be handpicked to remove any residual asbestos containing materials, if they are identified.

These works should be carried out under an appropriate risk assessment and managed in accordance with the Control of Asbestos Regulations 2012 (CAR 2012).

The handpicked asbestos containing materials should be disposed off-site at a suitable licensed facility as hazardous waste. These works should be carried out by appropriately licensed contractors.

All excavations should be regularly checked for safe atmospheres.

Normal good hygiene practices should be adequate to protect the health and safety of redevelopment workers, and should include:

- Minimum handling of materials;
- Washing of hands prior to all meal breaks, which should be taken in a designated clean area;
- The use of standard protective clothing such as boots and overalls and gloves, where considered relevant.

In dry weather, inhalation of dust and gases should be avoided preferably by the use of dust suppression techniques to minimise fugitive emissions and minimisation of exposed materials at any particular time.

Additionally, a system should be established by which any 'unusual' materials that may be encountered are reported rapidly to the site management, so that the appropriate action may be taken, following specialist advice if necessary. An unusual material may be identified on site by colour, odour or physical nature.

Reference should be made to the Health and Safety Executive document "Protection of Workers and the General Public during the development of contaminated land" for detailed guidance on these matters.

10.4 RISKS TO VEGETATION

The concentrations of copper, nickel and zinc in the shallow made ground materials, do not indicate the potential for adverse effects to vegetation. However, the physical nature of the existing made ground does not provide a suitable growing medium for vegetation. To ensure viable landscape areas by preventing upward migration of contaminants into the overlying soils, and in order to promote plant growth, any landscaped areas will require the provision of a minimum 600mm thick capping layer of clean, inert subsoil and topsoil materials, placed on top of a hi-vis geotextile separation/alert membrane.

10.5 GROUNDWATER RISK ASSESSMENT

The results of the laboratory chemical testing carried out on the made ground materials has not identified any significantly elevated concentrations other than localised PAHs. The presence of PAHs dictates that all gardens and landscaped areas are capped with a minimum thickness of 600mm of clean imported topsoil and subsoil, placed on top of a hivis geotextile separation/alert membrane. Elsewhere, the site will comprise buildings and areas of hardstanding.

The potential for any rainfall that falls onto the soft finished areas to infiltrate the ground and migrate through the 600mm thick capping soils and geotextile membrane into the made ground and generate unacceptable concentrations of leachate is considered to be low.

It is therefore considered that the potential risk to controlled waters is low.

It is possible that the Local Authority and NRW may require groundwater to be sampled and analysed and a more detailed groundwater risk assessment completed for the site to confirm this assessment.

10.6 GROUND GAS RISK ASSESSMENT

No ground gas monitoring has been undertaken on site as part of this investigation.

Given the historical usage of the site, and the significant thickness of made ground identified, which contains inclusions of ash, clinker, slag and brick, there is the potential for ground gas generation from the existing made ground.

Consequently, at this stage the risks of made ground sourced ground gases affecting the proposed residential properties is considered to be moderate and ground gas precautionary measures may be required onsite. This will likely require the inclusion of a suitable gas protective membrane and underfloor venting.

It is therefore recommended that ground gas monitoring standpipes are installed on site (as part of the recommended future drilling works) and a programme of ground gas monitoring completed on site to form the basis of a detailed ground gas risk assessment.

10.7 RISKS TO BUILDINGS AND MATERIALS DURABILITY

10.7.1 Concrete Classification

A summary of the laboratory chemical test results for the chemicals monohydric phenol, sulphur, total sulphate, water soluble sulphate, sulphide and pH, which may adversely affect the durability of building materials is presented in Appendix F.

Made Ground

Evidence to date does not indicate any specifically aggressive conditions, but it would be reasonable to expect a degree of sulphate and acidic aggressiveness from the made ground.

In accordance with BRE Digest SD1:2005 and adopting the assessment procedure specified therein for brownfield sites, the laboratory chemical test results indicate a characteristic value for water soluble sulphate within the made ground of 290mg/l.

Using Table C2 of BRE Digest SD1:2005, this characteristic value corresponds to Design Sulphate Class DS-1.

The groundwater regime of the site has been assessed as 'mobile' and a characteristic pH value within the made ground of 8.2 has been determined (adopting the mean of the lowest 20% of the test results). The Design Sulphate Class has been modified to give a site ACEC class of AC-1 for concrete structures constructed within the made ground.

Natural Soils

Evidence to date does not indicate any specifically aggressive conditions, but it would be reasonable to expect a degree of sulphate and acidic aggressiveness from the natural soils.

In accordance with BRE Digest SD1:2005 and adopting the assessment procedure specified therein for brownfield sites, the laboratory chemical test results indicate a characteristic value for water soluble sulphate within the natural soils of 29.5mg/l.

Using Table C2 of BRE Digest SD1:2005, this characteristic value corresponds to Design Sulphate Class DS-1.

The groundwater regime of the site has been assessed as 'mobile' and a characteristic pH value within the made ground of 7.8 has been determined. The Design Sulphate Class has been modified to give a site ACEC class of AC-1 for concrete structures constructed within the natural soils.

10.7.2 Water Services

Water supply pipes will need to be protected from any contamination present within the ground. In particular, the presence of organic contaminants (such as PAHs) should be addressed when selecting pipe materials. Measures to protect the pipes will include clean backfill to trenches and possibly alternative material selection. Reference should be made to UKWIR Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites, document No. 10/WM/03/21. The final design and selection of the pipe and associated backfill should be agreed with the appropriate Regulator prior to installation.

In order to comply with the UKWIR guidance, specific sampling and testing along the actual line of the proposed water supply route may need to be carried out once this has been established.

10.8 WASTE DISPOSAL

Excavated materials generated by the development may be considered as waste and subject to waste controls. Any re-use of excavated materials on-site should be undertaken in accordance with current waste and environmental legislation and which may require the production of an approved Materials Management Plan (MMP) prepared in accordance with the CL:AIRE Code of Practice.

It is recommended that a sustainable development strategy is adopted which reduces to a practicable minimum the generation of waste materials and the need for disposal to a licensed tip. Emphasis should be on recovery and re-use rather than disposal.

However, any waste or surplus materials that are generated will need to be classified in accordance with current EC regulations and Environment Agency guidance prior to disposal. It is the responsibility of the waste producer to classify the waste.

Based on the data obtained from the site investigation works, any waste materials comprising the existing made ground are likely to be classified as non-hazardous. The existing natural ground is likely to be classified as non-hazardous.

Any asbestos containing materials (ACMs) will be classified as hazardous waste.

This classification is provisional and indicative of the likely waste classification based on the data obtained to date (including chemical composition, moisture content, etc.). It also assumes that the materials tested will be representative of future generated waste.

10.8 WASTE DISPOSAL (CONTINUED)

In order to minimise disposal, the materials generated should be segregated and examined, with appropriate testing as necessary, to enable the materials to be sorted or treated into lower classifications, with the resultant benefit of potentially generating re-use rather than disposal.

Once final waste sources and volumes are known, the waste stockpile to be disposed offsite will need to be classified in accordance with Environment Agency/Natural Resources Wales Waste Classification – Guidance on the Classification and Assessment of Waste Technical Guidance WM3 (2015). This is likely to require additional sampling and testing of the generated waste materials to provide an up-to-date current basis for classification.

Depending on the waste classification, waste acceptance criteria (WAC) testing may be required, in order to determine which class of landfill site the waste can be sent to.

It is recommended that the results of the waste classification and any WAC test results are sent to the intended licensed waste operator prior to disposal in order to confirm their classification and acceptance.

10.9 UNCERTAINTIES

It is important to recognise that there may be areas of contamination within the site that have not been found or that contaminants may be present at concentrations above those that have been found. It is also important to recognise that contamination may be localised and that no investigation, however comprehensive, is capable of finding such occurrences, other than by chance.

The near-surface drainage patterns have not been fully established.

The ground beneath the buildings has not been examined but on present evidence the existing floor slabs are in good condition and there is no evidence of any basements or past spills of potential contaminants. Some degree of made ground material should be expected beneath the existing floor slabs.

Given the age of the structure, the presence of asbestos within buildings fabric and around/within below ground structures as form work, ducting etc cannot be discounted.

11.0 ENGINEERING CONSIDERATIONS AND RECOMMENDATIONS

11.1 DETAILS OF PROPOSED DEVELOPMENT

The proposed development will comprise the demolition of the existing blocks of flats followed by the construction of a new scheme of flats, the layout of which has not been finalised. The development is likely to include an access road, car parking areas, areas of landscaping and possibly private garden areas.

11.2 SITE PREPARATION

It is recommended that a building material inventory and structural appraisal of the remaining structures are carried out to identify any hazardous materials or potentially unsafe conditions so that appropriate demolition strategies and waste management control can be both costed and implemented. All asbestos containing materials should be removed by an approved contractor from within the existing structure.

Prior to works commencing on site, any services, including any culverts, within the proposed development areas should be identified and either diverted or protected. Any diversion works should be carried out under the supervision of, and to the specification of appropriate Statutory Authorities. The resulting excavation should be backfilled with suitable granular fill material laid and compacted to Department of Transport (DTp) Specification for Earthworks.

The site should be inspected and the near surface asbestos containing materials disposed of off site to a suitably licensed facility.

A system should be established for identification and dealing with any, unforeseen contamination encountered during the site works (including identification of any potential asbestos containing materials or hydrocarbon contamination hotspots). Any contamination, or suspected contamination, should be reported to the site manager, so that appropriate action may be taken, following specialist advice if necessary.

Consideration should be given to protection of adjacent structures during demolition and construction phases to avoid undermining or damage.

Following the demolition of the existing buildings, all foundations, floor slabs, manholes, drainage runs, and other buried structures should be demolished and removed, if no longer required.

11.2 SITE PREPARATION (CONTINUED)

Any resulting demolition materials should be crushed to an acceptable size for re-use, typically <125mm maximum particle size. Any deep service chambers, if present should be excavated and obstructions removed.

Existing tarmac and any surface concrete should be planed off/broken out and the materials set aside for appropriate re-use.

The resultant voids from the demolition works should be brought back up to the required level with well compacted suitable granular materials, laid and compacted in layers and benched into the surrounding soils. Department of Transport (DTp) Type 1 sub-base or similar approved, could be used and should be compacted in layers, in accordance with DTp Specification for Highway Works.

All exposed formations/sub formations should be visually inspected for asbestos containing materials (ACMs), particularly within the footprint of the existing buildings and underneath hardstanding areas.

All materials to be disposed of offsite should be sent to a suitably licensed facility. Licenced tips may require additional waste classification and Waste Acceptance Criteria testing of materials to ensure compliance with their current licence agreements.

Allowances should be made for appropriate pollution prevention measures to be in place during the construction phase. Pollution prevention measures should be included within the appointed contractor's method statements and agreed with the appropriate regulator prior to commencement. The required pollution prevention measures should include, but not be limited to, the following:

- Protection/diversion of any active surface water drains that cross the site,
- Segregation of arising's from excavation works,
- Stockpiled materials are to be sealed from the weather, placed on a suitable impermeable surface and bunded to prevent run-off,
- Exposed formations are to be regularly damped down to prevent fugitive dust emissions,
- Appropriate boundary air and dust monitoring, if required

Some surface water and groundwater management will be required in order to ensure the protection to the earthworks and materials. Allowances should be made for encountering springs or incidences of perched water within excavations.

11.2 SITE PREPARATION (CONTINUED)

The exposed formations should be checked and any soft spots/areas should be removed and replaced with well compacted site won or imported granular fill material.

Any soft spots identified during preparation works should be removed and backfilled with clean granular material in accordance with the DTp Specification for Highway Works.

Exposed formations should be protected from site traffic and inclement weather in order to preserve their integrity. Any soft spots/areas should be removed and replaced with well compacted site won or imported granular fill material.

Any required site preparatory earthworks should be properly designed, specified and supervised by a suitably qualified engineer. Allowances should be made for site supervision by a competent and suitably qualified Engineer, sampling, and field and laboratory testing.

11.3 FOUNDATIONS AND FLOOR SLABS

The following recommendations assume that the site will be developed with two to three storey apartment blocks. If heavier structures are planned, a further review of the foundation recommendations given below will be required.

The made ground deposits encountered within the site area are variable in physical nature and in their present state of compaction, these materials are not deemed suitable load bearing materials for the proposed structures.

The made ground has only been fully penetrated within three of the windowless sample holes drilled on site and where the full thickness of made ground was proven there was very limited penetration into the natural soils and rocks. Thus no significant information is available with regards to the presence, depth and nature of the natural soils and/or rocks underlying the made ground. The following recommendations should therefore be considered preliminary and will require reviewing and verification in the future.

The chosen foundation should fully penetrate the made ground and extend into the natural competent granular soils or rocks beneath the made ground.

At this stage, it is recommended that piled foundations are adopted, and are taken down into suitably competent in-situ materials comprising either a suitable thickness of superficial soils (glacial till) or the underlying Bishopston Formation and Twrch Sandstone Formation strata at depth. Based on the information available to date, steel driven, bored or drilled piles could be used and taken down to appropriate sets.

11.3 FOUNDATIONS AND FLOOR SLABS (CONTINUED)

A precast concrete driven piled system would not be acceptable due to the proximity of adjoining residential structures and services and the vibrations generated during the piling process. In addition, the presence of obstructions (large cobbles and boulders) in the made ground would also preclude their use

The length of the proposed piles and the appropriate set or rock socket cannot be determined from the windowless samples undertaken to date. This should be determined by a specialist piling contractor and will be subject to undertaking further geotechnical site investigation comprising deep geotechnical boreholes.

The advice of a specialist piling contractor should be sought regarding the specific design and load bearing capacity of the piles. Under the selected intensity of loading, the total settlement of each pile should not exceed 10mm and any differential settlements between adjacent piles should be less than half this value. Any load contribution from the made ground and any soft alluvial deposits, if encountered, should be ignored in the pile design.

Based on the encountered ground conditions, a steel driven pile or bored/drilled pile system should be feasible. The choice of a steel driven, or bored/drilled pile will ultimately depend on the density of the superficial soils and their thickness, the presence of any large natural obstructions (boulders) and the requirement for a rock socket should an insufficient thickness of superficial materials be present to generate the required pile skin friction.

The piles should generate their safe working load from a combination of shaft skin friction and end bearing, and also potentially from a suitable rock socket into the Bishopston Formation and Twrch Sandstone Formation.

Allowances should be made for negative skin friction within any made ground or soft/loose in-situ soils if ground levels are to be raised.

In order to determine the most appropriate piling solution for the proposed development and to assist with the detailed design of the piled foundations, a specialist piling contractor should be consulted.

In addition, the piling contractor may request that additional deeper boreholes are drilled on site to provide detailed information for pile design.

Allowances should be made by the piling contractor for carrying out suitable pile testing and for potentially for encountering large cobbles/boulders within the natural granular soils.

11.3 FOUNDATIONS AND FLOOR SLABS (CONTINUED)

The piling contractor should also allow for the potential presence of obstructions within the made ground deposits. Such obstructions should be removed by excavation plant, or it may be possible to reposition the piles to avoid the obstructions. This should be minimal after site clearance works.

Suspended ground floor slabs should be adopted across the site.

No radon protective measures are required to be incorporated within the floor slab.

At this stage, allowances should also be made for suitable ground gas protective measures, to be confirmed following completion of the recommended ground gas monitoring programme.

11.4 EXCAVATIONS AND FORMATIONS

All excavations should be possible with normal soil excavating machinery. Allowances should be made for the use of pneumatic breaker attachments, or similar tools, or larger plant, should any buried obstructions be encountered.

Excavations to depths of typically 2.0 to 3.0m depth, based on the evidence of the windowless sample holes are unlikely to encounter significant groundwater inflows. Perched pockets of groundwater associated with buried foundations and other structures should, however, be allowed for.

Any groundwater inflows/seepages are likely to be slight, and these, together with any rainfall infiltrations, should be dealt with by conventional pumping techniques.

It is unlikely that excavations will intercept the groundwater table, which is likely to lie at depths typically in excess of 2.0m below existing ground level. Any water ingresses should be adequately controlled at all times to ensure stability and protection of the temporary and permanent works

Some pit side instability within the made ground deposits and poorly consolidated alluvial soils, if encountered, should be anticipated. The stability of trenches is likely to rapidly deteriorate over time, and excavations may require shoring to maintain an open excavation.

The sides of excavations deeper than 1m should be fully supported by trench boxes, or temporarily battered at gradients of typically 30°.

11.5 ACCESS ROADS AND CAR PARKING AREAS

Any existing foundations, slabs and other hard surfacing should be broken out beneath all highway, drive and car parking areas.

There are likely to be variations in the strength of the materials at the formation levels and therefore for the access road and car parking formations, a California Bearing Ratio (CBR) value of between 1% and 2% could be used for much of the site.

In-situ testing should be undertaken to confirm these initial assumptions. Materials should be considered frost susceptible.

After proof rolling the pavement formations, any 'soft spots/areas' should be removed and replaced with well compacted imported granular materials. Department of Transport (DTp) Type 1 sub-base, or similar approved, could be used and should be compacted in layers, in accordance with the DTp Specification for Highways Works.

It should be noted that the Local Highway Authority may insist that field CBR tests should be carried out to confirm the above recommendations. Allowances should therefore be made for carrying out such tests and any further works which the Local Authority may require as a result of these tests.

11.6 DRAINAGE

Indicative soil infiltration tests have been undertaken within HP1 and HP2. It should be noted, that owing to the thickness of made ground recorded on site and the limitations afforded to hand excavated pits, the tests were completed in the existing made ground deposits.

Discharging of stormwater into the existing made ground is not normal practice and can cause many potential issues, which include the following:

- Mobilisation of contaminants in the made ground due to concentrated discharges of water and the generation of contaminant leachate and consequently impact on groundwater and surface water systems;
- Washing out fines and voids creating settlement local to the soakaway;
- Potential for inducing significant slope instability in existing slopes owning to disturbance during construction and the action of water discharge from the soakaway.

11.6 DRAINAGE (CONTINUED)

The underlying natural soils and rocks may be a suitable medium for the disposal of storm water via soakaways. It should be noted, however, that the soakaways could potentially drain down onto the existing groundwater table and therefore the volume of water into the soakaways and the depth at which soakaways will work will be constrained by the groundwater levels.

It is recommended that a number of BRE 365 compliant soil infiltration tests are undertaken in machine excavated trial pits once the existing structure has been demolished. These full-scale soil infiltration tests could be location and depth specific and used to design the sustainable drainage at the site. These soil infiltration tests should extend into the natural soils underlying the made ground.

Monitoring of groundwater levels on site and local to proposed soakaway locations should be undertaken prior to their final design.

11.7 RECOMMENDED FURTHER WORKS

It is recommended that a number of BRE 365 compliant soil infiltration tests are undertaken in machine excavated trial pits once the existing structure has been demolished. These full-scale soil infiltration tests could be location and depth specific and used to design the sustainable drainage at the site. These soil infiltration tests should extend into the natural soils underlying the made ground.

It is recommended that a number of deeper shell and auger and or rotary boreholes are drilled on site in order to prove the thickness of the made ground, the nature of the underlying deposits and confirm an appropriate foundation solution for the proposed development.

These boreholes will also be required by a piling contractor to aid in the design of piled foundations.

Ground gas and groundwater monitoring standpipes should be installed in the boreholes.

Ground gas will need to be monitored over a minimum period of 3 months, to include one reading at low and/or falling barometric pressure. Any precautionary measures required for the new structure should be designed on the basis of this monitoring.

The groundwater level in the standpipes could be monitored at regular intervals.

APPENDIX A

WINDOWLESS SAMPLE LOGS

Géot	Intégr a echniqu	Castlegat Caerphilly Tel. 029 2 Fax. 029 3	ouse, 7 Be e Business cCF83 2A) 0807991 20862176 egralgeoted	s Park K	Project Na Cefn Isa					Project No.: 14067	Borehole No.: WS1 Sheet 1 of 1	:
Locatio	on:				Client:	Morth			nes I td	Coordinates:	Hole Type:	
Merthy	vr Tydfil					wert	iyi vall	sys nor	nes Ltd		WLS	
Equipme	ent: Con	npetitor Da	rt		Diameter o	of Casin	a :			Level:	Scale	
		•									1:25	
Diamete	r of Boring	: 101+8	37mm		Depth of C	asing:				Dates	Logged By:	
	Water		Samples	& In situ Testi	ng	Depth	Level			15/08/2022 - 15/08/2022	GNS	
Well	Strikes	Depth (m)		Res	-	(m) 0.06	(m AOD)	Legend	Bituminous material (M	Stratum Description		
									Compact dark grey and	d black slightly silty fine to coa tumen coated igneous rock (N	rse angular to	-
						0.20			Compact light grey and of limestone (MADE GF	I beige slightly silty fine to coa	irse angular gravel	
		0.40	ES			0.00			Loose dark grey and gr	rey slightly silty fine to coarse and slag (MADE GROUND)	angular gravel of	
						0.50			Loose becoming dense	e orange brown and red browr	n slightly silty sandy	-
								a 9 9 9 9 9	sandstone and siltstone	cobbles of subrounded and s e. Gravel is fine to coarse rou		-
									subangular sandstone.			-
		1.00	5					0 0 0 0 0				-
		1.00 1.00	D C	N=3 (2,1	/1,0,1,1)			a o o				- 1 -
								0 0 0 0				-
								a . a . a				-
								a ° a ° 9				-
								a • a 0				-
												-
								°°°°				-
		2.00	С	50 (3,10/50	for 95mm)	2.00				End of Borehole at 2.00 m		2
												-
												-
												-
												-
												-
												-
												- 3
												-
												-
												-
												-
												-
												-
												-
												- 4
												È
												-
												-
												-
												- 5
Remarks	:	1				1	1	Key	nall disturbed sample	W - Water comple		
1. Refus	al of samplir	ng equipmer	nt at 2.0m	n depth.				B - Bu	nall disturbed sample lk disturbed sample nvironmental soil sample	W - Water sample U - Undisturbed sample TCR - Total Core Recov		
1												

Géot	Intégra echnique	Castlegat Caerphilly Tel. 029 2 Fax. 029	te Business v CF83 2A	X	Project Nar Cefn Isa					Project No.: 14067	Borehole No.: WS2 Sheet 1 of 1
Locati					Client:	Merth	vr Valle	evs Ho	mes Ltd	Coordinates:	Hole Type:
Merthy	/r Tydfil						<i>j.</i>				WLS
Equipm	ent: Comp	etitor Da	art		Diameter o	f Casing	j :			Level:	Scale
											1:25
Diamete	er of Boring:	101+	87mm		Depth of Ca					Dates 15/08/2022 - 15/08/2022	Logged By: GNS
Well	Water Strikes	Depth (m)	Samples Type	& In situ Testi Res	ng ults	Depth (m)	Level (m AOD)	Legend		Stratum Description	
		0.30	ES			0.09			Dense grey CONCRETE Compact brown slightly s cobbles of subrounded t rare brick and ash (MAD	silty slightly gravelly sand with o angular concrete, sandston	n occasional e, limestone and
		1.00	С	N=50 (3,4/50		0.80			coarse subrounded sand Dense brown clayey slig blocky limestone and rou	htly gravelly sand with freque unded and subrounded sands nd subrounded sandstone ar	nt cobbles of
		1.40	C	50 (25 for 4 20n		1.40				"End of Borehole at 1.40 m"	-2
Remarks								Key D - S	: mall disturbed sample	W - Water sample	
1. Refus	al of sampling	equipme	nt at 1.4m	n depth.				B - B ES - SPT	main disturbed sample ulk disturbed sample Environmental soil sample - Standard Penetration Test (split sp - Standard Penetration Test (solid cr	U - Undisturbed sample TCR - Total Core Recove oon) SCR - Solid Core Recove	ry AUO

Géot	Intégr echniqu	al Castlegat Caerphilly Ie Fax. 029 2	te Business v CF83 2A	x	Project Nai Cefn Isa					Project No.: 14067	Borehole No. WS3 Sheet 1 of 1	
Locati	on:	mail@int	graigeotet							Coordinates:	Hole Type:	
Merth	yr Tydfil				Client:	Merth	ıyr Vall	eys Hor	nes Ltd		WLS	
					D : (Scale	
Equipm	ent: Con	npetitor Da	art		Diameter o	t Casing	g:			Level:	1:25	
Diamate	an of Doning		07.70.0	CC		!				Dates	Logged By:	
Diamete	er of Boring	101+0	87+76+0	0011111	Depth of C	asing:				15/08/2022 - 15/08/2022	GNS	
Well	Water Strikes	Depth (m)	Samples Type	& In situ Testi Res	-	Depth (m)	Level (m AOD	Legend		Stratum Description		
		2 op ()	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.12			Dense grey CONCRE	ETE (MADE GROUND).		-
		0.40	ES C	N=21 (3,- N=12 (2,:	2/2,4,4,2)				cobbles of subrounde	prown slightly silty gravelly sand d and subangular brick, sandst se angular to subrounded sands (MADE GROUND).	one and limestone.	-1
		3.00 3.80 3.90	C D C		/1,1,1,1) 0 for 85mm)	3.00 3.70 3.90			sand (MADE GROUN - Soils noted as wet Medium dense to der GRAVEL with frequer	nse light brown and grey slightly tt cobbles of subangular to rour tone. Gravel is fine to coarse si	silty sandy ded sandstone	3
Remarks 1. Refus	s: al of samplir	ng equipmer	nt at 3.9n	n depth.				B - Bu ES - E	nall disturbed sample Ik disturbed sample Invironmental soil sample Standard Penetration Test (spl Standard Penetration Test (spl	W - Water sample U - Undisturbed sample TCR - Total Core Recov it spoon) SCR - Solid Core Recov id cone) ROD - Rock Quality Des	ery rery AG	

	Intégra	Castlegat	te Business	eddau Way s Park	Project Nar	ne:				Project No.:	Borehole No.:	
Géot	echniqu	Caerphilly	V CF83 2A	Х	Cefn Isa	f				14067	WS4	
0000	ooninqu	Fax. 029 mail@inte	20862176 egralgeoteo	c.com							Sheet 1 of 1	
Locati	on:				Client:	Morth	vr Vall	ave H	omes Ltd	Coordinates:	Hole Type:	
Merthy	yr Tydfil				Chern.	INCI UI	yi vano	59511	omes Liu		WLS	
Equipm	ont: Com	petitor Da	ort		Diameter o	f Cooin				Level:	Scale	
Lquipin	ent. Con		ai (Diameter o	i Casinį	J.				1:25	
Diamete	er of Boring	: 101m	m		Depth of Ca	asina:				Dates	Logged By:	
		-			-				.	15/08/2022 - 15/08/2022	GNS	
Well	Water Strikes			& In situ Testi Res	-	Depth (m)	Level (m AOD)	Legen	t l	Stratum Description		
Well		Depth (m) 0.65 1.00		1	ults	0.40 0.60 1.00			Grass onto loose brown s fine to coarse angular lim Dense grey and brown sl limestone (MADE GROU Loose to medium dense Gravel is fine to coarse a and limestone (MADE Gl	slightly silty slightly gravelly s nestone, ash and clinker (TO lightly sandy gravel and cobl IND). dark grey and black slightly ngular and subangular ash,	PSOIL).	
												- 5
Remarks 1. Refus	s: al of samplin	g equipmer	nt at 1.0n	n depth.				D - B - ES SF	Small disturbed sample Small disturbed sample Lervironmental soil sample - Environmental soil sample - Standard Penetration Test (split spr - Standard Penetration Test (solid co	W - Water sample U - Undisturbed sample TCR - Total Core Recove son) SCR - Solid Core Recov ne) RQD - Rock Quality Desi	ery AUD	

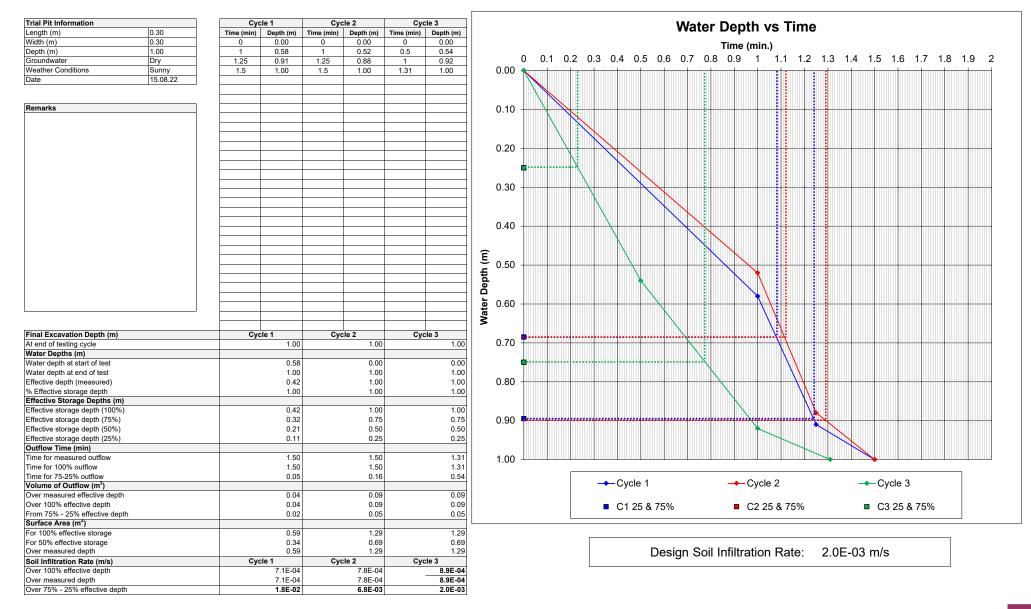
	Intégra echnique	Castlegat Caerphilly Tel. 029 2 Fax. 029	e Busines / CF83 2A	X	Project Na Cefn Isa					Project No.: 14067	Borehole No.: WS5 Sheet 1 of 1	
Locatio	on:	man@inte	graigeoteo	2.0011						Coordinates:	Hole Type:	-
Merthy					Client:	Merth	iyr Valle	eys Ho	omes Ltd		WLS	
Equipme	ent: Com	petitor Da	art		Diameter of	of Casing	g:			Level:	Scale 1:25	
												_
Diamete	r of Boring:	101+	87mm		Depth of C	asing:				Dates 15/08/2022 - 15/08/2022	Logged By: GNS	
Well	Water			& In situ Testi		Depth (m)	Level (m AOD)	Legend		Stratum Description		
		0.50 1.00 1.50		Res	2/2,3,8,6)	(m) 0.40 1.50			Grass onto loose brown Gravel is fine to coarse a limestone (TOPSOIL). Medium dense to dense clayey slightly sandy gra limestone. Gravel is fine	Etratum Description slightly silty slightly gravelly of ingular and subangular brick brown, grey, beige and red b vel and cobbles of angular b to coarse angular and suba ndstone (MADE GROUND). "End of Borehole at 1.50 m"	, ash, clinker and	2
Remarks 1. Refusa	: al of sampling	equipmer	nt at 1.5n	n depth.				B - ES SP	y: Small disturbed sample Bulk disturbed sample - Environmental soil sample T - Standard Penetration Test (solid cc - Standard Penetration Test (solid cc		ery AUD	;

	Intégra	Intégral H Castlegat	louse, 7 Be te Business y CF83 2A)	ddau Way Park	Project Na					Project No.:	Borehole No.:
Géot	echniqu	Caerphilly Tel. 029 2	y CF83 2A) 20807991	K	Cefn Isa	f				14067	WS6
0000	ooninqu	Fax. 029 mail@inte	20862176 egralgeotec	c.com							Sheet 1 of 1
Locati	on:				Client:	Morth	vr Vall	ove Ho	mes Ltd	Coordinates:	Hole Type:
Merthy	/r Tydfil				Cheffic.	INCI UI	yi van	eys 110			WLS
Equipm	ent: Com	petitor Da	art		Diameter o	f Casin	n .			Level:	Scale
Lquipin	ent. Com		ai t		Diameter	rCasinį	J.			Level.	1:25
Diamete	er of Boring:	101+	87mm		Depth of C	asina:				Dates	Logged By:
						-				15/08/2022 - 15/08/2022	GNS
Well	Water Strikes			& In situ Testi Res		Depth (m)	Level (m AOD)	Legend		Stratum Description	
Well		Depth (m)		N=9 (1,2 50 (9,11/50	<u>ults</u> /3,2,2,2)		Level (m AOD)		is fine and medium subr (TOPSOIL). Loose light brown silty s cobbles of rounded to su Gravel is fine to coarse i Loose dark grey and bla Gravel is fine to coarse a slag, brick, ceramic and	silty slightly gravelly organic ounded sandstone and rare a	ash and brick htly gravelly glomerate. SROUND). varely sand. clinker, vesicular GROUND). 1 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
											5
Remarks	s:						•	Key		W - Water comple	
1. Refus	al of samplin	g equipmer	nt at 1.9m	n depth.				В - В	mall disturbed sample ulk disturbed sample	W - Water sample U - Undisturbed sample	
								SPT	Environmental soil sample - Standard Penetration Test (split sp - Standard Penetration Test (solid c	TCR - Total Core Recove boon) SCR - Solid Core Recove one) RQD - Rock Quality Desi	ery AUO

APPENDIX B

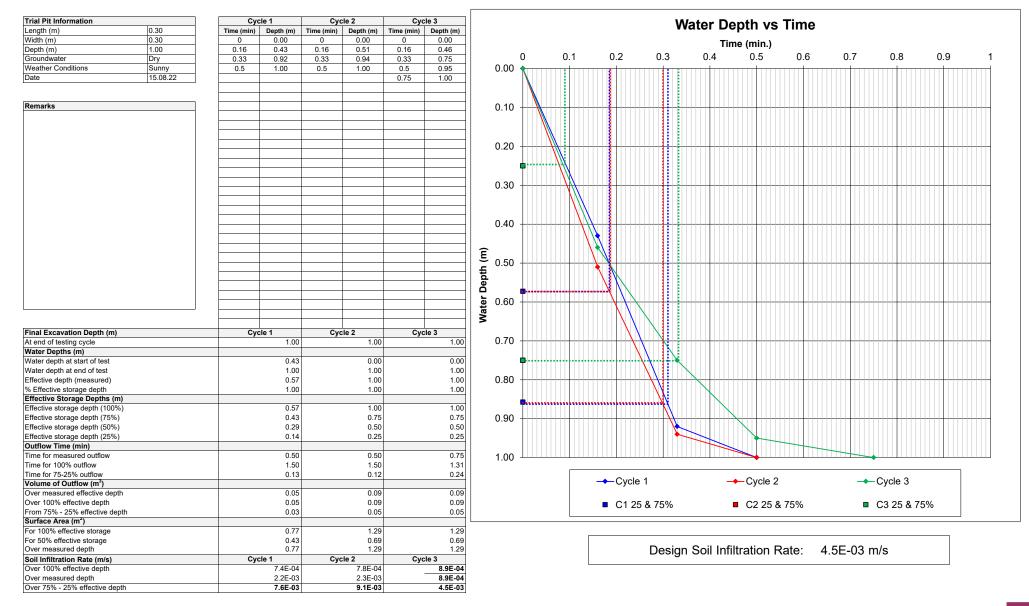
HAND EXCAVATED TRIAL PIT LOGS

Inté	óaral	Intégral House, 7 Beddau Wa Castlegate Business Park	ау	Project	Name:		Project No.:	Trial Pit No.:
Géotechr	nique	Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176		Cefn	lsaf		14067	HP1
		mail@integralgeotec.com						Sheet 1 of 1
Location:				Client	: Mer	thyr Valleys Homes Ltd	Logged By:	Scale
Merthyr Tyo	dfil						GNS	1:25
Equipment:	Hand ⁻	Tools		Coordir	nates:		Dimensions	0.30m
Date Excavate	ed: ´	15/08/2022		Level:			Depth : E	
		-situ Testing	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
Depth (m)	Туре	Results	(11)	(III AOD)		Grass onto loose brown slightly slity slightly gra	velly sand. Gravel is fine to	coarse angular
						limestone, ash and clinker (TOPSOIL).		-
								- -
			0.40			Dense grey and brown slightly sandy gravel and	d cobbles of angular limesto	ne (MADE
			0.60			GROUND).		-
			0.00			Loose to medium dense dark grey and black sli coarse angular and subangular ash, clinker, sar	ghtly silty sandy gravel. Gra ndstone and limestone (MAI	avel is fine to DE GROUND)
								-
			4.00					-
			1.00			End of Trial	it at 1.00 m	+1
								- -
								-
								-
								-
								-
								-
								- 2
								-
								-
								-
								-
								-
								- -
								-
								- 3
								-
								-
								-
								-
								- 4
								-
								-
								-
								- -
								-
								- 5
Remarks:				Groundwa	ter:	Dry	Key:	
1. Pit excavated	d by han	d using hand tools to 1.		a			D - Small disturbed sampl	
depth. 2. Soil infiltratio	on test ur	ndertaken in pit.	s	stability:	Stable	e in the short term	B - Bulk disturbed sample ES - Environmental soil sa W - Water sample	


Int	lágral	Intégral House, 7 Beddau Wa Castlegate Business Park	ay	Project	Name:		Project No.:	Trial Pit No.:
Géotech	nique	Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176		Cefn	lsaf		14067	HP2
		mail@integralgeotec.com						Sheet 1 of 1
Location:				Client	: Mer	thyr Valleys Homes Ltd	Logged By:	Scale
Merthyr Ty	yatii						GNS	1:25
Equipment:	Hand	tools		Coordin	nates:		Dimensions	0.30m
Date Excava	ated:	15/08/2022		Level:			Depth : 500 1.00m 600	
Sam Depth (m)	ples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
Deptir (iii)	турс	rtesuits	()	(Grass onto loose brown slightly silty slightly gra	velly organic rich sand. Gra	avel is fine to
						coarse angular and subangular brick, ash, clink		-)
								-
			0.40			Medium dense to dense brown, grey, beige and	red brown slightly clayey s	lightly sandy gravel
						and cobbles of angular brick, concrete and lime subangular brick, ash, clinker, limestone and sa	stone. Gravel is fine to coa	rse angular and
								· · ·
								-
								-
			1.00			End of Trialp	it at 1.00 m	
								-
								-
								-
								-
								-
								-
								-
								i a
								- 2
								-
								-
								-
								-
								-
								-
								-
								- 3
								-
								-
								-
								- - -
								ŀ
								È
								Ē
								ļ
								- 4
								Ę
								ŀ
								Ę
								-
								ŀ
								Ę
								Ē
								- 5
Remarks:			[c	Groundwa	ter:	Dry	Key:	
1. Pit excavate	ed by han	id using hand tools to 1.					D - Small disturbed sampl B - Bulk disturbed sample	
depth. 2. Soil infiltrati	ion test ur	ndertaken in pit.	5	Stability:	Stabl	e in the short term	ES - Environmental soil sa W - Water sample	ample AGS

APPENDIX C

SOIL INFILTRATION TESTS


BRE365 SOIL INFILTRATION RATE TEST - HP1

14067 Cefn Isaf, Merthyr Tydfil

BRE365 SOIL INFILTRATION RATE TEST - HP2

14067 Cefn Isaf, Merthyr Tydfil

Intégral Géotechnique APPENDIX D

LABORATORY CHEMICAL TEST RESULTS (SOILS)

Gary Shawley Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 f: 02920862176 e: gary@integralgeotec.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 22-78759

Project / Site name:	MERTHYR TYOFIL	Samples received on:	19/08/2022
Your job number:	14067	Samples instructed on/ Analysis started on:	19/08/2022
Your order number:	14067 UNI	Analysis completed by:	29/08/2022
Report Issue Number:	1	Report issued on:	29/08/2022
Samples Analysed:	6 soil samples		

Nortyme dengin Signed:

Martyna Langer Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

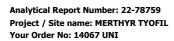
soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-78759 Project / Site name: MERTHYR TYOFIL Your Order No: 14067 UNI

Lab Sample Number				2393276	2393277	2393278	2393279	2393280
Sample Reference				WS1	WS2	WS3	WS4	WS5
Sample Number				None Supplied				
Depth (m)				0.40	0.30	0.40	0.65	0.50
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	5 0.1	NONE	3.6	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.1	NONE	3	7.1	8.5	< 0.1 8.5	< 0.1 6.5
	kg	0.001	NONE	-				
Total mass of sample received	Ng	0.001	NONE	0.5	0.5	0.5	0.5	0.5
Ashastas in Cail	Tunc	N/A	ISO 17025	Not dotosts d	Not dotosts d	Not dotoots d	Not dotosts d	Not-detected
Asbestos in Soil	Type N/A	N/A N/A	N/A	Not-detected	Not-detected	Not-detected	Not-detected	
Asbestos Analyst ID	N/A	11/7	N/A	JSW	JSW	JSW	JSW	JSW
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.4	8.2	9	8.4	8.4
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	210	200	750	590	1400
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.01	0.067	0.29	0.0067	0.013
Sulphide	mg/kg	1	MCERTS	93	18	4.2	3.8	2.2
Total Sulphur	mg/kg	50	MCERTS	440	250	380	410	670
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.4	0.6	0.9	5	1.5
Loss on Ignition @ 450oC	%	0.2	MCERTS	1.1	2.1	3.7	20.8	4.6
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.35	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.1
Phenanthrene	mg/kg	0.05	MCERTS	1.4	< 0.05	< 0.05	1	8.9
Anthracene	mg/kg	0.05	MCERTS	0.35	< 0.05	< 0.05	< 0.05	2.2
Fluoranthene	mg/kg	0.05	MCERTS	2.3	< 0.05	< 0.05	0.3	12
Pyrene	mg/kg	0.05	MCERTS	1.7	< 0.05	< 0.05	0.23	7.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.7	< 0.05	< 0.05	0.23	8.2
Chrysene	mg/kg	0.05	MCERTS	1.4	< 0.05	< 0.05	0.63	6
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.6	< 0.05	< 0.05	< 0.05	6.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.72	< 0.05	< 0.05	< 0.05	2.9
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05	< 0.05	5.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.5	< 0.05	< 0.05	< 0.05	2.8
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.56	< 0.05	< 0.05	< 0.05	2.8
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	13.3	< 0.80	< 0.80	2.78	68.6
openated 10th E1/1 10 17110	5, 9			1.1.1	× 0.00	< 0.00	2.70	00.0



Analytical Report Number: 22-78759 Project / Site name: MERTHYR TYOFIL Your Order No: 14067 UNI

Lab Sample Number				2393276	2393277	2393278	2393279	2393280
Sample Reference				WS1	WS2	WS3	WS4	WS5
Sample Number				None Supplied				
Depth (m)				0.40	0.30	0.40	0.65	0.50
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	•				-		-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.9	7.5	9.1	21	13
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.14	0.4	0.48	1	0.7
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.5	0.7	0.4	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	2.1
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	6.8	8.7	12	12	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	6.5	13	16	40	33
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	26	28	46	120
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	0.5	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.6	13	14	24	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	8.6	12	18	21	20
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	34	48	53	58	160

U/S = Unsuitable Sample I/S = Insufficient Sample

Lab Sample Number	2393281			
Sample Reference	WS6			
Sample Number	None Supplied			
Depth (m)	0.50			
Date Sampled				Deviating
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	18
Total mass of sample received	kg	0.001	NONE	0.3
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	JSW

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.6
Total Cyanide	mg/kg	1	MCERTS	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	700
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.028
Sulphide	mg/kg	1	MCERTS	2.1
Total Sulphur	mg/kg	50	MCERTS	480
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	4.4
Loss on Ignition @ 450oC	%	0.2	MCERTS	22.8

Total Phenols

	Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
--	----------------------------	-------	---	--------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.62
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.34
Pyrene	mg/kg	0.05	MCERTS	0.33
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.53
Chrysene	mg/kg	0.05	MCERTS	0.53
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.58
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.27
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.36
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.56

Lab Sample Number	2393281			
Sample Reference	WS6			
Sample Number	None Supplied			
Depth (m)				0.50
Date Sampled				Deviating
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Accreditation Status			
Heavy Metals / Metalloids				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12
Copper (aqua regia extractable)	mg/kg	1	MCERTS	44
Lead (aqua regia extractable)	mg/kg	1	MCERTS	120
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	24
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	56

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2393276	WS1	None Supplied	0.4	Grey clay and sand with gravel and stones.
2393277	WS2	None Supplied	0.3	Brown sandy clay with gravel.
2393278	WS3	None Supplied	0.4	Brown sandy clay with gravel.
2393279	WS4	None Supplied	0.65	Brown loam and sand with gravel and clinker
2393280	WS5	None Supplied	0.5	Brown loam and clay with gravel.
2393281	WS6	None Supplied	0.5	Brown loam and sand with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

|--|

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis.Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID			Sample Deviation	Test Name	Test Ref	Test Deviation
WS1	None Supplied	S	2393276	а	None Supplied	None Supplied	None Supplied
WS2	None Supplied	S	2393277	а	None Supplied	None Supplied	None Supplied
WS3	None Supplied	S	2393278	а	None Supplied	None Supplied	None Supplied
WS4	None Supplied	S	2393279	а	None Supplied	None Supplied	None Supplied
WS5	None Supplied	S	2393280	а	None Supplied	None Supplied	None Supplied
WS6	None Supplied	S	2393281	а	None Supplied	None Supplied	None Supplied

APPENDIX E

LABORATORY GEOTECHNICAL TEST RESULTS

Results Summary

Apex Testing Solutions Limited Sturmi Way Village Farm Industrial Estate Pyle Bridgend CF33 6BZ

Telephone: 01656 746762 E-mail: <u>andrew.grogan@apex-drilling.com</u> laura.davis@apex-drilling.com

Reporting Details		Key Information	
Company Name:	Integral Geotechnique	Site Name:	Merthyr
Address:	7 Beddau Way	Job Number:	D22415
	Castlegate Business Park	Date Received:	01/09/2022
	Caerphilly	Job Coordinator:	A. Grogan
	CF83 2AX		
Contact Name:	Gary		
Contact Number:			

of Tests
01 16212
2 1 1
personnel UKAS

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528777 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Apex Testing Solutions Limited Sturmi Way Village Farm Industrial Estate Pyle Bridgend CF33 6BZ

Attention: Andrew Grogan

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 12 September 2022 Apex Testing Solutions Limited 220906-31 D22415 Merthyr 660940 ATS1712

We received 2 samples on Tuesday September 06, 2022 and 2 of these samples were scheduled for analysis which was completed on Monday September 12, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results. The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.3 Version Issued: 12/09/2022

Report Number: 660940 Location: Merthyr Superseded Report:

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26831867	WS1		1.00 - 1.10	02/09/2022
26831872	WS3		3.80 - 3.90	02/09/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

Superseded Report:

(ALS)	SDG: Client Ref.:	220906-31 D22415			Rep	ort Number: Location:		
Results Legend X Test N No Deterr	nination	Lab Sample I	No(s)	26831867	26831872			
Possible Sample Types - S - Soil/Solid			Customer Sample Reference					
S - Soli/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage		AGS Reference						
		Depth (m	1.00 - 1.10	3.80 - 3.90				
RE - Recreational Wa DW - Drinking Water No UNL - Unspecified Lic SL - Sludge G - Gas OTH - Other	n-regulatory	Containe	r	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)			
		Sample Type			S			
Anions by Kone (soil)		All	NDPs: 0 Tests: 2	x	x			
рН		All	NDPs: 0 Tests: 2	x	x			
Sample description		All	NDPs: 0 Tests: 2	x	x			

Report Number: 660940 Location: Merthyr Superseded Report:

Validated

Sample Descriptions

Grain Sizes																
very fine	<0.	063mm	fine	0.06	3mm - 0.1mm	me	edium	0.1mm	n - 2mm	coars	e	2mm - 1	0mm	very coa	rse	>10mm
Lab Sample	No(s)	Custom	ner Sample Ro	ef.	Depth (m)	Ī	Co	lour	Descript	tion	Incl	usions	Inclu	usions 2	1	
2683186	7		WS1		1.00 - 1.10		Light	Brown	Sandy Silt	Loam	S	tones	Ve	getation		
2683187	2		WS3		3.80 - 3.90		Dark	Brown	Loamy S	and	S	tones	Ve	getation		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

S Client F	31	Report Number: 660940 Superseded Report: Location: Merthyr						
Results Legend SO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fill Discover/ filtered sample. totunfilt Total / unfiltered sample. Subcontracted - refer to subcontractor report fo accreditation status. * % recovery of the surrogate standard to check t efficiency of the method. The results of individu	r	ustomer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time Date Received	WS1 1.00 - 1.10 Soli/Solid (S) 02/09/2022 06/09/2022	WS3 3.80 - 3.90 Soil/Solid (S) 02/09/2022				
compounds within samples aren't corrected for recovery (F) Trigger breach confirmed 1-4+5@ Sample deviation (see appendix) Component Moisture Content Ratio (% of as	the	SDG Ref Lab Sample No.(s) AGS Reference Method PM024	220906-31 26831867 8.2	220906-31 26831872 83				
received sample) pH	1 pH Units	TM133	7.8	9.09				
Water Soluble Sulphate as SO4 2:1	<0.004 g/l	TM243	0.0146					
Extract			М					
	+							

CERTIFICATE OF ANALYSIS Report Number: 660940

Location: Merthyr

Superseded Report:

Table of Results - Appendix

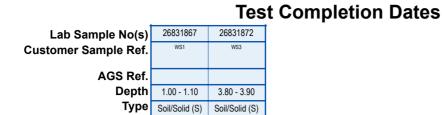
Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM243		Mixed Anions In Soils By Kone

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM).

SDG: 220906-31

Client Ref.: D22415


Superseded Report:

Anions by Kone (soil)

Sample description

pН

12-Sep-2022

08-Sep-2022

07-Sep-2022

Soil/Solid (S)

12-Sep-2022

08-Sep-2022

07-Sep-2022

220906-31 D22415 Report Number: 660940 Location: Merthyr Superseded Report:

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.</p>

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

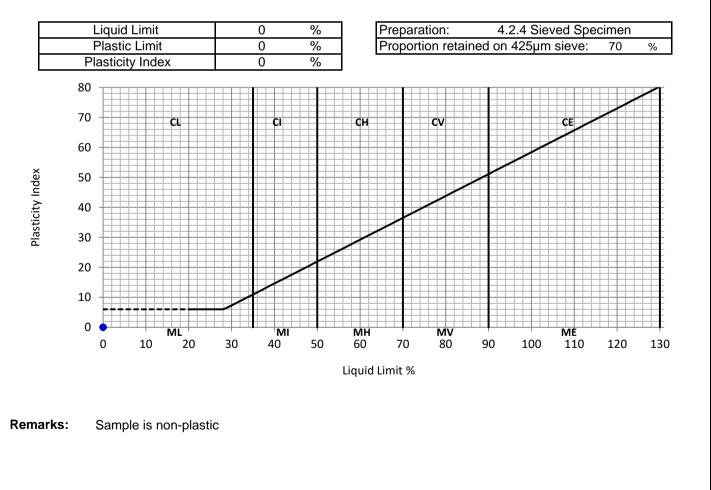
Asbe stos Type	Common Name			
Chrysof le	WhiteAsbestbs			
Amosite	Brow n Asbestos			
Cio d dolite	Blue Asbe stos			
Fibrous Act nolite	-			
Fibious Anthophyllite	-			
Fibrous Tremolite	-			

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.


Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

	TEST	REPORT							
Determination Of Water Content ISO 17892-1: 2014									
Site Ref / Hole ID:	WS1	Depth (m):	1.00						
Sample No:		Sample Type:	Disturbed						
Sampling Certificate Received:	No	Material Descrip	tion: Reddish Brown clayey sandy GRAVEL						
Location in Works:	N/A	Material Source:	Site Gen						
Date Sampled:	Unknown	Material Supplier	r: Site Gen						
Sampled By:	Client	Specification:	BS1377						
Date Received:	01 September 2022	Date Tested:	05 September 2022						
	Moisture Content (%)	12.8							
Remarks:									
QA Ref.	Apex Testing Solutions Sturmi Way, Village Farm Industrial Est,	Approver	Date Fig						
EN ISO 17892- 1:2014 E		G Llewellyn 7771 G Llewellyn	06/09/2022 MC Senior Technician						

		TEST REPORT						
LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX								
	I	BS 1377:Part 2:1990	. Claus	e 4.3/5.3/5.4				
Project No: Project Name:	D22415 Cefn Isaf, Merthyr	Client: Address:	Integral Geo 7 Beddau V	•				
ATS Sample No:	29277		Castlegate Caerphilly CF83 2AX	Business Park				
Site Ref / Hole ID:	WS1	Depth (m):		1.00				
Sample No:		Sample Ty	pe:	Disturbed				
Sampling Certificate Received:	No	Material De	escription:	Reddish Brown clayey sandy GRAVEL				
Location in Works:	N/A	Material So	ource:	Site Gen				
Date Sampled:	Unknown	Material Su	upplier:	Site Gen				
Sampled By:	Client	Specificati	on:	BS1377				
Date Received:	01 September 2022	Date Teste	d:	05 September 2022				

Test Results

QA Ref.	\mathcal{H}	0	Apex Testing Solutions	×.	Approver <i>G Llewellyn</i>	Date 06/09/2022	Fig.
BS1377 - 2	A	2	Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ	UKAS	1 0		ATT
Rev. 3.0			Tel: 01656 746762 Fax: 01656 749096	7771	G Llewellyn, Senior Te	echnician	

APPENDIX F

SUMMARY OF CHEMICAL RESULTS – MADE GROUND

SUMMARY OF LABORATORY SOIL TEST RESULTS

Job No.:14067Site:Cefn Isaf, Merthyr TydfilSoil Type:Made GroundSoil Organic Matter:1%

METALS AND SEMI-METALS

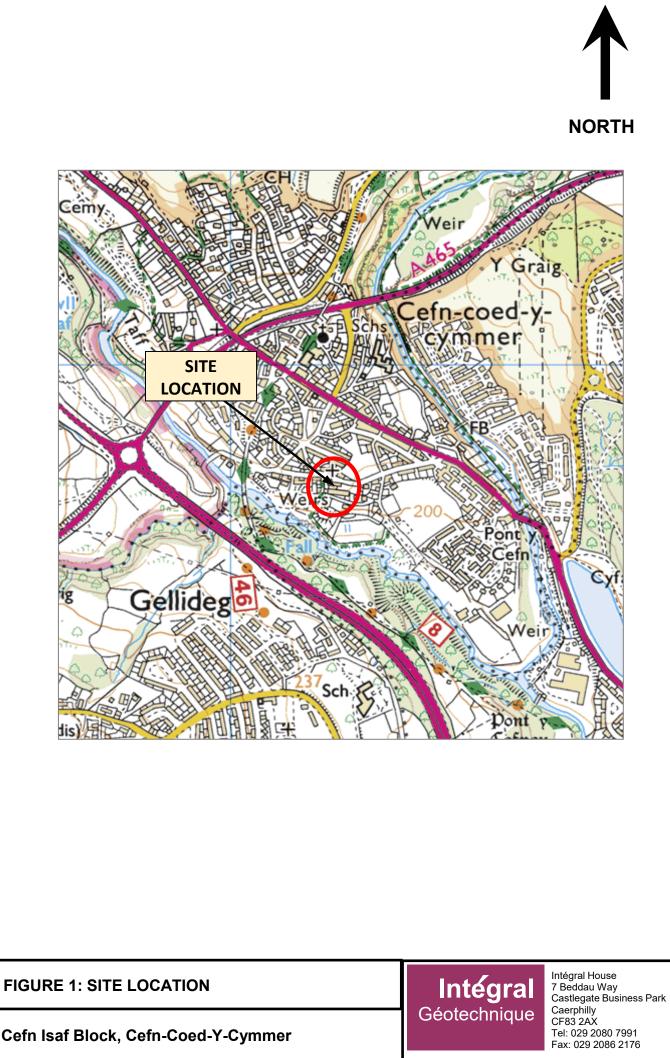
No.	Location	Depth (m)	Arsenic	Boron	Beryllium	Cadmium	Chromium	Chromium (VI)	Copper	Lead	Mercury (Elemental)	Nickel	Selenium	Vanadium	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	WS1	0.40	6.9	< 0.2	0.14	< 0.2	6.8	< 1.8	6.5	38	< 0.3	9.6	< 1.0	8.6	34
2	WS2	0.30	7.5	0.5	0.4	< 0.2	8.7	< 1.8	13	26	< 0.3	13	< 1.0	12	48
3	WS3	0.40	9.1	0.7	0.48	< 0.2	12	< 1.8	16	28	< 0.3	14	< 1.0	18	53
4	WS4	0.65	21	0.4	1	< 0.2	12	< 1.8	40	46	0.5	24	< 1.0	21	58
5	WS5	0.50	13	< 0.2	0.7	2.1	21	< 1.8	33	120	< 0.3	21	< 1.0	20	160
6	WS6	0.50	22	0.6	1.1	< 0.2	12	< 1.8	44	120	0.7	27	< 1.0	24	56
	Scre	ening Criteria Value	37.0	290.0	1.7	11.0	-	6.0	2400.0	200.0	1.2	130.0	250.0	410.0	3700.0
	Source of Scre	ening Criteria Value	S4UL	S4UL	S4UL	S4UL	-	S4UL	S4UL	C4SL	S4UL	S4UL	S4UL	S4UL	S4UL

SUMMARY OF LABORATORY SOIL TEST RESULTS

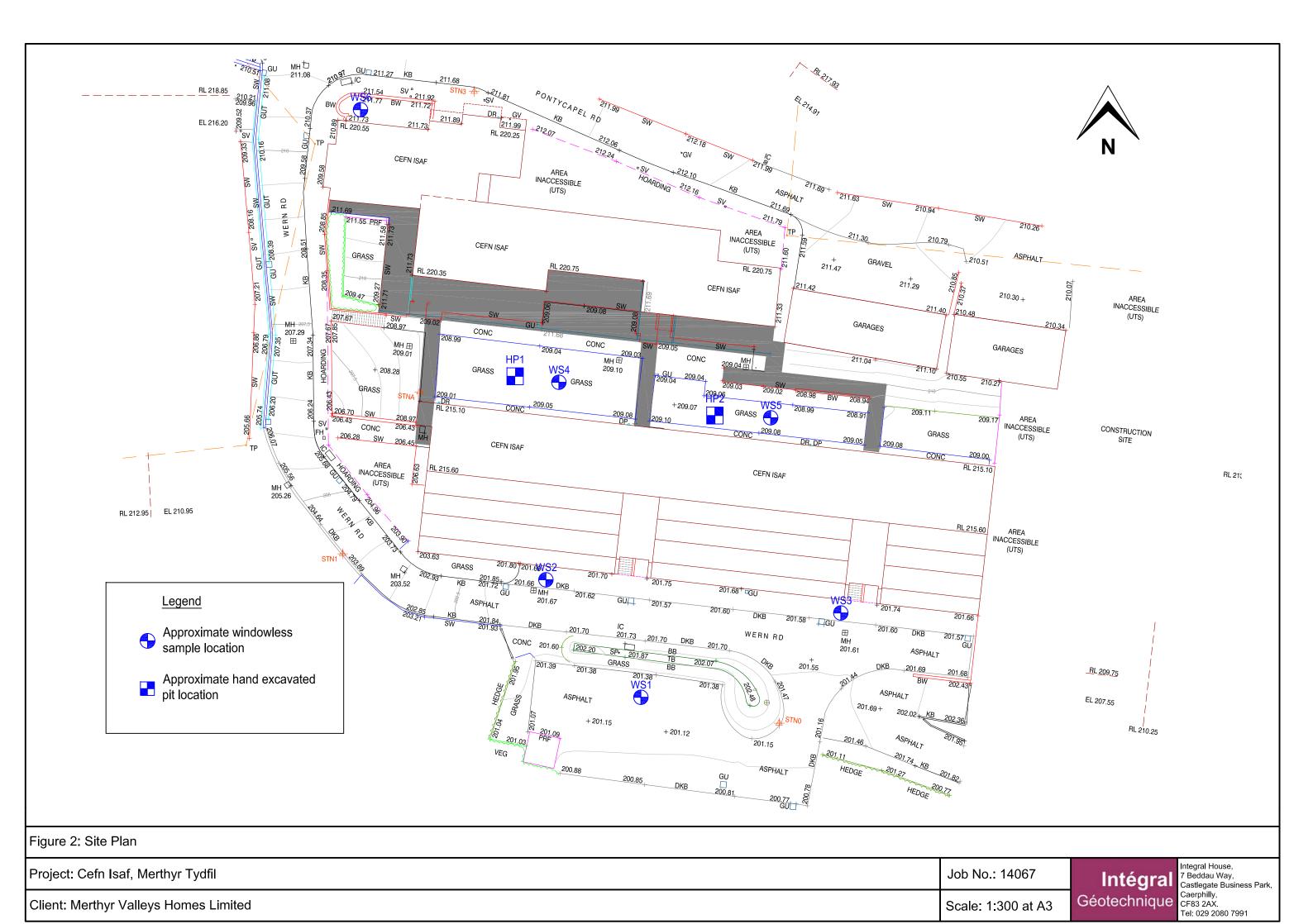
INORGANIC CHEMICALS & OTHERS

Job No.:14067Site:Cefn Isaf, Merthyr TydfilSoil Type:Made GroundSoil Organic Matter:1%

No.	Location	Depth (m)	Cyanide (mg/kg)	Loss on ignition, dried solids (%)	Moisture content at 30 C (%)	Phenol (mg/kg)	pH (pH units)	Water Soluble Sulphate (g/l)	Sulphate Total as SO4 (mg/kg)	Sulphide (mg/kg)	Total Sulphur (mg/kg)	TOC by Ignition in O2 (%)	Equivalent SOM	Asbestos in Soil	Asbestos Quantification (%)
1	WS1	0.40	< 1.0	1.10	3.00	< 1.0	8.40	0.01	210.00	93.00	440.00	0.40	0.69	Not-detected	#N/A
2	WS2	0.30	< 1.0	2.10	7.10	< 1.0	8.20	0.07	200.00	18.00	250.00	0.60	1.03	Not-detected	#N/A
3	WS3	0.40	< 1.0	3.70	8.50	< 1.0	9.00	0.29	750.00	4.20	380.00	0.90	1.55	Not-detected	#N/A
4	WS4	0.65	< 1.0	20.80	8.50	< 1.0	8.40	0.01	590.00	3.80	410.00	5.00	8.60	Not-detected	#N/A
5	WS5	0.50	< 1.0	4.60	6.50	< 1.0	8.40	0.01	1400.00	2.20	670.00	1.50	2.58	Not-detected	#N/A
6	WS6	0.50	< 1.0	22.80	18.00	< 1.0	8.60	0.03	700.00	2.10	480.00	4.40	7.57	Not-detected	#N/A
	Scree	ening Criteria Value	34.0	-	-	120.0	-	-	-	-	-	-	-	-	0.001
	Source of Scree	ening Criteria Value	ATRISK	-	-	S4UL	-	-	-	-	-	-	-	-	IOM


SUMMARY OF LABORATORY SOIL TEST RESULTS

POLYAROMATIC HYDROCARBONS (PAH)


Job No.:14067Site:Cefn Isaf, Merthyr TydfilSoil Type:Made GroundSoil Organic Matter:1%

No	Location	Depth (m)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthra cene	Benzo(a)pyrene	Benzo(b)fluoran thene	Benzo(ghi)peryl ene	Benzo(k)fluoran thene	Chrysene	Dibenzo(ah)anth racene	Fluoranthene	Fluorene	Indeno(123cd)p yrene	Naphthalene	Phenanthrene	Pyrene
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	WS1	0.40	< 0.05	< 0.05	0.35	1.7	1.1	1.6	0.56	0.72	1.4	< 0.05	2.3	< 0.05	0.5	< 0.05	1.4	1.7
2	WS2	0.30	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
3	WS3	0.40	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4	WS4	0.65	< 0.05	< 0.05	< 0.05	0.23	< 0.05	< 0.05	< 0.05	< 0.05	0.63	< 0.05	0.3	< 0.05	< 0.05	0.35	1	0.23
5	WS5	0.50	1	< 0.05	2.2	8.2	5.3	6.9	2.8	2.9	6	1	12	1.1	2.8	< 0.05	8.9	7.8
e	WS6	0.50	< 0.05	< 0.05	< 0.05	0.53	0.36	0.58	< 0.05	0.27	0.53	< 0.05	0.34	< 0.05	< 0.05	< 0.05	0.62	0.33
	So	creening Criteria Value	210.0	170.0	2400.0	7.2	2.2	2.6	320.0	77.0	15.0	0.24	280.0	170.0	27.0	2.3	95.0	620.0
	Source of So	reening Criteria Value	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL

FIGURES

Cefn Isaf Block, Cefn-Coed-Y-Cymmer

Appendix N Consultants Coal Mining Report

Consultants Coal Mining Report

1

Cefn Isaf Flats Wern Road Cefn Coed Merthyr Tydfil Merthyr Tydfil CF48 2RH

Date of enquiry:13 July 2023Date enquiry received:13 July 2023Issue date:13 July 2023

Our reference: Your reference: 51003366801001

Consultants Coal Mining Report

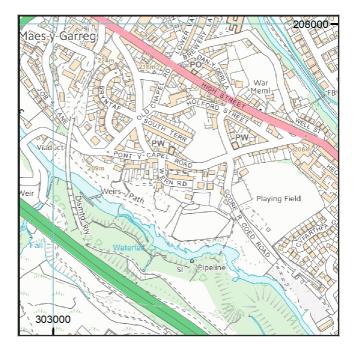
This report is based on and limited to the records held by the Coal Authority at the time the report was produced.

Client name

Soiltechnics Limited

Enquiry address

1 Cefn Isaf Flats Wern Road Cefn Coed Merthyr Tydfil Merthyr Tydfil CF48 2RH


How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International)

200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG

www.groundstability.com

@coalauthority
 in /company/the-coal-authority
 f /thecoalauthority
 /thecoalauthority

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2018. All rights reserved.

Ordnance Survey Licence number: 100020315

Section 1 – Mining activity and geology

Past underground mining

No past mining recorded.

Probable unrecorded shallow workings None.

Spine roadways at shallow depth No spine roadway recorded at shallow depth.

Mine entries None recorded within 100 metres of the enquiry boundary.

Abandoned mine plan catalogue numbers None available.

Outcrops No outcrops recorded.

Geological faults, fissures and breaklines No faults, fissures or breaklines recorded.

Opencast mines None recorded within 500 metres of the enquiry boundary.

Coal Authority managed tips

None recorded within 500 metres of the enquiry boundary.

Section 2 – Investigative or remedial activity

Please refer to the 'Summary of findings' map (on separate sheet) for details of any activity within the area of the site boundary.

Site investigations

None recorded within 50 metres of the enquiry boundary.

Remediated sites

None recorded within 50 metres of the enquiry boundary.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31 October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

None recorded within 500 metres of the enquiry boundary.

Mine water treatment schemes

None recorded within 500 metres of the enquiry boundary.

Section 3 – Licensing and future mining activity

Future underground mining

None recorded.

Coal mining licensing

None recorded within 200 metres of the enquiry boundary.

Court orders

None recorded.

Section 46 notices

No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

Withdrawal of support notices

The property is not in an area where a notice to withdraw support has been given.

The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.

Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Section 4 – Further information

Based on the responses in this report, no further information has been highlighted.

Future development

If development proposals are being considered, technical advice relating to both the investigation of coal and former coal mines and their treatment should be obtained before beginning work on site. All proposals should apply specialist engineering practice required for former mining areas. No development should be undertaken that intersects, disturbs or interferes with any coal or coal mines without first obtaining the permission of the Coal Authority.

MINE GAS: Please note, if there are no recorded instances of mine gas within 500m of the enquiry boundary, this does not mean that mine gas is not present within the vicinity. The Coal Authority Mine Gas data is limited to only those sites where a Mine Gas incident has been recorded. Developers should be aware that the investigation of coal seams, mine workings or mine entries may have the potential to generate and/or displace underground gases. Associated risks both to the development site and any neighbouring land or properties should be fully considered when undertaking any ground works. The need for effective measures to prevent gases migrating onto any land or into any properties, either during investigation or remediation work, or after development must also be assessed and properly addressed. In these instances, the Coal Authority recommends that a more detailed Gas Risk Assessment is undertaken by a competent assessor.

Section 5 – Data definitions

The datasets used in this report have limitations and assumptions within their results. For more guidance on the data and the results specific to the enquiry boundary, please **call us on 0345 762 6848** or **email us at groundstability@coal.gov.uk.**

Past underground coal mining

Details of all recorded underground mining relative to the enquiry boundary. Only past underground workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination, will be included.

Probable unrecorded shallow workings

Areas where the Coal Authority believes there to be unrecorded coal workings that exist at or close to the surface (less than 30 metres deep).

Spine roadways at shallow depth

Connecting roadways either, working to working, or, surface to working, both in-seam and cross measures that exist at or close to the surface (less than 30 metres deep), either within or within 10 metres of the enquiry boundary.

Mine entries

Details of any shaft or adit either within, or within 100 metres of the enquiry boundary including approximate location, brief treatment details where known, the mineral worked from the mine entry and conveyance details where the mine entry has previously been sold by the Authority or its predecessors British Coal or the National Coal Board.

Abandoned mine plan catalogue numbers

Plan numbers extracted from the abandoned mines catalogue containing details of coal and other mineral abandonment plans deposited via the Mines Inspectorate in accordance with the Coal Mines Regulation Act and Metalliferous Mines Regulation Act 1872. A maximum of 9 plan extents that intersect with the enquiry boundary will be included. This does not infer that the workings and/or mine entries shown on the abandonment plan will be relevant to the site/property boundary.

Outcrops

Details of seam outcrops will be included where the enquiry boundary intersects with a conjectured or actual seam outcrop location (derived by either the British Geological Survey or the Coal Authority) or intersects with a defined 50 metres buffer on the coal (dip) side of the outcrop. An indication of whether the Coal Authority believes the seam to be of sufficient thickness and/or quality to have been worked will also be included.

Geological faults, fissures and breaklines

Geological disturbances or fractures in the bedrock. Surface fault lines (British Geological Survey derived data) and fissures and breaklines (Coal Authority derived data) intersecting with the enquiry boundary will be included. In some circumstances faults, fissures or breaklines have been known to contribute to surface subsidence damage as a consequence of underground coal mining.

Opencast mines

Opencast coal sites from which coal has been removed in the past by opencast (surface) methods and where the enquiry boundary is within 500 metres of either the licence area, site boundary, excavation area (high wall) or coaling area.

Coal Authority managed tips

Locations of disused colliery tip sites owned and managed by the Coal Authority, located within 500 metres of the enquiry boundary.

Site investigations

Details of site investigations within 50 metres of the enquiry boundary where the Coal Authority has received information relating to coal mining risk investigation and/or remediation by third parties.

Remediated sites

Sites where the Coal Authority has undertaken remedial works either within or within 50 metres of the enquiry boundary following report of a hazard relating to coal mining under the Coal Authority's Emergency Surface Hazard Call Out procedures.

Coal mining subsidence

Details of alleged coal mining subsidence claims made since 31 October 1994 either within or within 50 metres of the enquiry boundary. Where the claim relates to the enquiry boundary confirmation of whether the claim was accepted, rejected or whether liability is still being determined will be given. Where the claim has been discharged, whether this was by repair, payment of compensation or a combination of both, the value of the claim, where known, will also be given.

Details of any current 'Stop Notice' deferring remedial works or repairs affecting the property/site, and if so the date of the notice.

Details of any request made to execute preventative works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991. If yes, whether any person withheld consent or failed to comply with any request to execute preventative works.

Mine gas

Reports of alleged mine gas emissions received by the Coal Authority, either within or within 500 metres of the enquiry boundary that subsequently required investigation and action by the Coal Authority to mitigate the effects of the mine gas emission. Please note, if there are no recorded instances of mine gas reported, this does not mean that mine gas is not present within the vicinity. The Coal Authority Mine Gas data is limited to only those sites where a Mine Gas incident has been recorded.

Mine water treatment schemes

Locations where the Coal Authority has constructed or operates assets that remove pollutants from mine water prior to the treated mine water being discharged into the receiving water body.

These schemes are part of the UK's strategy to meet the requirements of the Water Framework Directive. Schemes fall into 2 basic categories: Remedial – mitigating the impact of existing pollution or Preventative – preventing a future pollution incident.

Mine water treatment schemes generally consist of one or more primary settlement lagoons and one or more reed beds for secondary treatment. A small number are more specialised process treatment plants.

Future underground mining

Details of all planned underground mining relative to the enquiry boundary. Only those future workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination will be included.

Coal mining licensing

Details of all licenses issued by the Coal Authority either within or within 200 metres of the enquiry boundary in relation to the under taking of surface coal mining, underground coal mining or underground coal gasification.

Court orders

Orders in respect of the working of coal under the Mines (Working Facilities and Support) Acts of 1923 and 1966 or any statutory modification or amendment thereof.

Section 46 notices

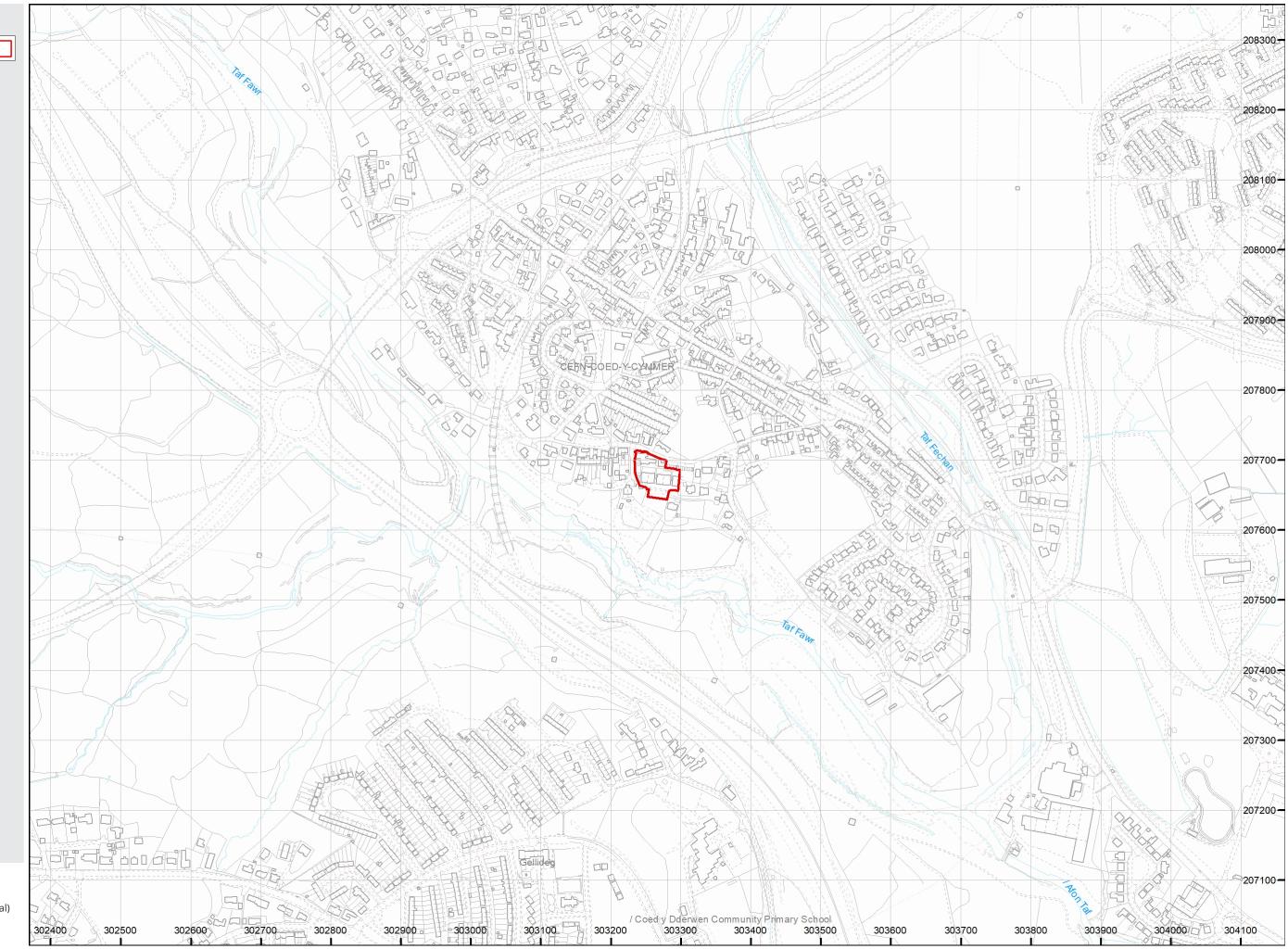
Notice of proposals relating to underground coal mining operations that have been given under section 46 of the Coal Mining Subsidence Act 1991.

Withdrawal of support notices

Published notices of entitlement to withdraw support and the date of the notice. Details of any revocation notice withdrawing the entitlement to withdraw support given under Section 41 of the Coal Industry Act 1994.

Payment to owners of former copyhold land

Relevant notices which may affect the property and any subsequent notice of retained interests in coal and coal mines, acceptance or rejection notices and whether any compensation has been paid to a claimant.

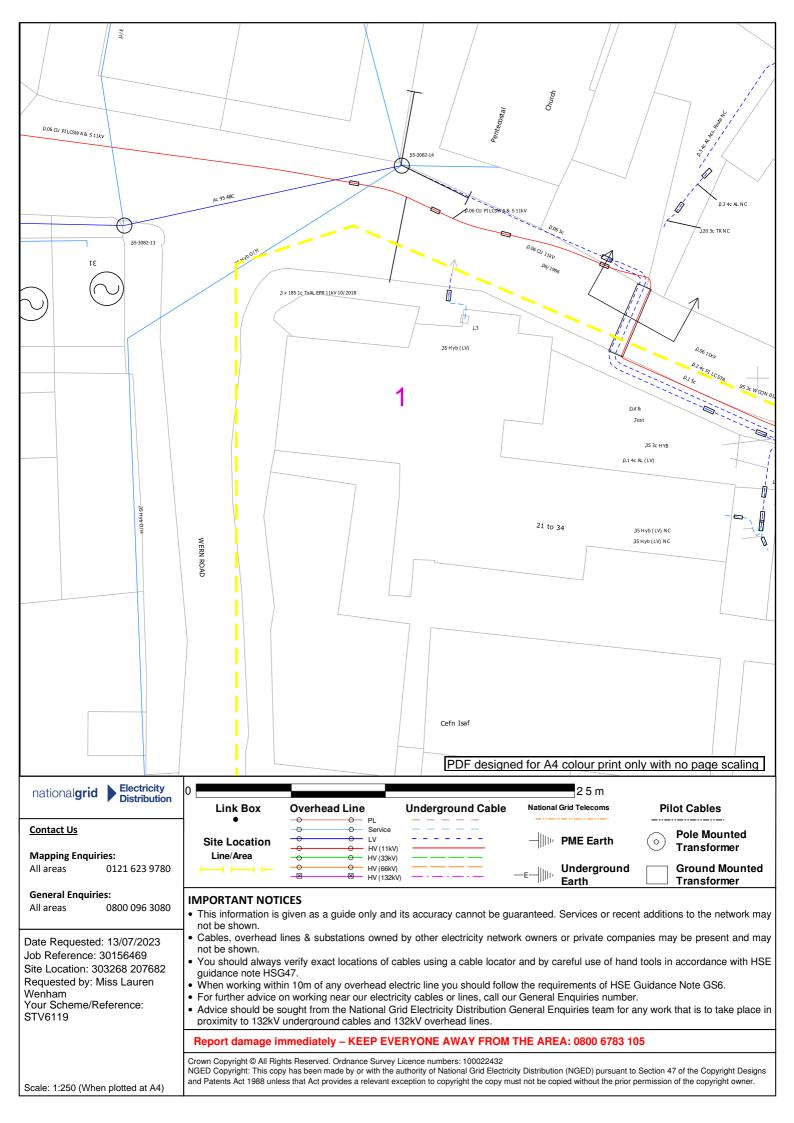


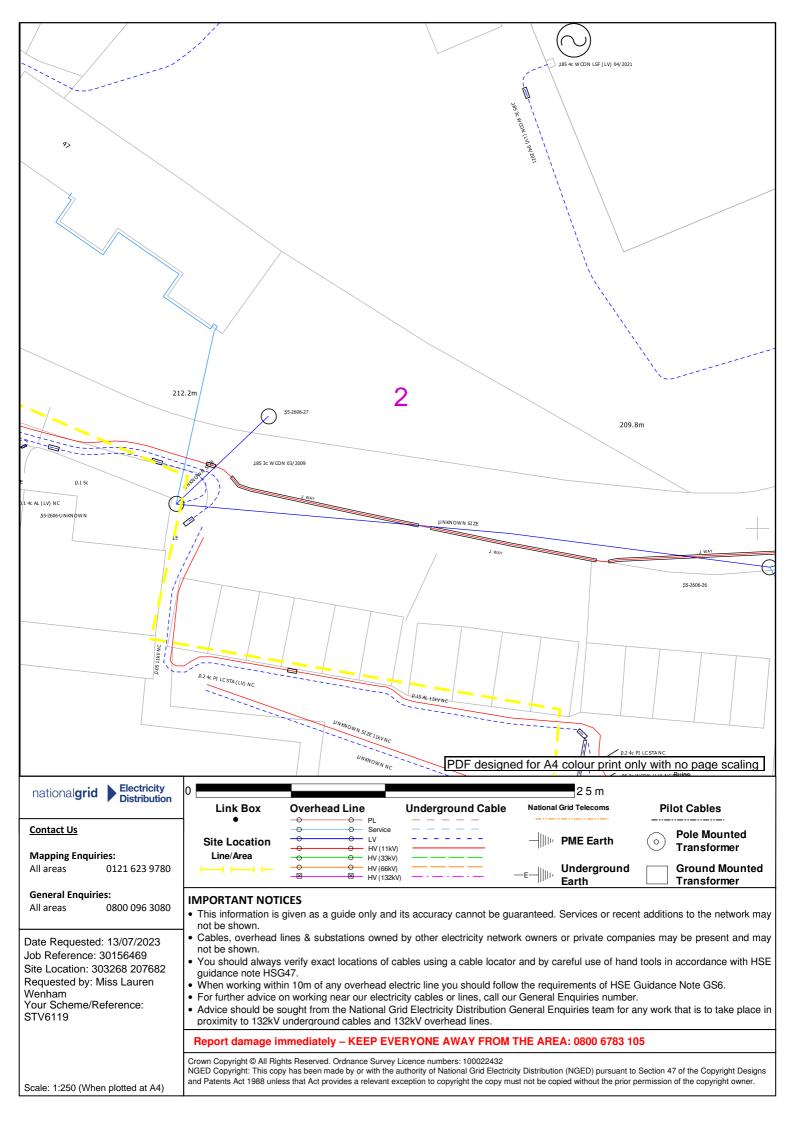
Summary of findings

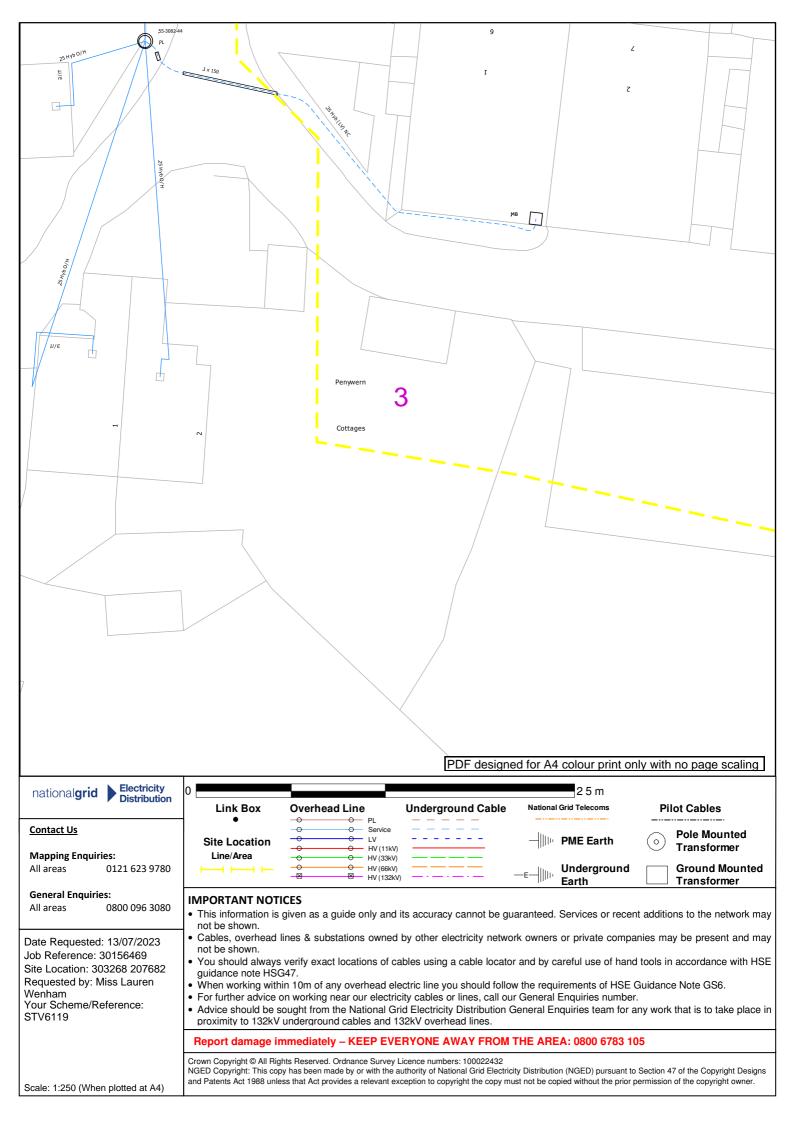
The map highlights any specific surface or subsurface features within or near to the boundary of the site.

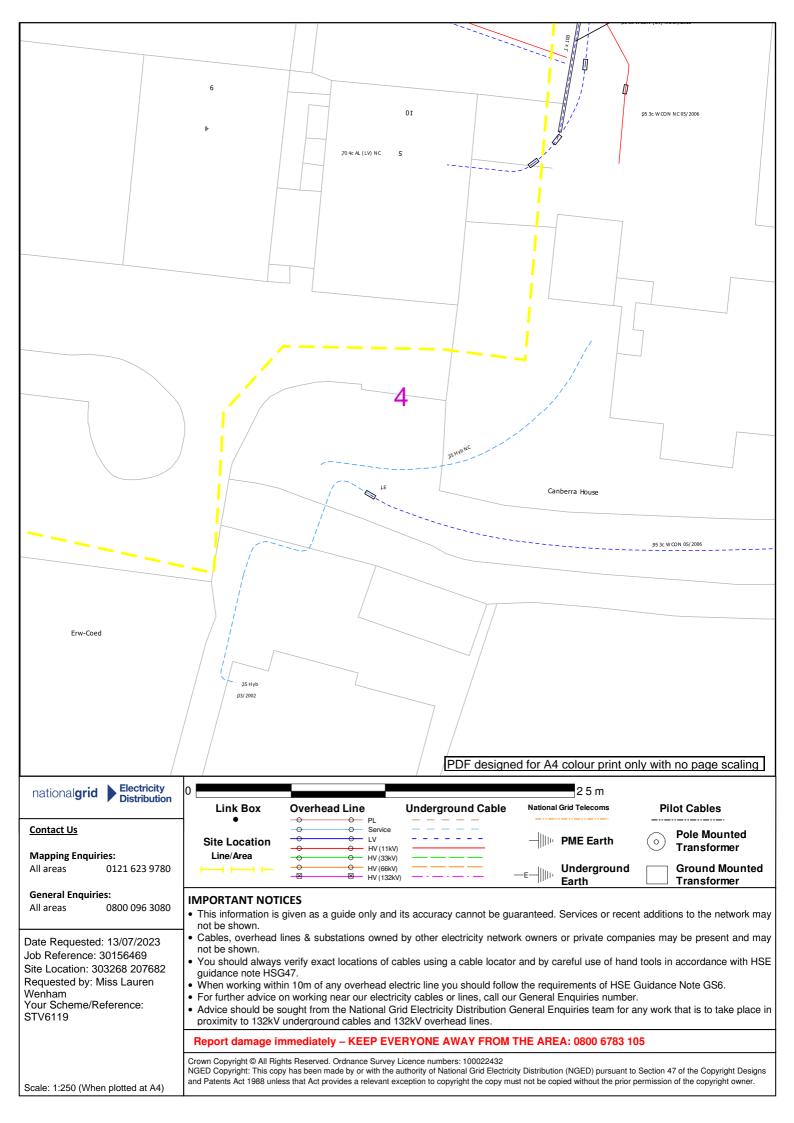
Approximate position of the enquiry boundary shown

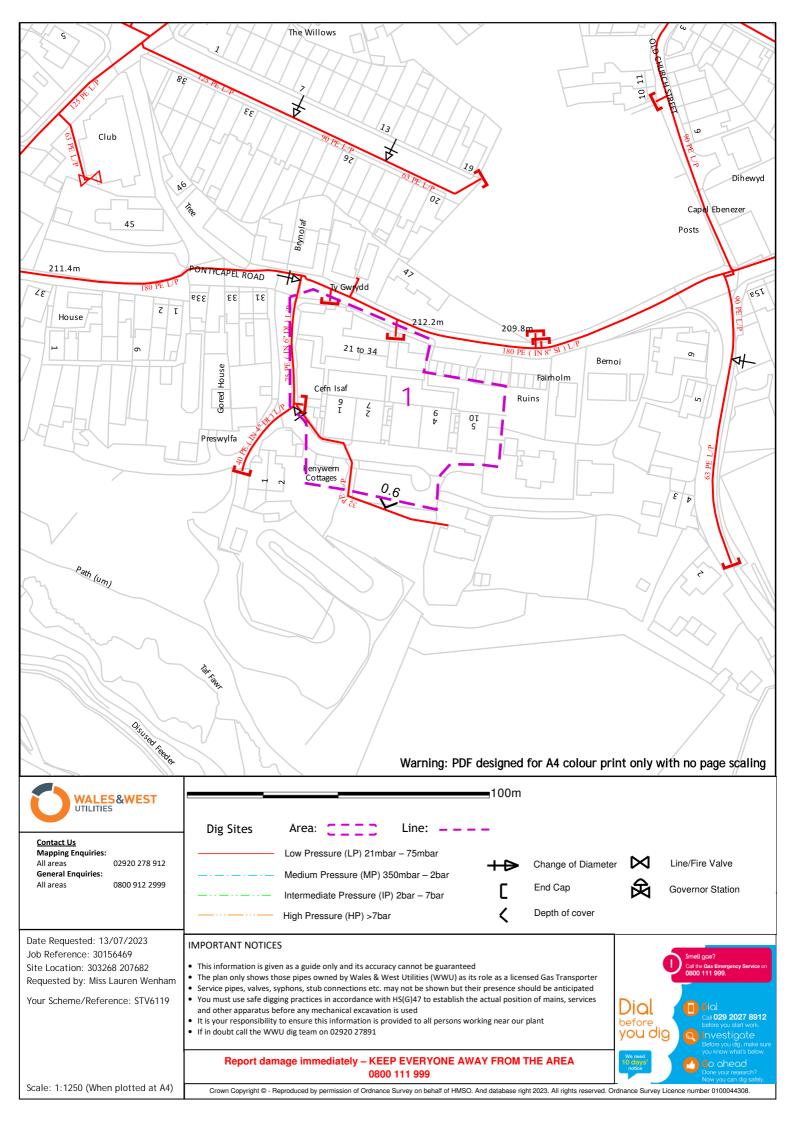
How to contact us

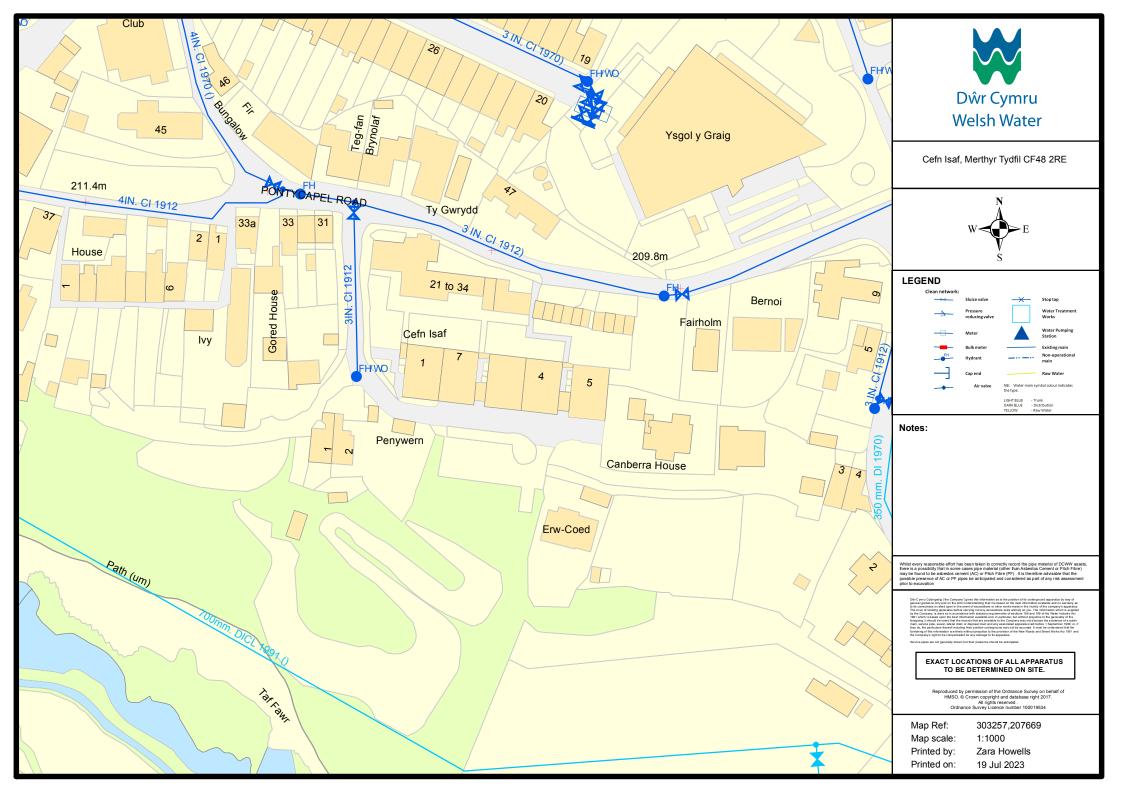

0345 762 6848 (UK) +44 (0)1623 637 000 (International) www.groundstability.com

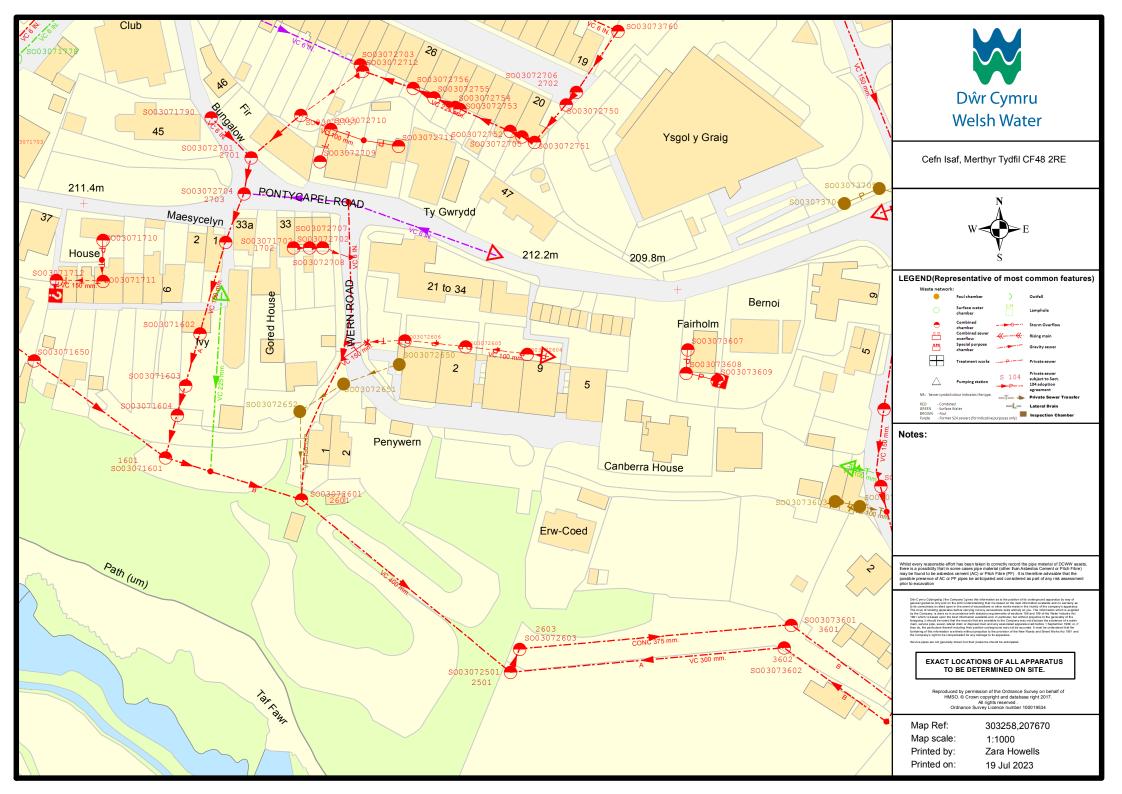





Appendix O Utility Service Plans


	1		212/2m 212/2m ap of wo 6 b Erw-Coed	2 rksite	209.8m
	\times		/ /		
	<u> </u>		PDF designed	tor A4 colour print on	ly with no page scaling
	Link Box	Overhead Line	Underground Cable	National Grid Telecoms	Pilot Cables
national grid			Underground Cable		
Contact Us	Site Location	O Service V O HV (11kV) O HV (33kV)			Oracle Pole Mounted Transformer
Mapping Enquiries: All areas 0121 623 9780		→ HV (33kV) → HV (66kV) → HV (132kV	ŋ <u> </u>	─E───────────────────────────────────	Ground Mounted Transformer
	IMPORTANT NOT	CES			
General Enquiries: All areas 0800 096 3080 • This information is given as a guide only and its accuracy cannot be guaranteed. Services or recent additions to the not be shown. • Cables, overhead lines & substations owned by other electricity network owners or private companies may be presented.				t additions to the network may	
				nies may be present and may	
 Cables, overhead lines & substations owned by other electricity networks of the shown. You should always verify exact locations of cables using a cable loca guidance note HSG47. When working within 10m of any overhead electric line you should foll For further advice on working near our electricity cables or lines, call of the shown. 					
			ables using a cable locator	and by careful use of hand	tools in accordance with HSE
			ectric line you should follow	the requirements of USE C	Guidance Note GS6
			city cables or lines. call our	General Enguirements of HSE G	
Wenham	 Advice should be s 	ought from the National Gr	id Electricity Distribution Ge		ny work that is to take place in
Your Scheme/Reference: STV6119	proximity to 132kV	underground cables and 1	32kV overhead lines.		
		Report damage imme	diately – KEEP EVERY 0800 6783 105	ONE AWAY FROM THE	AREA
	Crown Copyright © All Rig	hts Reserved. Ordnance Survey L	icence numbers: 100022432		
Scale: 1:513 (When plotted at A4)	NGED Copyright: This cop	y has been made by or with the a	uthority of National Grid Electricity	v Distribution (NGED) pursuant to t not be copied without the prior p	Section 47 of the Copyright Designs ermission of the copyright owner.





Enquiry Confirmation LSBUD Ref: 30156469

Enquirer				
Name	Miss Lauren Wenham	Phone	01604 781877	
Company	Soiltechnics Ltd	Mobile	Not Supplied	
Address	Cedar Barn Cedar Barn White Lodge Walgrave Northamptonshire NN6 9PY			
Email	admin@soiltechnics.net			

Enquiry Details		Site Map
Enquiry type	Planned Works	
Work category	Development Projects	South Terrace cefn coed club
Work type	Piling	cefn coed club
Work type buffer*	150 metres	Vsgol V Graig
Start date	14/07/2023	Community Primary
End date	14/07/2023	Pomycapel Rd
Scheme/Reference	STV6119	
Search location	XY= 303257, 207669	
Confirmed location	303268 207682	The Road
Site size	3392 metres square	
Site Contact Name	Rosie Dean - Soiltechnics Limited	
Site Phone No.	01604781877	
Description of Works	Rotary boreholes and mechanically excavated trial pits	Please note that the above map only displays the location of the proposed work site and will not display any of the Members' pipes and cables. It is imperative that this area accurately reflects the proposed work site.
* The WORK TYPE BUFFED is	a distance added to your search area based on the Work type you	_

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Affected LSBUD members					
(LSBUD Members who have assets registered on LSBUD within the vicinity of your search area.)					
Asset Owner	Phone/Email	Emergency Only	Status		
National Gas Transmission	08009707000	0800111999	Await response		
National Grid Electricity Distribution	08000963080	08006783105	Await response		
Wales and West Utilities	02920278912	0800111999	Await response		

Status explanation

Await Response means that the asset owner will contact you. This is typically by sending the plan response but they may ask for further information before being able to do so, particularly if any payments or authorisations are required.

Email Additional Info means that the asset owner needs further information about your works to assess your enquiry before providing a response. Please provide any details you have available including plans, method statements etc. if available.

Important notices

It is very important that you correctly understand what the service does and the procedures in order for you to work safely. Please refer to the LSBUD Support Page (www.lsbud.co.uk/linesearchbeforeudig-support) for further guidance. This information includes how to provide additional information to the LSBUD Members who request it to provide a response to your enquiry.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date and time of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig (LSBUD) accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at <u>www.lsbud.co.uk</u> ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

List of not affected LSBUD members

(LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area.)

alea.)		
Angus Energy	AWE Pipeline	B & D Energy Limited
Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)	Box Broadband
BP Exploration Operating Company Limited	BPA	Cadent Gas
Cambridgeshire County Council Climate Change and Energy Services	Carrington Gas Pipeline	CATS Pipeline c/o Wood Group PSN
Cemex	Centrica Storage Ltd	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	D.S.Smith
Diamond Transmission Corporation	DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)
E.ON UK CHP Limited	EDF Energy Renewables Ltd	EirGrid
Eleclink Limited	Electricity North West Limited	Energy Assets Networks
ENI & Himor c/o Penspen Ltd	EnQuest NNS Limited	EP Langage Limited
ESP Utilities Group	ESSAR	Esso Petroleum Company Limited
euNetworks Fiber UK Ltd	EXA Infrastructure	Exolum Pipeline System
Fulcrum Electricity Assets Limited	Fulcrum Pipelines Limited	Gamma
Gas Networks Ireland (UK)	Gateshead Energy Company	Gigaclear Ltd
Harbour Energy	Heathrow Airport LTD	Humbly Grove Energy
IGas Energy	INEOS FPS Pipelines	INEOS Manufacturing (Scotland and TSEP)
INOVYN ChlorVinyls Limited	INOVYN Enterprises Limited	Intergen (Coryton Energy or Spalding Energy)
Jurassic Fibre Ltd	Kensa Utilities	Last Mile
Mainline Pipelines Limited	Manchester Jetline Limited	Manx Cable Company
Marchwood Power Ltd (Gas Pipeline)	Melbourn Solar Limited	Moray East Offshore Windfarm
MUA Group Limited	National Grid Electricity Transmission	Neos Networks
Northern Gas Networks Limited	Northumbrian Water Group	NPower CHP Pipelines
NTT Global Data Centers EMEA UK Ltd	NYnet Ltd	Ogi
Oikos Storage Limited	Ørsted	Palm Paper Ltd
Perenco UK Limited (Purbeck Southampton Pipeline)	Petroineos	Phillips 66
Portsmouth Water	Premier Transmission Ltd (SNIP)	Redundant Pipelines - LPDA
RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)	RWEnpower (Little Barford and South Haven)	SABIC UK Petrochemicals
SAS Utility Services Ltd	Scottish and Southern Electricity Networks	Scottish Power Generation
Seabank Power Ltd	SES Water	SGN
Shell	Shell NOP	SP Energy Networks
Squire Energy Networks	SSE Generation Ltd	SSE Transmission
SSE Utility Solutions Limited	Storengy	Tata Communications (c/o JSM Construction Ltd)

Enquiry Confirmation LSBUD Ref: 30156469

Total Colnbrook Pipelines	Total Finaline Pipelines	Transmission Capital
UK Power Networks	Uniper UK Ltd	University of Cambridge Granta Backbone Network
Vattenfall	Veolia ES SELCHP Limited	Veolia ES Sheffield Ltd
Voneus Limited	VPI Power Limited	West of Duddon Sands Transmission Ltd
Westminster City Council	Zayo Group UK Ltd c/o JSM Group Ltd	

Non-LSBUD members (Asset owners not registered on LSBUD)

(The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding.

Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.)

Asset Owner	Preferred contact method	Phone	Status
BT	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified
Dwr Cymru Welsh Water	https://contact.dwrcymru.com/en	0800 917 2652	Not Notified
Equans	nrswa.uk@equans.com	0800 130 3600	Not Notified
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified
Lumen Technologies	plantenquiries@ocugroup.com	02087314613	Not Notified
Merthyr Tydfil County Borough Council	streetworks@merthyr.gov.uk	01685725096	Not Notified
Mobile Broadband Network Limited	mbnl.plant.enquiries@turntown.com	01212 621 100	Not Notified
Sota	sota.plantenquiries@ocugroup.com		Not Notified
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified

Disclaimer

Please refer to LSBUD's Terms of Use for full terms of use available at www.lsbud.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LSBUD will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LSBUD, including but not exclusively those set out above. Therefore, LSBUD cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LSBUD and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Our Ref: 30156469 STV6119

Thursday, 13 July 2023

Lauren Wenham Cedar Barn Cedar Barn White Lodge Walgrave Northamptonshire NN6 9PY

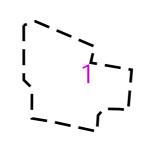
National Gas Emergency Number: 0800 111 999*

*Available 24 hours, 7 days/week. Calls may be recorded and monitored. www.nationalgas.com

Asset Protection National Gas Transmission National Grid House Warwick CV34 6DA Email: box.assetprotection@nationalgas.com Tel: 0800 970 7000

National Gas Transmission- No Assets Affected Letter

Dear Sir/ Madam,


An assessment has been carried out with respect to National Gas Transmission plc's apparatus and the proposed work location. Based on the location entered into the system for assessment the area has been found to not affect any of National Gas Transmission plc's apparatus.

If you have any questions or suspect for any reason that the above may be incorrect, please don't hesitate to contact us at box.assetprotection@nationalgas.com, or call us on 0800 970 7000.

Please note this response and any attached map(s) are valid for 28 days

Yours sincerely,

Asset Protection Team

Warning: PDF designed for A4 colour print only with no page scaling

hational gas transmission	100m
National Gas Transmission National Grid House Warwick Technology Park Gallows Hill Warwick CV34 6DA box.assetprotection@nationalqas.com	Dig Sites Area: C C C Line:
Date Requested: 13/07/2023 Job Reference: 30156469 Site Location: 303268 207682 Requested by: Miss Lauren Wenham Your Scheme/Reference: STV6119	IMPORTANT NOTICES This plan shows those pipes owned by National Gas Transmission PLC in its role as a licensed Gas Transporter (GT). Gas pipes owned by other GTs, or otherwise privately owned, may be present in this area. Information with regards to such pipes should be obtained from the relevant owners. The information shown on this plan is given without warranty, the accuracy thereof cannot be guaranteed. Service pipes, valves, syphons, stub connections, etc., are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by National Gas Transmission PLC or their agents, servants or contractors for any error or omission. Safe digging practices, in accordance with HS(G)47, must be used to verify and establish the actual position of mains, pipes, services and other apparatus on site before any mechanical plant is used. It is your responsibility to ensure that this information is provided to all persons (either direct labour or contractors) working for you on or near gas apparatus. The information included on this plan should not be referred to beyond a period of 28 days from the date of issue.
	National Gas Transmission Emergency Number: 0800 111 999 Available 24 hours, 7 days/week. Calls may be recorded and monitored
Scale: 1:2500 (When plotted at A4)	Crown Copyright © - Reproduced by permission of Ordnance Survey on behalf of HMSO. And database right 2023. All rights reserved. Ordnance Survey Licence number 100024886

ENQUIRY SUMMARY

Received Date 13/07/2023 10:59

Work Start Date 14/07/2023

Your Reference STV6119

Location

Centre Point: 303268 207682 X Extent: Y Extent: Postcode: CF482RH

Map Options

Paper Size: A4 Orientation: PORTRAIT Scale: 1:2500 Real World Extents: 71m x 73m

Enquirer Details

Organisation Name: Soiltechnics Ltd Contact Name: Lauren Wenham Email Address: admin@soiltechnics.net Telephone: 01604 781877/Not Supplied Address: Cedar Barn Cedar Barn White Lodge, Walgrave, Northamptonshire, NN6 9PY

Enquiry Type Planned Works

Activity Type Development Projects

Work Types Piling

Notes/Works Description (if supplied)

Rotary boreholes and mechanically excavated trial pits

Site Contact Name (if supplied)

Rosie Dean - Soiltechnics Limited
Site Contact Number (if supplied)

01604781877

Company Address Wales and West Utilities Ltd, Wales and West House, Spooner Close, Celtic, Springs, Coedkernew, Newport, NP10 8FZ

Our Ref: 30156469 STV6119

Thursday, 13 July 2023

Lauren Wenham Cedar Barn Cedar Barn White Lodge Walgrave Northamptonshire NN6 9PY

Dear Lauren Wenham

Thank you for contacting us regarding Wales & West Utilities equipment at the above site.

I enclose an extract from our mains records of the area covered by your proposals together with a comprehensive list of General Conditions for your guidance. This information is given as a general guide and its accuracy cannot be guaranteed. Service pipes, valves, syphons, stub connections, etc., are not shown but their presence should be anticipated.

No liability of any kind whatsoever is accepted by Wales and West Utilities (WWU), its agents or servants for any error or omission. Please note that all WWU equipment on site should be assumed to be LIVE until proven otherwise.

Safe digging practices, in accordance with HS(G)47, Avoiding Danger from underground services must be used to verify and establish the actual position of mains, pipes, services and other apparatus on site before any mechanical plant is used. It is your responsibility to ensure that this information is provided to all persons (either direct labour or contractors) working for you on or near gas apparatus. Safe working procedures should be defined and practiced.

WWU reserves its position completely to enforce the terms of any existing easement against the landowner, even if this results in any planning permission granted not being able to be fully implemented.

You must not build over any of our plant or enclose our apparatus.

Wales & West Utilities have no planning objections to these proposals, although it should be noted that Wales & West's apparatus is held pursuant to easements and it has other private law rights in relation to the use of the land in the vicinity of its apparatus. Wales & West's private law land rights are not material planning considerations and therefore no comment is made in relation to those rights and they have no impact on whether or not planning permission should be granted, or whether, if permission is granted, it can lawfully be implemented. It should also be noted that Wales & West's apparatus may be at risk during construction works and should the planning application be approved, then we require the promoter of these works to contact us directly to discuss our requirements in detail. Should diversion works be required these will be fully chargeable.

Where diversions to WWU apparatus are needed to allow change to occur on site, the cost of these alterations may be charged to the persons responsible for the works.

If you have requested a new connection the WWU connections team will where necessary prepare detailed proposals and provide a quotation for any necessary alterations and/or development of our equipment on the site.

If you require advice in connection with your proposals please contact the relevant number below.

Yours sincerely,

Safety Document: http://www.wwutilities.co.uk/services/dial-before-you-dig/can-you-dig-it/

Company Address Wales and West Utilities Ltd, Wales and West House, Spooner Close, Celtic, Springs, Coedkernew, Newport, NP10 8FZ

WWU Dig Team

Gas Emergency Number:

In an emergency call 0800 111 999, 24 hours a day.

Mapping Enquiries:

If you have an enquiry relating to this letter or the attached map plan, please contact us using the following information:

Telephone 02920 278912 Email dig@wwutilities.co.uk

General Enquiries:

If you have a general enquiry, please call us on the following number All areas 0800 912 29 99

LinesearchbeforeUdig:

If you have an enquiry relating to the use of the LinesearchbeforeUdig website please contact

 $\label{eq:linesearch} \mbox{LinesearchbeforeUdig using the following information:}$

Telephone0845 437 7365Emailenquiries@linesearchbeforeudig.co.ukWebsitewww.linesearchbeforeudig.co.uk

Appendix P Envirocheck Report

STV6119-R01 Rev A

Envirocheck[®] Report:

Datasheet

Order Details:

Order Number: 314168170_1_1

Customer Reference: STV6119

National Grid Reference: 303270, 207680

Slice:

A

Site Area (Ha): 0.32

Search Buffer (m): 1000

Site Details: Cefn Isaf, Merthyr Tydfil

Client Details:

Ms S Ltd Soiltechnics Limited Cedar Barn White Lodge Walgrave Northampton NN6 9PY

environmental - geotechnical - building fabric

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	44
Hazardous Substances	-
Geological	46
Industrial Land Use	56
Sensitive Land Use	64
Data Currency	66
Data Suppliers	72
Useful Contacts	73

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination.

Tor this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client. In this datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2023. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environme Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under ment

Agency/reduces version and values and values indication and must not be reproduced in whole of in part by photocopying of any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report. © Environment Agency & United Kingdom Research and Innovation 2023. © Natural Resources Wales & United Kingdom Research and Innovation 2023.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Scottish Natural Heritage Copyright

Contains SNH information licensed under the Open Government Licence v3.0.

Ove Arup Copyright Notice

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Stantec Copyright Notice

The cavity data presented has been extracted from the PBA (now Stantec UK Ltd) enhanced version of the original DEFRA national cavity databases. Stantec UK Ltd retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by Stantec UK Ltd. In no event shall Stantec UK Ltd or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage including. loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Natural Resources Wales Copyright Notice

Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Contains Ordnance Survey Data. Ordnance Survey Licence number 100019741. Crown Copyright and Database Right. Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Some features of this information are based on digital spatial data licensed from the Centre for Ecology & Hydrology © NERC (CEH). Defra, Met Office and DARD Rivers Agency © Crown copyright. © Cranfield University. © James Hutton Institute. Contains OS data © Crown copyright and database right.

Report Version v53.0

environmental • geotechnical • building fabric

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 3		1	3	10
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 7				1
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 7		Yes		
Pollution Incidents to Controlled Waters	pg 7		2	6	10
Prosecutions Relating to Authorised Processes					
Registered Radioactive Substances					
River Quality	pg 10		1	1	1
River Quality Biology Sampling Points	pg 11				1
River Quality Chemistry Sampling Points	pg 12		4	4	
Substantiated Pollution Incident Register	pg 19			2	2
Water Abstractions	pg 20			1	1
Water Industry Act Referrals					
Groundwater Vulnerability Map	pg 20	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 20	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 20	Yes	n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences	pg 21		Yes	n/a	n/a
Flooding from Rivers or Sea without Defences	pg 21		Yes	n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 21		22	40	140

environmental • geotechnical • building fabric

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites	pg 44				1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)					
Local Authority Landfill Coverage	pg 44	1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites	pg 44				1
Potentially Infilled Land (Non-Water)	pg 44				10
Potentially Infilled Land (Water)	pg 45				4
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					

environmental • geotechnical • building fabric

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 46	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 46	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites	pg 51				10
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas	pg 53	Yes	n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities	pg 53		1	1	4
Non Coal Mining Areas of Great Britain	pg 54	Yes		n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 54	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 54		Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 54	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 54	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 55	Yes		n/a	n/a
Radon Potential - Radon Affected Areas	pg 55	Yes	n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 56		2	5	14
Fuel Station Entries					
Points of Interest - Commercial Services	pg 57		2	3	3
Points of Interest - Education and Health					
Points of Interest - Manufacturing and Production	pg 58			1	8
Points of Interest - Public Infrastructure	pg 59		8	8	24
Points of Interest - Recreational and Environmental	pg 62		2	3	7
Gas Pipelines					
Underground Electrical Cables					

environmental • geotechnical • building fabric

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland	pg 64			5	9
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves	pg 65			1	
Marine Nature Reserves					
National Nature Reserves					
National Parks	pg 65		1		
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest	pg 65			1	
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

environmental - geotechnical - building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (SW)	0	1	303265 207679
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (NW)	0	1	303250 207700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (W)	33	1	303200 207679
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (S)	43	1	303265 207600
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (W)	89	1	303150 207650
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW	97	1	303250
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(S) A13SW	110	1	207550 303200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(SW) A13SE	116	1	207550 303350
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(SE) A13SW	141	1	207550 303150 207550
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(SW) A13SE (S)	145	1	303300 207500
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SW	146	1	303250
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(S) A13SW	155	1	207500 303100
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(SW) A13SW	179	1	207600 303150 207500
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(SW) A13NW	184	1	303050
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A13NW	189	1	207700 303050
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(W) A13SW	196	1	207750 303250 207450
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(S) A13SW	200	1	207450 303050
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(W) A13SE (S)	205	1	207600 303350 207450
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(S) A13SW (SW)	212	1	303100 207500
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SE	217	1	303450
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(SE) A13SW (SW)	222	1	207500 303150 207450
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(SW) A13NW (W)	238	1	207450 303000 207750

environmental - geotechnical - building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SE (SE)	256	1	303450 207450
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	258	1	303500 207850
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	261	1	303450 207900
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	274	1	303550 207800
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (W)	283	1	302950 207679
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SE (SE)	288	1	303500 207450
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE	293	1	303500
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE) A13NW	298	1	207900 302950
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(W) A13SW	302	1	207800 303200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(S) A13NE	304	1	207350 303450
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE) A13NE	306	1	207950 303600
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(E) A13NW	317	1	207750 302950
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(NW) A13SE	317	1	207850 303400
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(S) A13NE	325	1	207350 303400
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE) A13SE	326	1	208000 303500
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(SE) A12NE	334	1	207400
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(W)	337	1	302900
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A14NW	349	1	303650
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(E) A18SE	353	1	303350
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(N) A13SE	359	1	208050 303550
	BGS Groundwater Flooding Susceptibility	A135E (SE) A12NE	362	1	207400 302900
	Flooding Type: Limited Potential for Groundwater Flooding to Occur BGS Groundwater Flooding Susceptibility Flooding Type: Detected for Groundwater Flooding to Occur	(NW)			207850
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SE (SE)	366	1	303 207

environmental - geotechnical - building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SE (N)	370	1	303400 208050
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A14NW (E)	399	1	303700 207679
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A18SE (N)	401	1	303350 208100
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A12SE (SW)	423	1	302850 207500
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A8NE (SE)	436	1	303550 207300
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A8NE (SE)	450	1	303500 207250
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SE (N)	450	1	303350 208150
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12NE (W)	456	1	302800 207850
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NW (S)	459	1	303150 207200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A12NE (NW)	474	1	302800 207900
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A17SE (NW)	476	1	302900 208050
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A8NE (SE)	477	1	303550 207250
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A12SE (W)	490	1	302750 207600
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SE (N)	499	1	303350 208200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A12SE (SW)	500	1	302850 207350
1	Discharge Consents Operator: Dwr Cymru Cyfyngedig Property Type: Sewage Disposal Works - Water Company Location: Cefn Coed Stw Authority: Natural Resources Wales Catchment Area: River Taff Reference: Ag0008001 Permit Version: 1 Effective Date: 30th January 1985 Issued Date: 30th January 1985 Revocation Date: 26th April 1991 Discharge Not Supplied Environment: Taff Fawr Status: Consent expired	A13SE (S)	105	2	303300 207540

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	S				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	Mrs Beverly Ann Davies Domestic Property (Single) 38 Pontycapel Road Cefn Coed, 38 Pontcapel Road, Cefn Coedydfil, Merthyr Tydfil, Mid Glamorgan, Cf48 2py Natural Resources Wales Not Supplied An0321301 1	A13NW (W)	283	2	302954 207747
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water:	18th July 2002 18th July 2002 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Afon Taf Fawr				
	Status:	New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m				
	Discharge Consents	S				
3	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company High St Cso, Cefn Coed, Cefn Coed High Street, Merthyr Tydfil, Cf48 2pg Natural Resources Wales TAF FECHAN - SOURCE TO CONF AFON TAF FAWR Bb3895ce 1 13th November 2020 13th November 2020 Not Supplied Not Supplied Freshwater Stream/River Taf Fechan	A14SW (E)	425	2	303721 207614
	Status: Positional Accuracy:	Effective Located by supplier to within 10m				
3	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company High St Cso, Cefn Coed, Cefn Coed High Street, Merthyr Tydfil, Cf48 2pg Natural Resources Wales Not Supplied Bb3895ce Not Supplied 13th November 2020 13th November 2020 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Taf Fechan Effective Located by supplier to within 10m	A14SW (E)	425	2	303721 207614
	,	, ,,,				
4	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water:	s Fcc Construccion S A, Uk Branch Office Civil Engineering A465 Section 5 And 6 Dowlaid Top To Hirwaun X 3 Locations, Orbit Business Centre, Rhydycar Business Park, Merthyr Tydfil, Cf48 1dl Natural Resources Wales Not Supplied Cb3594ff Not Supplied 14th June 2022 14th June 2022 Not Supplied Trade Discharges - Site Drainage Freshwater Stream/River Taf Fechan And Taf Fawr	A12NE (W)	544	2	302693 207757
	Status:	Effective Located by supplier to within 10m				

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Fcc Construccion S A, Uk Branch Office Civil Engineering A465 Section 5 And 6 Dowlaid Top To Hirwaun X 3 Locations, Orbit Business Centre, Rhydycar Business Park, Merthyr Tydfil, Cf48 1dl Natural Resources Wales Not Supplied Cb3594ff Not Supplied 14th June 2022 14th June 2022 Not Supplied Trade Discharges - Site Drainage Freshwater Stream/River Taf Fechan And Taf Fawr Effective Located by supplier to within 10m	A19SW (NE)	750	2	303697 208322
6	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Thorn Lighting Ltd Undefined Or Other Merthyr Tydfil - Thorn Lightin Natural Resources Wales River Taff Ae2023201 1 10th March 1964 10th March 1964 10th March 1964 8th November 1985 Unspecified Not Supplied Taff River Tributary Consent expired Located by supplier to within 10m	A9SW (SE)	776	2	303630 206950
7	-	M A Sandbach Lagoons Former Brickworks Site Heolgerrig, Merthyr Tydfil, Wales, Cf48 1tw Natural Resources Wales Not Supplied An0352002 1 18th February 2004 18th February 2004 7th March 2007 Miscellaneous Discharges - Surface Water Freshwater Stream/River The Swnasea Road Culvert Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A8SW (S)	844	2	303192 206804
7	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s M A Sandbach Lagoons Former Brickworks Site Heolgerrig, Merthyr Tydfil, Wales, Cf48 1tw Natural Resources Wales Not Supplied An0352002 1 18th February 2004 18th February 2004 18th February 2004 7th March 2007 Miscellaneous Discharges - Surface Water Freshwater Stream/River The Swnasea Road Culvert Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A8SW (S)	844	2	303192 206804

environmental - geotechnical - building fabric

Map ID	Details			Estimated Distance From Site	Contact	NGR
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Merthyr - Swansea Road Natural Resources Wales TAFF - CONF TAF FECHAN TO CONF R CYNON AE2025308 1 15th April 1964 15th April 1964 15th April 1964 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Gellideg Stream Then Taff Surrendered Located by supplier to within 100m	A8SE (S)	884	2	303320 206760
8	-	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Merthyr - Swansea Road Natural Resources Wales TAFF - CONF TAF FECHAN TO CONF R CYNON Ae2025308 1 15th April 1964 15th April 1964 15th April 1964 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Gellideg Stream Then Taff Surrendered Located by supplier to within 10m	A8SE (S)	884	2	303320 206760
9	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Gellideg Tai Mawr Rd Cso, Merthyr Tydfil, 38 Heol Parc Maen, Swansea Rd, Merthyr Tydfil, Cf48 1lf Natural Resources Wales Not Supplied An0027701 Not Supplied 18th September 2019 18th September 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Taff Effective Located by supplier to within 10m	A8SE (S)	888	2	303490 206780
9	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company M'Tydfil-Tai Mawr Lane Sso Natural Resources Wales TAFF - CONF TAF FECHAN TO CONF R CYNON AN0027701 1 9th November 1988 9th November 1988 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Taff Effective Located by supplier to within 100m	A8SE (S)	888	2	303490 206780

environmental - geotechnical - building fabric

Map ID		Details		Estimated Distance From Site	Contact	NGR
9	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	s Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company M'Tydfil-Tai Mawr Lane Sso Natural Resources Wales TAFF - CONF TAF FECHAN TO CONF R CYNON An0027701 1 9th November 1988 9th November 1988 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Taff Effective Located by supplier to within 10m	A8SE (S)	888	2	303490 206780
10	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Beacons Products E.F.I. Industrial Estate Merthyr Tydfil County Borough Council, Environmental Health Department Not Supplied Not Supplied Local Authority Pollution Prevention and Control PG6/32 Adhesive coating Application exempt from APC Manually positioned to the address or location	A9NW (SE)	701	3	303835 207204
	Nearest Surface Wa	iter Feature	A13SW (SW)	82	-	303214 207575
11	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Sewerage 300 Down Stream Of, Cefncoed Environment Agency, Welsh Region Crude Sewage Weather 7th December 1995 27031 Not Given Not Given Leachate Category 3 - Minor Incident Located by supplier to within 100m	A13SE (SE)	116	4	303400 207600
12	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Old Cefn Coed Stw Environment Agency, Welsh Region Mud/Clay/Soil Blocked Sewer 14th February 1996 27373 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A13NW (W)	234	4	303000 207700
13	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Sewerage 150 Metres Up Stream Of, Gwynnes Arms Environment Agency, Welsh Region Chemicals - Other Organic Blocked Sewer 9th November 1995 26683 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A13NE (E)	320	4	303600 207800

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
14	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road River Taff Fawr Environment Agency, Welsh Region Light Oil Not Supplied 20th April 1995 23457 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A12NE (W)	340	4	302905 207795
14	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road Cefn Coed Environment Agency, Welsh Region Chemicals - Paints / Dyes Not Supplied 20th April 1995 23457 Not Given Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A12NE (W)	345	4	302900 207795
14	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Cefn Coed Environment Agency, Welsh Region Crude Sewage Not Supplied 5th December 1995 26992 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A12NE (W)	346	4	302900 207800
15	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Confluence Of, Tabernacle Road Environment Agency, Welsh Region Unknown Not Supplied 24th August 1996 29792 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A14SW (E)	478	4	303750 207500
16	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Sewerage The Well Str, Area Of Cefn Coed Environment Agency, Welsh Region Unknown Blocked Sewer 29th August 1995 25641 Not Given Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A14NW (E)	499	4	303800 207700
17	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Farmers Pool, Cefn Coed Environment Agency, Welsh Region Unknown Not Supplied 15th March 1991 137 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A9NW (SE)	607	4	303750 207250

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
18	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Between Cefn, Coed Fishing, Tackle Shop Environment Agency, Welsh Region Crude Sewage Not Supplied 22nd August 1995 25685 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A14NW (E)	609	4	303900 207795
18	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Between Cefn, Coed Fishing, Tackle Shop Environment Agency, Welsh Region Mud/Clay/Soil Not Supplied 22nd August 1995 25685 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A14NW (E)	610	4	303900 207800
19	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road Location Description Not Available Environment Agency, Welsh Region Crude Sewage Deliberate Act 21st April 1995 23691 Not Given Not Given Direct Discharge Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	695	4	303000 207000
20	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Location Description Not Available Environment Agency, Welsh Region Agricultural: Silage Liquor Natural Causes 6th May 1995 24175 Not Given Not Given Natural Causes Category 2 - Significant Incident Located by supplier to within 100m	A9NE (SE)	787	4	304000 207300
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given TREFECHAN Environment Agency, Welsh Region Unknown Accidental Spillage/Leakage 27th June 1996 28985 Not Given Not Given Not Given Effluent Discharge Category 3 - Minor Incident Located by supplier to within 100m	A18NE (N)	822	4	303500 208495
21	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Sewerage TREFECHAN Environment Agency, Welsh Region Unknown Accidental Spillage/Leakage 27th June 1996 28985 Not Given Not Given Not Given Effluent Discharge Category 3 - Minor Incident Located by supplier to within 100m	A18NE (N)	827	4	303500 208500

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
22	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road Merthyr-A470, Roadscheme, Earth Moving Environment Agency, Welsh Region Mud/Clay/Soil Accidental Spillage/Leakage 20th February 1995 22815 Not Given Not Given Runoff Category 3 - Minor Incident Located by supplier to within 100m	A8SE (S)	871	4	303500 206800
	Pollution Incidents	to Controlled Waters				
23	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	Not Given Cefn Cemetry, MERTHYR TYDFIL Environment Agency, Welsh Region Sewage - Treated Effluent Not Supplied 28th March 1992 3473 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A17NE (NW)	974	4	302600 208450
24	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Cyfartha Industrial, Estate New Factory Environment Agency, Welsh Region Crude Sewage Not Supplied 13th August 1991 1208 Not Given Not Given Unknown Category 2 - Significant Incident Located by supplier to within 100m	A9SE (SE)	998	4	303950 206900
	River Quality					
	Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Rate: Flow Type: Year:	Taff Fawr River Quality A Conf.Taff Fechan-Pant Sychbant 3.9 Flow less than 2.5 cumecs River 2000	A13SW (S)	89	4	303222 207564
	River Quality					
	Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Taf Fechan River Quality A Conf.Taff - Conf.Cwm-Moel 3.1 Flow less than 1.25 cumecs River 2000	A14SW (E)	432	4	303730 207629
	River Quality					
	Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Taff River Quality A Conf.Nant Morlais-Conf.Taff Fechan 1.4 Flow less than 5 cumecs River 2000	A9NW (SE)	545	4	303693 207280

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Biolog	y Sampling Points				
25	Name: Reach: Estimated Distance: Positional Accuracy: Year: GQA Grade: Year: GQA Grade:	Taff Confluence Nant Morlais To Confluence Taff Fechan 1.40 Located by supplier to within 100m 1990 River Quality Biology GQA Grade B - Good 1995 River Quality Biology GQA Grade B - Good 2000 River Quality Biology GQA Grade A - Very Good 2002 River Quality Biology GQA Grade Not Supplied 2003 River Quality Biology GQA Grade B - Good 2005 River Quality Biology GQA Grade B - Good 2006 River Quality Biology GQA Grade B - Good 2006 River Quality Biology GQA Grade B - Good 2007 River Quality Biology GQA Grade B - Good 2008 River Quality Biology GQA Grade A - Very Good 2008 River Quality Biology GQA Grade A - Very Good 2009 River Quality Biology GQA Grade A - Very Good 2009 River Quality Biology GQA Grade A - Very Good	A9NW (SE)	607	4	303700 207200

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chemistry Sampling Points					
26	Name: Reach: Estimated Distance:	Taff Fawr Confluence Taff Fechan To Pant Sychbant	A13SE (SE)	144	4	303360 207523
	Objective:	Not Supplied				
	Positional Accuracy: Year:	Located by supplier to within 10m 1990				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance: Year:	Not Supplied 1993				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1994				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1995				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1996				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1997				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1998				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance: Year:	Not Supplied 1999				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance: Year:	Not Supplied 2000				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 2001				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied 2002				
	Year: GQA Grade:	2002 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2003 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied 2004				
	Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2005 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2006 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2007 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2008 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2009 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chemi					
26	Name:	Taff Fawr	A13SE	144	4	303360
	Reach:	Pant Sychbant To Llwynon Reservoir Outlet	(SE)			207523
	Estimated Distance:					
	Objective: Positional Accuracy:	Not Supplied Located by supplier to within 10m				
	Year:	1990				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	1993 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1994				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1995				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:					
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	1997				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	1998 River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied				
	Year:	1999				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance: Year:	Not Supplied 2000				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:					
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2002				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2003 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2004				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 2005				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2006 Biver Quality Chamietry COA Crede A Very Cood				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2007				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2008 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2009				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Compliance.					

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chemi	istry Sampling Points				
26	Name:	Taff Fawr	A13SE	144	4	303360
	Reach:	Llwynon Reservoir Outlet To Confluence Nant Ddu	(SE)			207523
	Estimated Distance:					
	Objective:	Not Supplied				
	Year:	Located by supplier to within 10m 1990				
	GQA Grade:	Not Supplied				
	Compliance:	Not Supplied				
	Year:	1993				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good				
	Year:	Not Supplied 1994				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1995				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1996				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1997				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Compliance: Year:	1998				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied				
	Year:	1999				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade B - Good				
	Year:	Not Supplied 2000				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2001 Diver Quelity Chamister COA Crade A Mary Coad				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2002				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:					
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2004				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2005 River Quality Chemistry GOA Grade A Very Good				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2006				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2007 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2008				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2009 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
26	Name:	Taff Fawr	A13SE	144	4	303360
-	Reach:	Confluence Nant Ddu To Upstream Cantref Water Treatment Works	(SE)			207523
	Estimated Distance:					
	Objective:	Not Supplied				
	Year:	Located by supplier to within 10m 1990				
	GQA Grade:	Not Supplied				
	Compliance:	Not Supplied				
	Year:	1993				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	1994				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:					
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	1996				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:					
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	1998				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied				
	Year:					
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade B - Good Not Supplied				
	Year:	2000				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2001 Diver Quality Chemistry COA Crade A Very Coad				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2002				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2003 Biver Quality Chamietry COA Crade A Very Cood				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2004				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2005 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2006				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2007 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2008				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 2009				
	GQA Grade:	2009 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Compliance.					L

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chemi	istry Sampling Points				
27		Not Supplied Located by supplier to within 10m	A14SW (E)	442	4	303736 207595
	Year: GQA Grade: Compliance: Year:	1990 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1993				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1994 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 1995 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	1996 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	1997 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1998				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1999 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2000 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 2001 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2002 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	2003 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2004				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2005				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2007 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 2008 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2009 River Quality Chemistry GQA Grade A - Very Good Not Supplied				

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chemi	River Quality Chemistry Sampling Points				
27	Name: Reach: Estimated Distance:		A14SW (E)	442	4	303736 207595
	Year: GQA Grade:	Not Supplied Located by supplier to within 10m 1990 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance: Year:	Not Supplied 1993 Not Supplied Not Supplied 1994				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1995				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1996 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 1997 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	1998 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	1999 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2000				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2001				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2002				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2003 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2004 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 2005 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	2007 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2009				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
27	Name:	Taf Fechan	A14SW	442	4	303736
	Reach:	1.3km Below Reservoir Outfall To Outlet Pontsticill Reservoir	(E)		-	207595
	Estimated Distance:					
	Objective:	Not Supplied				
	Year:	Located by supplier to within 10m 1990				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1993				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1994				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1995				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1996				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1997				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1998				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	1999				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good				
	Year:	Not Supplied 2000				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2001 Biver Quality Chamietry COA Crede A Very Cood				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2002				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2003 Biver Quality Chamietry COA Crade A Very Coad				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year:	2004				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year: GQA Grade:	2005 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2006				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied 2007				
	Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2008				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Compliance:	Not Supplied				
	Year: GQA Grade: Compliance:	2009 River Quality Chemistry GQA Grade A - Very Good Not Supplied				

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
27	Name: Reach: Estimated Distance: Objective: Positional Accuracy: Year: GQA Grade: Compliance: Year: GQA	Taf Fechan Pontsticill Reservoir Out To Lwr Neuadd Reservoir Out	A14SW (E)	442	4	303736 207595
	Compliance: Year: GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
		tion Incident Register				
28	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact: Positional Accuracy: Pollutant:	Natural Resources Wales 30th September 2021 2108151 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Contaminated Water: Suspended Solids	A13NW (W)	288	2	302948 207735
29	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Natural Resources Wales 24th June 2021 2105444 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Pollutant Not Identified: Not Identified	A14NW (E)	330	2	303617 207780

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Substantiated Pollu	tion Incident Register				
30	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact: Positional Accuracy: Pollutant:	Natural Resources Wales 7th December 2021 2109834 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Inert Materials And Wastes: Soils And Clay	A12NE (NW)	530	2	302769 207964
	Substantiated Pollu	tion Incident Register				
31	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact: Positional Accuracy: Pollutant:	Natural Resources Wales 15th February 2018 1800852 Category 2 - Significant Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Inert Materials And Wastes: Soils And Clay	A9NW (SE)	820	2	303882 207080
	Water Abstractions					
32		Balfour Beatty Civil Engineering Limited Wa/057/0021/002 1 Point A On Taf Fechan Alongside Cyfarthfa Leat Environment Agency, Welsh Region Industrial/Commercial/Energy/Public Services: Transfer between sources Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied 06 June 31 October 6th June 2012 Not Supplied Located by supplier to within 10m	A14SW (E)	404	4	303704 207663
	Water Abstractions					
33		Merthyr Tydfil County Borough Council Wa/057/0021/0011 Not Supplied Cyfarthfa Leat, Cyfarthfa Castle Museum, Cyfarthfa Park, Merthyr Tydfil, Cf47 8re Natural Resources Wales Industrial/Commercial/Energy/Public Services: Transfer between sources Not Supplied Surface Not Supplied Not Supplied Not Supplied 01 January 31 December Not Supplied Not Supplied Located by supplier to within 10m	A18NE (N)	718	2	303483 208391
	Groundwater Vulne	rability Map				
	Combined Classification: Combined Vulnerability: Combined Aquifer: Pollutant Speed: Bedrock Flow: Dilution: Baseflow Index: Superficial Patchiness: Superficial Thickness: Superficial Recharge:	Secondary Bedrock Aquifer - Medium Vulnerability Medium Productive Bedrock Aquifer, Productive Superficial Aquifer Low Well Connected Fractures >550 mm/year <40% <90% 3-10m High	A13NW (SW)	0	2	303265 207679
		Secondary Aquifer - A	A13NW (SW)	0	2	303265 207679
	Superficial Aquifer I Aquifer Designation:	Designations Secondary Aquifer - Undifferentiated	A13NW (SW)	0	2	303265 207679

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	67	2	303200 207605
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Events Boundary Accuracy: As Supplied	A13SW (W)	125	2	303113 207645
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models and Fluvial Events Boundary Accuracy: As Supplied	A13SW (W)	125	2	303115 207640
	Extreme Flooding from Rivers or Sea without Defences Type: Extent of Extreme Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models and Fluvial Events Boundary Accuracy: As Supplied	A13NW (W)	228	2	303007 207723
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	68	2	303215 207590
	Areas Benefiting from Flood Defences None				
	Flood Water Storage Areas None				
	Flood Defences None				
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 59.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	96	5	303179 207583
35	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A13SW (SW)	98	5	303179 207583
36	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 34.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	98	5	303179 207583
37	OS Water Network Lines Watercourse Form: Transfer Watercourse Length: 104.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A13SW (SW)	105	5	303178 207572
38	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 31.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A13SW (SW)	105	5	303162 207591

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
39	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 23.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	109	5	303152 207601
40	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (S)	110	5	303270 207534
41	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 51.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (S)	111	5	303220 207541
42	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (S)	111	5	303220 207541
43	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (S)	112	5	303268 207533
44	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 61.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (S)	120	5	303216 207533
45	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A13SW (SW)	124	5	303137 207596
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A13SW (SW)	124	5	303135 207600
47	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 151.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	125	5	303131 207607

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
48	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 122.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (S)	128	5	303263 207517
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 60.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	163	5	303379 207514
50	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	163	5	303379 207514
51	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 5.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (S)	172	5	303197 207485
52	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 163.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	213	5	303401 207468
53	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	213	5	303401 207468
54	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 97.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13NW (W)	227	5	303006 207687
55	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 320.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13NW (W)	227	5	303006 207687
56	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 59.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (W)	282	5	302969 207582

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
57	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 124.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	282	5	303054 207446
58	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 37.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (W)	283	5	302961 207605
59	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 48.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	286	5	302980 207548
60	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 55.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	299	5	303421 207380
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 577.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13NE (NE)	303	5	303561 207842
62	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 63.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	308	5	302954 207549
63	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (W)	312	5	302942 207570
64	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A13SW (W)	312	5	302940 207575
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (W)	312	5	302942 207570

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 735.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13NE (NE)	317	5	303554 207877
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 64.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	328	5	302927 207564
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	340	5	302935 207518
69	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 84.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	343	5	303625 207799
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 32.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	344	5	303640 207743
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SW (SW)	347	5	302930 207511
72	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 201.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	353	5	302888 207608
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 67.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	353	5	302888 207608
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 277.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8NE (SE)	354	5	303455 207335

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
75	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 46.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8NE (SE)	354	5	303455 207335
76	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 59.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	355	5	303534 207389
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (SW)	358	5	302926 207494
78	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	358	5	303527 207381
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 280.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A13SE (SE)	359	5	303524 207376
80	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 68.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	363	5	303662 207719
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 43.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	363	5	303662 207719
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	374	5	303669 207753
83	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	375	5	303670 207752

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
84	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	375	5	303670 207754
85	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 130.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	391	5	302843 207659
86	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 250.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	402	5	303702 207663
87	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 22.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	402	5	303702 207663
88	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8NE (S)	410	5	303365 207243
89	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	420	5	303721 207675
90	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 49.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	427	5	303728 207664
91	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 163.0 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	427	5	303728 207664
92	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 60.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	462	5	303759 207626

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
93	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 146.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12NE (NW)	481	5	302805 207928
94	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 29.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12NE (NW)	481	5	302805 207928
95	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 68.1 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12NE (W)	497	5	302737 207706
96	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 72.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	503	5	303794 207576
97	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 23.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A12SE (W)	509	5	302751 207518
98	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 22.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	509	5	302751 207518
99	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 153.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	521	5	302745 207498
100	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 61.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14SW (SE)	521	5	303764 207421
101	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 56.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (SE)	523	5	303768 207425

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
102	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 159.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18SE (N)	535	5	303370 208233
103	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18SE (N)	535	5	303370 208233
104	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 179.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12NE (W)	542	5	302695 207760
105	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 76.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (SE)	560	5	303782 207373
106	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	574	5	303863 207551
107	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	575	5	303864 207551
108	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	575	5	303864 207551
109	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	576	5	303876 207732
110	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 112.9 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	577	5	303865 207550

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
111	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 160.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SW (E)	578	5	303875 207617
112	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	594	5	303893 207734
113	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	597	5	303896 207735
114	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 95.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	610	5	303661 207165
115	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 41.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A9NW (SE)	613	5	303795 207296
116	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 109.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	614	5	303716 207206
117	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 44.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	615	5	303804 207306
118	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.3 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	617	5	303916 207738
119	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 67.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Taf Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	618	5	303711 207195

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
120	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 48.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8NE (S)	618	5	303425 207043
121	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 60.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A17SE (NW)	620	5	302701 208027
122	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 19.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	621	5	303920 207739
123	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 165.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	628	5	303920 207795
124	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NW (E)	640	5	303939 207740
125	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 23.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NE (E)	644	5	303943 207742
126	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 46.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NE (E)	644	5	303943 207742
127	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 424.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A17SE (NW)	650	5	302709 208093
128	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 9.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	665	5	303429 206995

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
129	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 237.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	667	5	302597 207479
130	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 158.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SE (W)	667	5	302597 207479
131	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 107.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14NE (E)	668	5	303966 207742
132	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 26.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14NE (E)	668	5	303966 207742
133	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	674	5	303431 206986
134	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 146.1 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	681	5	303957 207485
135	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 175.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NW (N)	683	5	303265 208395
136	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	684	5	303391 206968
137	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	685	5	303451 208366

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
138	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 176.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	685	5	303451 208366
139	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 86.3 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NW (N)	686	5	303228 208399
140	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 202.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Taf Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	686	5	303753 207143
141	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 79.9 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	688	5	303450 208370
142	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 108.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	691	5	303433 206969
143	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 38.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12NW (W)	701	5	302551 207865
144	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 22.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12NW (W)	701	5	302551 207865
145	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 89.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14SE (E)	725	5	304025 207653
146	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 22.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	737	5	303401 208433

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
147	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NW (N)	750	5	303166 208459
148	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 63.6 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	752	5	303387 208451
149	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 117.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (SE)	757	5	303590 206953
150	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 85.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NW (N)	762	5	303159 208471
151	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7SE (SW)	762	5	302921 206961
152	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 76.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NW (N)	762	5	303159 208471
153	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 269.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7SE (SW)	763	5	302928 206956
154	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 41.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7SE (SW)	764	5	302928 206956
155	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 238.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SW (W)	782	5	302464 207541

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
156	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 56.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SW (W)	782	5	302464 207541
157	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 51.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	788	5	303341 208495
158	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 51.4 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7SE (SW)	798	5	302895 206934
159	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 85.2 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	799	5	303467 206867
160	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	800	5	304046 207372
161	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.2 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	812	5	304060 207376
162	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 109.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14SE (E)	813	5	304114 207654
163	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 383.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	814	5	303299 208525
164	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 26.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	814	5	304064 207380

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
165	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 28.8 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SW (W)	817	5	302438 207495
166	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 42.3 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	821	5	304079 207402
167	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	827	5	303589 208466
168	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 19.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NE (N)	827	5	303589 208466
169	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 128.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SW (W)	829	5	302433 207466
170	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 36.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	833	5	304102 207437
171	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 56.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SW (S)	833	5	303160 206819
172	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SW (S)	834	5	303154 206819
173	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 317.9 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SW (S)	836	5	303152 206817

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
174	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A19NW (NE)	839	5	303607 208471
175	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 402.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fechan Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A19NW (NE)	839	5	303607 208471
176	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 240.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A18NW (N)	844	5	303175 208554
177	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 177.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	847	5	304123 207466
178	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 145.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	847	5	304123 207466
179	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 193.7 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SW (S)	848	5	303203 206799
180	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 186.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9SW (SE)	852	5	303650 206875
181	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 261.1 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9SW (SE)	852	5	303650 206875
182	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 41.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	857	5	302464 207303

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
183	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 57.7 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	857	5	302464 207303
184	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	863	5	302484 207250
185	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	873	5	303395 206778
186	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	875	5	303893 207013
187	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Taf Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	875	5	303893 207013
188	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	877	5	303886 207005
189	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 53.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NW (SE)	881	5	303901 207014
190	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 27.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	883	5	303484 206784
191	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	884	5	303456 206777

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
192	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	885	5	303446 206774
193	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 17.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A8SE (S)	887	5	303439 206771
194	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 64.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14SE (E)	889	5	304188 207620
195	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	889	5	303455 206772
196	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 112.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Taf Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9SW (SE)	889	5	303898 206999
197	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 5.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9SW (SE)	891	5	303795 206916
198	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	892	5	303456 206769
199	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	893	5	302439 207273
200	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 5.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	894	5	304191 207599

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
201	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 4.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14SE (E)	894	5	304191 207599
202	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 13.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	894	5	304191 207599
203	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 10.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	894	5	303466 206769
204	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 13.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	897	5	302436 207269
205	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 4.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	897	5	304192 207584
206	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 13.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	899	5	304195 207587
207	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 19.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	900	5	304196 207599
208	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 349.6 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A8SE (S)	903	5	303469 206760
209	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	906	5	304204 207608

environmental - geotechnical - building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
210	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	906	5	304204 207608
211	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 70.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	907	5	302431 207257
212	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 51.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	912	5	304208 207588
213	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 118.0 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9NE (SE)	920	5	303954 207011
214	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 41.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 2	A14SE (E)	923	5	304223 207650
215	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 121.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SW (W)	938	5	302343 207384
216	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 100.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A12SW (W)	938	5	302343 207384
217	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 57.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	950	5	304247 207607
218	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 81.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	951	5	304246 207576

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
219	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 28.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	953	5	304243 207533
220	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 29.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	963	5	304264 207643
221	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 70.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A7NW (SW)	972	5	302367 207238
222	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 27.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A19SE (NE)	976	5	304045 208317
223	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	977	5	304264 207514
224	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 26.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	978	5	304271 207556
225	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 3.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A19SE (NE)	980	5	304029 208342
226	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 207.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A17NW (NW)	980	5	302513 208375
227	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	980	5	304268 207510

environmental - geotechnical - building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
228	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 462.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Taf Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A9SW (SE)	980	5	303910 206890
229	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	988	5	304278 207526
230	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A14SE (E)	990	5	304280 207523
231	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A19NE (NE)	994	5	304029 208362
232	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 160.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Taf Fawr Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A17NW (NW)	995	5	302519 208404
233	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A15SW (E)	998	5	304289 207537
234	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Nant Ffrwd Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A11SE (W)	999	5	302244 207537
235	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Cynon, Ely and Rhondda Primacy: 1	A11SE (W)	999	5	302244 207537

environmental • geotechnical • building fabric

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Historical Landfill Sites					
236	Licence Holder: Not Location: Cef Name: Fair Operator Location: Not Boundary Accuracy: As Provider Reference: EAI First Input Date: Not Specified Waste Dep Type: EA Waste Ref: 0	t Supplied fn Coed rview TCE t Supplied HLD14082 t Supplied t Supplied posited Waste included Industrial and Household Waste	A17SE (NW)	558	2	302818 208083
	WRC Ref: 692 BGS Ref: Not	t Supplied 25/0010 t Supplied t Supplied				
	Name: Mer	rthyr Tydfil County Borough Council las supplied landfill data		0	3	303265 207679
237	Reference:121Authority:MerLast ReportedCloStatus:	rview Toe, Cefn Coed I rthyr Tydfil County Borough Council, Environmental Health Department D sed	A17SE (NW)	617	3	302800 208150
	Date of Closure: Not Positional Accuracy: Loc Boundary Quality: Not	t Supplied t Supplied ated by supplier to within 100m t Applicable				
238	Potentially Infilled Land Bearing Ref: N Use: Unk Date of Mapping: 199	known Filled Ground (Pit, quarry etc)	A18SW (N)	608	-	303262 208320
239	Potentially Infilled LandBearing Ref:NWUse:UnkDate of Mapping:199	known Filled Ground (Pit, quarry etc)	A17SE (NW)	641	-	302792 208175
240	Potentially Infilled LandBearing Ref:NUse:UnkDate of Mapping:199	known Filled Ground (Pit, quarry etc)	A18NW (N)	701	-	303140 208407
241	Potentially Infilled LandBearing Ref:SWUse:UnkDate of Mapping:199	/ known Filled Ground (Pit, quarry etc)	A7SE (SW)	762	-	302929 206958
242	Potentially Infilled Land Bearing Ref: N Use: Unk Date of Mapping: 199	known Filled Ground (Pit, quarry etc)	A18NW (N)	795	-	303128 208500
243	Potentially Infilled LandBearing Ref:SWUse:UnkDate of Mapping:199	/ known Filled Ground (Pit, quarry etc)	A7NE (SW)	807	-	302668 207090
244	Potentially Infilled LandBearing Ref:NUse:UnkDate of Mapping:199	known Filled Ground (Pit, quarry etc)	A18NW (N)	864	-	303264 208576
245	Potentially Infilled LandBearing Ref:NWUse:UnkDate of Mapping:199	known Filled Ground (Pit, quarry etc)	A17NE (NW)	889	-	302792 208483
246	Potentially Infilled LandBearing Ref:NUse:UnkDate of Mapping:199	known Filled Ground (Pit, quarry etc)	A18NE (N)	897	-	303347 208603
247	Potentially Infilled LandBearing Ref:SWUse:UnkDate of Mapping:199	known Filled Ground (Pit, quarry etc)	A7SW (SW)	967	-	302585 206948

environmental • geotechnical • building fabric

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potentially Infilled	Land (Water)				
248	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1965	A14NW (NE)	569	-	303816 207929
	Potentially Infilled	Land (Water)				
249	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1965	A14NW (E)	668	-	303916 207945
	Potentially Infilled	Land (Water)				
250	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1921	A8SE (S)	936	-	303503 206734
	Potentially Infilled Land (Water)					
251	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1905	A7SW (SW)	987	-	302589 206916

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	Millstone Grit Group [See Also Migr]	A13NW (SW)	0	1	303265 207679
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13NW (N)	0	1	303262 207692
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A13NW (SW)	0	1	303265 207679
	BGS Estimated Soil					
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A13SW (SW)	68	1	303191 207613
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A13SW (SW)	121	1	303186 207546
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A13SE (S)	131	1	303329 207522
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A13SE (SE)	200	1	303394 207479

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg	A13NE (NE)	284	1	303549 207824
	Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	<1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13SW (SW)	287	1	303118 207394
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13NW (N)	287	1	303265 208000
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13NE (NE)	304	1	303524 207892
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13NW (NW)	350	1	302946 207909
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 40 - 60 mg/kg <100 mg/kg	A13NW (NW)	379	1	302977 207989
	Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration:	Sediment 45 - 60 mg/kg <1.8 mg/kg 40 - 60 mg/kg		3/9		1

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soi	I Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A18SW (N)	434	1	303161 208141
	Cadmium Concentration: Chromium Concentration: Lead Concentration:	<1.8 mg/kg 60 - 90 mg/kg <100 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soi	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg	A14SW (E)	451	1	303744 207588
	Concentration: Chromium Concentration: Lead Concentration: Nickel	60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil Source:	British Geological Survey, National Geoscience Information Service	A18SE	467	1	303324
	Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration:	Sediment 45 - 60 mg/kg <1.8 mg/kg 40 - 60 mg/kg	(N)			208172
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	-				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg	A12NE (W)	473	1	302782 207849
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel					
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium	I Chemistry British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg	A8NW (S)	482	1	303132 207181
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soi	l Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A14SW (E)	582	1	303879 207605
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration: Nickel	60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:					

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg	A12SE (W)	590	1	302653 207577
	Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	<1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A17SE (NW)	641	1	302755 208137
	Concentration.					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A12SW (W)	741	1	302513 207509
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 40 - 60 mg/kg	A17SE (NW)	807	1	302634 208250
	PCS Estimated Sail	Chamistry				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A7NW (SW)	817	1	302526 207270
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A7NW (SW)	820	1	302552 207220

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg	A12SW (W)	821	1	302419 207575
	Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	<1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A19SE (NE)	909	1	304112 208097
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A9SW (SE)	909	1	303884 206960
	DOO Fatimated Oall	Oh emister.				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A14SE (E)	931	1	304208 207456
	BCS Estimated Sail	Chamiatay				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A14SE (E)	931	1	304189 207384
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg <1.8 mg/kg 40 - 60 mg/kg	A19NW (NE)	954	1	303867 208453

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A9SE (SE)	970	1	303943 206931
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	I Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A9SW (SE)	989	1	303916 206883
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:					
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Recorded Mine					
252	Site Name: Location: Source:	Cyrnos Quarry Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service	A18SE (N)	524	1	303441 208199
	Reference: Type:	125601 Opencast				
	Status: Operator:	Ceased Unknown Operator				
	Operator Location:	Not Supplied				
	Periodic Type: Geology:	Carboniferous Dowlais Limestone Formation				
	Commodity:	Limestone Located by supplier to within 10m				
	BGS Recorded Mine	eral Sites				
253	Site Name: Location: Source: Reference: Type:	Cefn Hotel Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125593 Opencast	A18SW (N)	607	1	303265 208319
	Status: Operator:	Ceased Unknown Operator				
	Operator Location: Periodic Type:	Not Supplied Carboniferous				
	Geology: Commodity:	Twrch Sandstone Formation Sandstone				
		Located by supplier to within 10m				
	BGS Recorded Mine					
254	Site Name: Location: Source: Reference:	Carn-Gwllym-Goch Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125586	A18NW (N)	717	1	303170 208427
	Type: Status:	Opencast Ceased				
	Operator: Operator Location:	Unknown Operator Not Supplied				
	Periodic Type:	Carboniferous				
	Geology: Commodity: Positional Accuracy:	Twrch Sandstone Formation Sandstone Located by supplier to within 10m				
	BGS Recorded Mine	eral Sites				
254	Site Name: Location: Source:	Cefn Hotel Gravel Pit Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service	A18NW (N)	745	1	303155 208453
	Reference: Type:	125585 Opencast				
	Status: Operator:	Ceased Unknown Operator				
	oporator.					
	Operator Location:	Not Supplied				
	Operator Location: Periodic Type: Geology:	Not Supplied Carboniferous Twrch Sandstone Formation				

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Recorded Mine	eral Sites				
255	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity:	Carn-Gwllym-Goch Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125554 Opencast Ceased Unknown Operator Not Supplied Carboniferous Penderyn Oolite Member Limestone Located by supplier to within 10m	A17SE (NW)	737	1	302748 208265
	BGS Recorded Mine	eral Sites				
256	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity:	Carn-Gwllym-Goch Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125599 Opencast Ceased Unknown Operator Not Supplied Carboniferous Twrch Sandstone Formation Sandstone Located by supplier to within 10m	A18NE (N)	854	1	303380 208555
	BGS Recorded Mine	eral Sites				
257	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Carn-Gwllym-Goch Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125583 Opencast Ceased Unknown Operator Not Supplied Carboniferous Twrch Sandstone Formation Sandstone Located by supplier to within 10m	A18NW (N)	873	1	303106 208576
	BGS Recorded Mine					
258	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity:	Vaynor House Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125596 Opencast Ceased Unknown Operator Not Supplied Carboniferous Twrch Sandstone Formation Sandstone Located by supplier to within 10m	A18NE (N)	897	1	303338 208604
	BGS Recorded Mine	eral Sites				
259	-	Cefn Hotel Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125556 Opencast Ceased Unknown Operator Not Supplied Carboniferous Oxwich Head Limestone Formation Limestone Located by supplier to within 10m	A17NE (NW)	906	1	302770 208489
	BGS Recorded Mine					
260	Site Name: Location: Source: Reference: Type: Status: Operator: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Carn-Gwllym-Goch Cefn-Coed-Y-Cymmer, Merthyr Tydfil, Mid Glamorgan British Geological Survey, National Geoscience Information Service 125551 Opencast Ceased Unknown Operator Not Supplied Carboniferous Penderyn Oolite Member Limestone Located by supplier to within 10m	A17NE (NW)	951	1	302645 208457

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	an Soil Chemistry				
	BGS Urban Soil Che	emistry Averages				
	No data available					
	Coal Mining Affecte	d Areas				
	Description:	In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A13NW (SW)	0	6	303265 207679
			A13NW (W)	189	7	303050 207750
	Detail: Natural Cavities					
	Easting: Northing: Distance: Quadrant Reference: Quadrant Reference: Bearing Ref: Cavity Type:	NW N Phreatic Cave, Sinkhole, Solution Pipe, Solution Widened Joint or Fissure, Swallow Hole Carboniferous Limestone Supergroup, Lower Carboniferous Limestone, Millstone Grit Group, Upper Carboniferous Limestone	A13NW (N)	287	7	303265 208000
	Detail: Natural Cavities					
	Easting: Northing: Distance: Quadrant Reference: Quadrant Reference: Bearing Ref: Cavity Type:	SE NW Vadose Cave Carboniferous Limestone Supergroup, Lower Carboniferous Limestone, Upper Carboniferous Limestone	A17SE (NW)	661	7	302700 208100
	Natural Cavities					
	Easting: Northing: Distance: Quadrant Reference: Quadrant Reference: Bearing Ref: Cavity Type: Solid Geology Detail: Superficial Geology Detail:	SW NE Vadose Cave Carboniferous Limestone Supergroup, Lower Carboniferous Limestone, Upper Carboniferous Limestone	A19SW (NE)	732	7	303650 208330
	Natural Cavities					
	Easting: Northing: Distance: Quadrant Reference: Quadrant Reference: Bearing Ref: Cavity Type: Solid Geology Detail: Superficial Geology Detail:	NW NE Vadose Cave Carboniferous Limestone Supergroup, Lower Carboniferous Limestone, Upper Carboniferous Limestone	A19NW (NE)	825	7	303620 208450

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Northing:2Distance:8Quadrant Reference:AQuadrant Reference:NBearing Ref:N	NE N	A18NE (N)	863	7	303600 208500
	Solid Geology Detail: C	/adose Cave Carboniferous Limestone Supergroup, Lower Carboniferous Limestone, Upper Carboniferous Limestone No Details				
		as of Great Britain Rare British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Hazard Potential: V	ble Ground Stability Hazards /ery Low /ritish Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Hazard Potential: N	ble Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SE (SE)	200	1	303394 207479
	Hazard Potential: N	ssible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Hazard Potential: V	ssible Ground Stability Hazards /ery Low 3ritish Geological Survey, National Geoscience Information Service	A13SE (SE)	179	1	303371 207488
	Hazard Potential: M	ssible Ground Stability Hazards /loderate 3ritish Geological Survey, National Geoscience Information Service	A13SE (SE)	200	1	303394 207479
	Hazard Potential: N	Dissolution Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Hazard Potential: V	e Ground Stability Hazards /ery Low British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Hazard Potential: L	le Ground Stability Hazards .ow British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	303266 207672
	Hazard Potential: V	le Ground Stability Hazards /ery Low British Geological Survey, National Geoscience Information Service	A13SE (S)	63	1	303271 207580
	Hazard Potential: M	le Ground Stability Hazards /loderate British Geological Survey, National Geoscience Information Service	A13SW (SW)	67	1	303177 207642
	Hazard Potential: M	le Ground Stability Hazards /loderate British Geological Survey, National Geoscience Information Service	A13NW (W)	170	1	303067 207733
	Hazard Potential: L	le Ground Stability Hazards .ow 3ritish Geological Survey, National Geoscience Information Service	A13NE (NE)	215	1	303427 207859
	Hazard Potential: M	le Ground Stability Hazards /loderate 3ritish Geological Survey, National Geoscience Information Service	A13SE (S)	240	1	303356 207415
	Hazard Potential: V	Sand Ground Stability Hazards /ery Low 3ritish Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Hazard Potential: N	Sand Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	68	1	303191 207613
	Hazard Potential: L	Sand Ground Stability Hazards .ow British Geological Survey, National Geoscience Information Service	A13SE (SE)	200	1	303394 207479

environmental • geotechnical • building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Potential for Shrinking or Swelling Clay Ground Stability Hazards					
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	68	1	303191 207613
	Radon Potential - R	adon Affected Areas				
	Affected Area: Source:	The property is in an Intermediate probability radon area (1 to 3% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679
	Radon Potential - R	Radon Potential - Radon Protection Measures				
	Protection Measure: Source:	No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A13NW (SW)	0	1	303265 207679

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
261	Name: Location: Classification: Status: Positional Accuracy:	Beacons Park Natural Burial Ground 141, High Street, Cefn Coed, Merthyr Tydfil, CF48 2PL Cemeteries & Crematoria Active Automatically positioned to the address	A13NE (N)	180	-	303321 207876
	Contemporary Trad	e Directory Entries				
262	Name: Location: Classification: Status:	Central Garage 156, High Street, Cefn Coed, Merthyr Tydfil, CF48 2PH Garage Services Inactive Automatically positioned to the address	A13NE (NE)	185	-	303412 207834
	Contemporary Trad	e Directory Entries				
263	Name: Location: Classification: Status:	Woodlands Garage Triangle, Cefn Coed, Merthyr Tydfil, Mid Glamorgan, CF48 2PT Car Body Repairs Active Automatically positioned to the address	A13NW (NW)	260	-	303111 207940
	Contemporary Trad	e Directory Entries				
264	Name: Location: Classification: Status:	Recover U 20, Cyfarthfa Gardens, Cefn Coed, Merthyr Tydfil, Mid Glamorgan, CF48 2SE Car Breakdown & Recovery Services Inactive Automatically positioned to the address	A13SE (SE)	349	-	303599 207477
	Contemporary Trad					
264	Name: Location: Classification: Status:	T M Few & Sons Maesgwynne Industrial Estate, Cefn Coed, Merthyr Tydfil, CF48 2SD Car Body Repairs Inactive Automatically positioned to the address	A13SE (SE)	350	-	303571 207437
265	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Top 2 Bottom Cleaning 93, Lakeside Gardens, Merthyr Tydfil, Mid Glamorgan, CF48 1EW Commercial Cleaning Services Active Automatically positioned to the address	A18SE (NE)	420	-	303520 208043
	Contemporary Trad	e Directory Entries				
266	Name: Location: Classification: Status:	Stephen Patrick Hall 45, Lakeside Gardens, MERTHYR TYDFIL, Mid Glamorgan, CF48 1EN Safety Glazing Inactive Automatically positioned to the address	A14NW (E)	480	-	303747 207864
	Contemporary Trad	e Directory Entries				
267	Name: Location: Classification: Status:	B R Motors Aartal Bungalow, Brecon Road, Merthyr Tydfil, CF47 8RB Garage Services Inactive Automatically positioned to the address	A9NW (SE)	672	-	303858 207283
	Contemporary Trad	e Directory Entries				
267	Name: Location: Classification: Status: Positional Accuracy:	Cambria Granite Ltd Unit 8-9, E F I Industrial Estate, Brecon Road, Merthyr Tydfil, CF47 8RB Kitchen Furniture Manufacturers Inactive Automatically positioned to the address	A9NW (SE)	685	-	303844 207242
	Contemporary Trad	e Directory Entries				
267	Name: Location: Classification:	D Rees Unit 12, E F I Industrial Estate, Brecon Road, Merthyr Tydfil, Mid Glamorgan, CF47 8RB Joinery Manufacturers	A9NW (SE)	685	-	303845 207243
	Status:	Inactive				
		Automatically positioned to the address				
268	Contemporary Trad Name: Location: Classification: Status:	e Directory Entries Ex Pro Hydraulic Solutions Ltd Unit 6a E F I Industrial Estate, Brecon Road, Merthyr Tydfil, Mid Glamorgan, CF47 8RB Hydraulic Engineers Active	A9NW (SE)	689	-	303803 207187
		Manually positioned to an adjacent address or location				

environmental - geotechnical - building fabric

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
268	Name: Location: Classification:	Functional Foam Unit 10 E F I Industrial Estate, Brecon Road, Merthyr Tydfil, Mid Glamorgan, CF47 8RB Foam Products - Rubber & Plastics	A9NW (SE)	699	-	303835 207208
	Status: Positional Accuracy:	Inactive Manually positioned within the geographical locality				
	-					
268	Contemporary Trad Name: Location:	I J F Engineering Services Unit 5, E F I Industrial Estate, Brecon Road, Merthyr Tydfil, Mid Glamorgan, CF47 8RB	A9NW (SE)	704	-	303815 207177
	Classification: Status: Positional Accuracy:	Engineers - General Inactive Automatically positioned to the address				
268	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Auto Dor Unit 3c, E F I Industrial Estate, Brecon Road, Merthyr Tydfil, CF47 8RB Gate Manufacturers Inactive Automatically positioned to the address	A9NW (SE)	705	-	303834 207198
	Contemporary Trad					
268	Name: Location: Classification: Status:	D P Haulage Unit 2, E F I Industrial Estate, Brecon Road, Merthyr Tydfil, CF47 8RB Road Haulage Services Active Automatically positioned to the address	A9NW (SE)	724	-	303848 207185
	Contemporary Trad	e Directory Entries				
269	Name: Location: Classification: Status:	Academy Surrounds 23, Heol Nantgau, Merthyr Tydfil, Mid Glamorgan, CF48 1EY Fireplaces & Mantelpieces Inactive Automatically positioned to the address	A8SW (S)	742	-	303072 206927
	Contemporary Trad					
270	Name: Location: Classification: Status:	Oriel Blinds 46, Swansea Road, Merthyr Tydfil, Mid Glamorgan, CF48 1HS Blinds, Awnings & Canopies Inactive Automatically positioned to the address	A7NE (SW)	786	-	302731 207058
	Contemporary Trad					
271	Name: Location: Classification: Status:	Tasco Metal Services Pen yr Enfys, Swansea Road, Clwydyfagwyr, Merthyr Tydfil, Mid Glamorgan, CF48 1HR Scrap Metal Merchants Inactive	A7SE (SW)	916	-	302652 206955
	Positional Accuracy:	Automatically positioned to the address				
272	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries First Choice Blinds Swansea Rd, Merthyr Tydfil, Mid Glamorgan, CF48 1NY Blinds, Awnings & Canopies Inactive Manually positioned to the road within the address or location	A7NW (SW)	926	-	302500 207108
	Contemporary Trad					
273	Name: Location: Classification: Status:	Merton Wire Ltd Unit 11, Cyfarthfa Industrial Estate, Merthyr Tydfil, Mid Glamorgan, CF47 8PE Wire Products - Manufacturers Inactive Automatically positioned to the address	A9SW (SE)	956	-	303938 206946
	Contemporary Trad					
273	Name: Location:	Alrod Ltd Unit 11-12, Cyfarthfa Industrial Estate, Merthyr Tydfil, Mid Glamorgan, CF47 8PE	A9SW (SE)	956	-	303938 206946
	Classification: Status: Positional Accuracy:	Aluminium Fabricators Active Automatically positioned to the address				
		Commercial Services				
274	Name: Location: Category: Class Code: Positional Accuracy:	Central Garage 156 High Street, Cefn Coed, Merthyr Tydfil, CF48 2PH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (NE)	185	8	303412 207834

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
274	Points of Interest - Commercial Services Name: Central Garage Location: 156 High Street, Cefn Coed, Merthyr Tydfil, CF48 2PH Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A13NE (NE)	186	8	303413 207834
275	Points of Interest - Commercial Services Name: Woodlands Garage Location: Triangle, Cefn Coed, Merthyr Tydfil, CF48 2PT Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A13NW (NW)	261	8	303114 207943
276	Points of Interest - Commercial Services Name: T M Few Location: Maesgwynne Industrial Estate, Cefn Coed, Merthyr Tydfil, CF48 2SD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A13SE (SE)	350	8	303572 207438
276	Points of Interest - Commercial Services Name: T M Few & Sons Location: Maesgwynne Industrial Estate, Cefn Coed, Merthyr Tydfil, CF48 2SD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A13SE (SE)	350	8	303571 207437
277	Points of Interest - Commercial Services Name: D P Haulage Location: 3b Efi Industrial Estate, Merthyr Tydfil, CF47 8RB Category: Transport, Storage and Delivery Class Code: Distribution and Haulage Positional Accuracy: Positioned to address or location	A9NW (SE)	705	8	303834 207198
277	Points of Interest - Commercial Services Name: Merthyr Reclamation Location: E F I Industrial Estate, Brecon Road, Merthyr Tydfil, CF47 8RB Category: Recycling Services Class Code: Scrap Metal Merchants Positional Accuracy: Positioned to address or location	A9NW (SE)	707	8	303834 207194
277	Points of Interest - Commercial Services Name: D P Haulage Location: Unit 2 E F I Industrial Estate, Brecon Road, Merthyr Tydfil, CF47 8RB Category: Transport, Storage and Delivery Class Code: Distribution and Haulage Positional Accuracy: Positioned to address or location	A9NW (SE)	724	8	303848 207186
278	Points of Interest - Manufacturing and Production Name: Vale of Neath Stone Supplies Ltd Location: 97 Lakeside Gardens, Merthyr Tydfil, CF48 1EW Category: Extractive Industries Class Code: Stone Quarrying and Preparation Positional Accuracy: Positioned to address or location	A18SE (NE)	394	8	303481 208037
279	Points of Interest - Manufacturing and Production Name: Tank Location: CF48 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	599	8	302706 207992
280	Points of Interest - Manufacturing and Production Name: Factory Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	677	8	303833 207240
280	Points of Interest - Manufacturing and Production Name: Factory Location: CF47 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to address or location	A9NW (SE)	682	8	303840 207242
280	Points of Interest - Manufacturing and Production Name: Merthyr Marble & Granite Ltd Location: Unit 8-9 E F I Industrial Estate, Brecon Road, Merthyr Tydfil, CF47 8RB Category: Extractive Industries Class Code: Stone Quarrying and Preparation Positional Accuracy: Positioned to address or location	A9NW (SE)	685	8	303845 207243

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
280	Points of Interest - Manufacturing and Production Name: Cambria Granite Ltd Location: Unit 8 to 9, Efi Industrial Estate, Merthyr Tydfil, CF47 8RB Category: Extractive Industries Class Code: Stone Quarrying and Preparation Positional Accuracy: Positioned to address or location	A9NW (SE)	685	8	303844 207242
280	Points of Interest - Manufacturing and Production Name: E F I Industrial Estate Location: CF47 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	696	8	303836 207214
280	Points of Interest - Wanufacturing and Production Name: E F I Industrial Estate Location: CF47 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	712	8	303855 207212
281	Points of Interest - Wanufacturing and Production Name: Tank Location: CF48 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	884	8	303834 206953
282	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	118	8	303136 207612
282	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	121	8	303133 207611
282	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SW (W)	157	8	303084 207632
282	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SW (W)	160	8	303081 207630
283	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A13NW (N)	139	8	303199 207846
284	Points of Interest - Public Infrastructure Name: Sluice Location: CF47 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SE (S)	149	8	303282 207494
284	Points of Interest - Public Infrastructure Name: Sluice Location: CF47 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SE (S)	149	8	303286 207495
285	Points of Interest - Public Infrastructure Name: Beacons Park Natural Burial Ground Location: 141 High Street, Cefn Coed, Merthyr Tydfil, CF48 2PL Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to address or location	A13NE (N)	179	8	303321 207876

environmental • geotechnical • building fabric

Industrial Land Use

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
286	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SW (W)	282	8	302960 207612
286	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A13SW (W)	285	8	302957 207611
287	Points of Interest - Public Infrastructure Name: Refuse Tip Location: CF48 Category: Infrastructure and Facilities Class Code: Refuse Disposal Facilities Positional Accuracy: Positioned to an adjacent address or location	A13SE (SE)	336	8	303529 207412
287	Points of Interest - Public Infrastructure Name: Refuse Tip Location: CF48 Category: Infrastructure and Facilities Class Code: Refuse Disposal Facilities Positional Accuracy: Positioned to an adjacent address or location	A13SE (SE)	339	8	303535 207413
288	Points of Interest - Public Infrastructure Name: Sluice Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14NW (E)	416	8	303717 207684
288	Points of Interest - Public Infrastructure Name: Sluice Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14NW (E)	417	8	303718 207680
288	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14NW (E)	421	8	303722 207684
289	Points of Interest - Public Infrastructure Name: Outfall Location: CF48 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A14SW (E)	473	8	303742 207492
290	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14SW (SE)	554	8	303775 207373
290	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14SW (SE)	556	8	303778 207375
291	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A12NE (W)	636	8	302635 207923
291	Public Infrastructure Name: Cemetery Location: Not Supplied Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	665	8	302633 207994

Order Number: 314168170_1_1 Date: 13-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

environmental • geotechnical • building fabric

Industrial Land Use

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
291	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A12NW (NW)	700	8	302590 207985
292	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	719	8	303468 208397
292	Points of Interest - Public Infrastructure Name: Sluice Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	720	8	303486 208392
292	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	722	8	303472 208398
292	Points of Interest - Public Infrastructure Name: Sluice Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	724	8	303491 208394
293	Points of Interest - Public Infrastructure Name: Sluice Location: CF47 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	720	8	303907 207272
294	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SW (NW)	767	8	302540 208037
295	Points of Interest - Public Infrastructure Name: Chapel of Rest Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A7NE (SW)	806	8	302693 207067
296	Points of Interest - Public Infrastructure Name: Cemetery Location: Not Supplied Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SW (NW)	842	8	302556 208209
296	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SW (NW)	842	8	302556 208209
297	Points of Interest - Public Infrastructure Name: Refuse Tip (Disused) Location: CF48 Category: Infrastructure and Facilities Class Code: Refuse Disposal Facilities Positional Accuracy: Positioned to an adjacent address or location	A8SW (S)	897	8	303167 206754
298	Points of Interest - Public Infrastructure Name: Tip (Disused) Location: CF48 Category: Infrastructure and Facilities Class Code: Refuse Disposal Facilities Positional Accuracy: Positioned to an adjacent address or location	A7NW (SW)	912	8	302558 207056

Order Number: 314168170_1_1 Date: 13-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
298	Points of Interest - Public Infrastructure Name: Refuse Tip (Disused) Location: CF48 Category: Infrastructure and Facilities Class Code: Refuse Disposal Facilities Positional Accuracy: Positioned to an adjacent address or location	A7SW (SW)	979	8	302525 206992
299	Points of Interest - Public Infrastructure Name: Outfall Location: CF48 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	940	8	303899 206933
299	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	992	8	303915 206878
299	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	997	8	303915 206872
300	Points of Interest - Public Infrastructure Name: Cemetery Location: Not Supplied Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17NE (NW)	948	8	302615 208429
300	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17NE (NW)	948	8	302615 208429
301	Points of Interest - Public Infrastructure Name: Weir Location: CF48 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A19NW (NE)	955	8	303766 208520
302	Points of Interest - Public Infrastructure Name: Cemetery Location: CF48 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SW (NW)	961	8	302442 208254
303	Points of Interest - Recreational and Environmental Name: Playground Location: Well Street, CF48 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A13NE (NE)	246	8	303432 207894
303	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A13NE (NE)	250	8	303438 207895
303	Points of Interest - Recreational and Environmental Name: Play Area Location: CF48 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A13NE (NE)	261	8	303453 207898
304	Points of Interest - Recreational and Environmental Name: Playground Location: Heads Of The Valleys Road, CF48 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A18SE (N)	421	8	303360 208118

environmental • geotechnical • building fabric

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
304	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A18SE (N)	425	8	303370 208119
305	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8NE (S)	572	8	303404 207085
305	Points of Interest - Recreational and Environmental Name: Playground Location: Tai Mawr Road, CF48 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8NE (S)	573	8	303404 207084
306	Points of Interest - Recreational and Environmental Name: Play Area Location: CF48 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8NW (S)	577	8	303076 207098
306	Points of Interest - Recreational and Environmental Name: Play Area Location: CF48 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A8NW (S)	586	8	303107 207080
307	Points of Interest - Recreational and Environmental Name: Playground Location: Honeysuckle Close, CF47 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A19SE (E)	905	8	304140 208025
308	Points of Interest - Recreational and Environmental Name: Playground Location: Nr Brecon Road, CF47 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A9NE (SE)	909	8	304065 207167
308	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A9NE (SE)	911	8	304068 207168

environmental • geotechnical • building fabric

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
309	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 12366 3155.77 Ancient and Semi-Natural Woodland	A13NE (NE)	295	2	303494 207909
310	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 21421 22937.99 Restored Ancient Woodland Site	A13NE (NE)	308	2	303540 207880
311	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 21420 20552.54 Restored Ancient Woodland Site	A14NW (NE)	454	2	303692 207916
312	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 12367 6654.54 Ancient and Semi-Natural Woodland	A12NE (NW)	461	2	302830 207933
313	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 12368 13362.63 Ancient and Semi-Natural Woodland	A12NE (NW)	471	2	302812 207917
314	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 21422 3978.79 Restored Ancient Woodland Site	A18SE (NE)	567	2	303504 208219
315	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 21419 137845.17 Restored Ancient Woodland Site	A14NW (E)	575	2	303876 207716
316	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 14081 8661.31 Ancient and Semi-Natural Woodland	A18NE (N)	744	2	303495 208414
317	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 12370 21007.18 Ancient and Semi-Natural Woodland	A17SE (NW)	786	2	302638 208223
318	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 8887 2726.91 Ancient and Semi-Natural Woodland	A18NE (N)	824	2	303578 208468
319	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 21424 21052.12 Restored Ancient Woodland Site	A17SE (NW)	836	2	302637 208296
320	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 10350 101775.28 Restored Ancient Woodland Site	A19NW (NE)	867	2	303624 208494
321	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 50254 42308.85 Ancient Woodland Site of Unknown Category	A19NW (NE)	878	2	303763 208431
322	Ancient Woodland Name: Reference: Area(m ²): Type:	Not Supplied 21423 7658.12 Restored Ancient Woodland Site	A19SE (NE)	933	2	304015 208287

environmental • geotechnical • building fabric

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Nature Reser	ves				
323	Name: Multiple Area: Area (m2): Source: Designation Date:	Cwm Taf Fechan Woodlands N 413248.27 Merthyr Tydfil County Borough Council 31st December 1975	A13NE (NE)	300	9	303529 207883
	National Parks					
324	Name: Multiple Area: Area (m2): Source: Status: Designation Date:	Brecon Beacons N 1349543930.88 Natural Resources Wales Fully Designated - designated as a National Park 31st December 1955	A13NW (W)	239	2	302994 207684
	Sites of Special Sci	entific Interest				
325	Name: Multiple Areas: Total Area (m2): Source: Reference: Designation Details: Designation Date: Date Type:	Cwm Taf Fechan Woodlands Y 641319.9 Natural Resources Wales 40433wmc Biological 1st January 1972 Notified	A13NE (NE)	300	2	303529 207883

environmental • geotechnical • building fabric

Data Currency

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Natural Resources Wales	June 2020	Annually
Powys County Council - Public Protection Department	October 2017	Annual Rolling Update
Rhondda Cynon Taff County Borough Council - Environmental Services	October 2017	Annual Rolling Update
Caerphilly County Borough Council - Environmental Health Department	September 2017	Annual Rolling Update
Merthyr Tydfil County Borough Council - Environmental Health Department	September 2017	Annual Rolling Update
Discharge Consents		
Environment Agency - Welsh Region	August 2014	Quarterly
Natural Resources Wales	May 2023	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - Welsh Region	March 2013	
Integrated Pollution Controls		
Environment Agency - Welsh Region	January 2009	
Integrated Pollution Prevention And Control		
Environment Agency - Welsh Region	January 2021	Quarterly
Natural Resources Wales	May 2023	Quarterly
Local Authority Integrated Pollution Prevention And Control		
Powys County Council - Public Protection Department	May 2014	Variable
Caerphilly County Borough Council - Environmental Health Department	September 2014	Variable
Rhondda Cynon Taff County Borough Council - Public Health and Protection Division	September 2014	Variable
Merthyr Tydfil County Borough Council - Environmental Health Department	September 2016	Variable
Local Authority Pollution Prevention and Controls		
Powys County Council - Public Protection Department	May 2014	Annual Rolling Update
Rhondda Cynon Taff County Borough Council - Public Health and Protection Division	September 2014	Annual Rolling Update
Caerphilly County Borough Council - Environmental Health Department	September 2014	Not Applicable
Merthyr Tydfil County Borough Council - Environmental Health Department	September 2016	Annual Rolling Update
Local Authority Pollution Prevention and Control Enforcements		
Powys County Council - Public Protection Department	May 2014	Variable
Caerphilly County Borough Council - Environmental Health Department	September 2014	Variable
Rhondda Cynon Taff County Borough Council - Public Health and Protection Division	September 2014	Variable
Merthyr Tydfil County Borough Council - Environmental Health Department	September 2016	Variable
Nearest Surface Water Feature		
Ordnance Survey	May 2023	
Pollution Incidents to Controlled Waters		
Environment Agency - Welsh Region	December 1998	
Prosecutions Relating to Authorised Processes		
Environment Agency - Welsh Region	July 2015	
Natural Resources Wales	July 2015	
Prosecutions Relating to Controlled Waters		
Environment Agency - Welsh Region	March 2013	
Natural Resources Wales	March 2013	
Registered Radioactive Substances		
Natural Resources Wales	January 2015	
Environment Agency - Welsh Region	June 2016	As notified
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	April 2012	
River Quality Chemistry Sampling Points	,	
	April 2012	
Environment Adency - nead Office		
Environment Agency - Head Office Substantiated Pollution Incident Register		
Substantiated Pollution Incident Register Natural Resources Wales	April 2023	Quarterly

environmental - geotechnical - building fabric

Data Currency

Agency & Hydrological	Version	Update Cycle
Water Abstractions		
Environment Agency - Welsh Region	April 2023	Quarterly
Natural Resources Wales	June 2023	Quarterly
Water Industry Act Referrals		
Environment Agency - Welsh Region	October 2017	
Natural Resources Wales	October 2022	
Groundwater Vulnerability Map		
Natural Resources Wales	June 2018	As notified
Bedrock Aquifer Designations		
Natural Resources Wales	January 2018	Annually
Superficial Aquifer Designations		
Natural Resources Wales	January 2018	Annually
Source Protection Zones		
Natural Resources Wales	July 2022	Annual Rolling Update
Extreme Flooding from Rivers or Sea without Defences		
Natural Resources Wales	September 2020	
Flooding from Rivers or Sea without Defences		
Natural Resources Wales	September 2020	
Areas Benefiting from Flood Defences		
Natural Resources Wales	November 2019	Quarterly
Flood Water Storage Areas		
Natural Resources Wales	August 2019	Quarterly
Flood Defences		
Natural Resources Wales	November 2019	Quarterly
OS Water Network Lines		
Ordnance Survey	April 2023	Quarterly
Surface Water 1 in 30 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water 1 in 100 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water 1 in 1000 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water Suitability		
Natural Resources Wales	February 2016	Annually
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	As notified

environmental • geotechnical • building fabric

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	November 2002	As notified
Historical Landfill Sites		
Natural Resources Wales	March 2023	As notified
Integrated Pollution Control Registered Waste Sites		
Environment Agency - Welsh Region	January 2009	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency Wales - South East Area	January 2023	Quarterly
Natural Resources Wales	October 2021	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency Wales - South East Area	July 2021	Quarterly
Natural Resources Wales	May 2023	Quarterly
Local Authority Landfill Coverage		
Caerphilly County Borough Council - Environmental Health Department	February 2003	Not Applicable
Merthyr Tydfil County Borough Council - Environmental Health Department	February 2003	Not Applicable
Powys County Council Rhondda Cynon Taff County Borough Council	February 2003 February 2003	Not Applicable Not Applicable
Local Authority Recorded Landfill Sites		
Caerphilly County Borough Council - Environmental Health Department	October 2018	
Merthyr Tydfil County Borough Council - Environmental Health Department Powys County Council	October 2018 October 2018	
Rhondda Cynon Taff County Borough Council	October 2018 October 2018	
Potentially Infilled Land (Non-Water) Landmark Information Group Limited	December 1999	
	December 1999	
Potentially Infilled Land (Water)	December 1000	
Landmark Information Group Limited	December 1999	
Registered Landfill Sites	March 0000	
Environment Agency Wales - South East Area	March 2006	Not Applicable
Registered Waste Transfer Sites	A	
Environment Agency Wales - South East Area	April 2018	
Registered Waste Treatment or Disposal Sites		
Environment Agency Wales - South East Area	June 2015	
Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	March 2023	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	August 2001	
Planning Hazardous Substance Enforcements		
Brecon Beacons National Park	August 2008	Annual Rolling Update
Rhondda Cynon Taff County Borough Council - Planning Department	February 2016	Variable
Caerphilly County Borough Council - Planning Department	January 2023	Variable
Merthyr Tydfil County Borough Council - Planning Department	January 2023	Variable
Powys County Council - Planning Department	May 2023	Variable
Planning Hazardous Substance Consents		
Brecon Beacons National Park	August 2008	Annual Rolling Update
Powys County Council - Planning Department	February 2016	Variable
Rhondda Cynon Taff County Borough Council - Planning Department	February 2016	Variable
Caerphilly County Borough Council - Planning Department	January 2023	Variable
Merthyr Tydfil County Borough Council - Planning Department	January 2023	Variable

environmental • geotechnical • building fabric

Geological	Version	Update Cycle	
BGS 1:625,000 Solid Geology			
British Geological Survey - National Geoscience Information Service	January 2009	As notified	
BGS Estimated Soil Chemistry			
British Geological Survey - National Geoscience Information Service	December 2015	As notified	
BGS Recorded Mineral Sites			
British Geological Survey - National Geoscience Information Service	June 2023	Bi-Annually	
CBSCB Compensation District			
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011		
Cheshire Brine Subsidence Compensation Board (CBSCB)	November 2020	As notified	
Coal Mining Affected Areas			
The Coal Authority - Property Searches	February 2023	Annual Rolling Update	
Mining Instability			
Ove Arup & Partners	June 1998	Not Applicable	
Non Coal Mining Areas of Great Britain			
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable	
Potential for Collapsible Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	April 2020	As notified	
Potential for Compressible Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	January 2019	As notified	
Potential for Ground Dissolution Stability Hazards			
British Geological Survey - National Geoscience Information Service	January 2019	As notified	
Potential for Landslide Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	January 2019	As notified	
Potential for Running Sand Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	January 2019	As notified	
Potential for Shrinking or Swelling Clay Ground Stability Hazards			
British Geological Survey - National Geoscience Information Service	January 2019	As notified	
Radon Potential - Radon Affected Areas			
British Geological Survey - National Geoscience Information Service	September 2022	Annually	
Radon Potential - Radon Protection Measures			
British Geological Survey - National Geoscience Information Service	September 2022	Annually	

environmental • geotechnical • building fabric

Industrial Land Use	Version	Update Cycle	
Contemporary Trade Directory Entries			
Thomson Directories	April 2023	Quarterly	
Fuel Station Entries			
Catalist Ltd - Experian	June 2023	Quarterly	
Gas Pipelines			
National Grid	October 2021	Bi-Annually	
Points of Interest - Commercial Services			
PointX	June 2023	Quarterly	
Points of Interest - Education and Health			
PointX	June 2023	Quarterly	
Points of Interest - Manufacturing and Production			
PointX	June 2023	Quarterly	
Points of Interest - Public Infrastructure			
PointX	June 2023	Quarterly	
Points of Interest - Recreational and Environmental			
PointX	June 2023	Quarterly	
Underground Electrical Cables			
National Grid	February 2023	Bi-Annually	

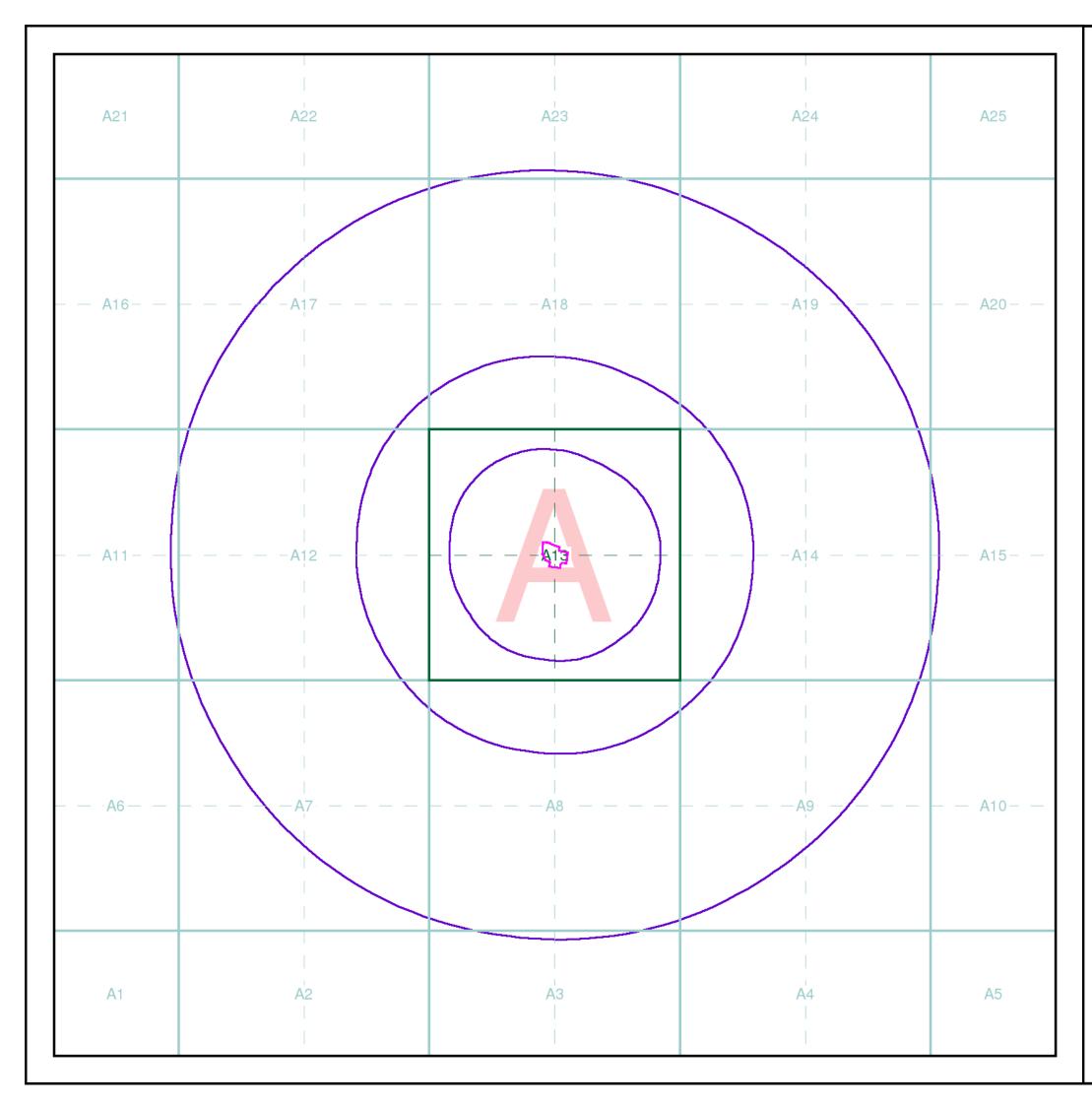
environmental - geotechnical - building fabric

Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural Resources Wales	April 2023	Bi-Annually
Areas of Adopted Green Belt		
Brecon Beacons National Park	July 2022	Quarterly
Caerphilly County Borough Council	July 2022	Quarterly
Merthyr Tydfil County Borough Council	July 2022	Quarterly
Powys County Council	July 2022	Quarterly
Rhondda Cynon Taff County Borough Council	July 2022	Quarterly
Areas of Unadopted Green Belt		
Brecon Beacons National Park	July 2022	Quarterly
Caerphilly County Borough Council	July 2022	Quarterly
Merthyr Tydfil County Borough Council	July 2022	Quarterly
Powys County Council	July 2022	Quarterly
Rhondda Cynon Taff County Borough Council	July 2022	Quarterly
Areas of Outstanding Natural Beauty		
Natural Resources Wales	April 2023	Bi-Annually
Environmentally Sensitive Areas		
The National Assembly for Wales - GI Services (Department of Planning & Countryside)	January 2017	
Forest Parks		
Forestry Commission	May 2023	Not Applicable
Local Nature Reserves		
Caerphilly County Borough Council	March 2023	Bi-Annually
Merthyr Tydfil County Borough Council	March 2023	Bi-Annually
Powys County Council	March 2023	Bi-Annually
Rhondda Cynon Taff County Borough Council	March 2023	Bi-Annually
Marine Nature Reserves		
Natural Resources Wales	April 2023	Bi-Annually
National Nature Reserves		
Natural Resources Wales	February 2023	Bi-Annually
National Parks		
Natural Resources Wales	February 2018	Annually
Nitrate Vulnerable Zones		
The National Assembly for Wales - GI Services (Department of Planning & Countryside)	April 2016	
Natural Resources Wales	March 2023	Bi-Annually
Ramsar Sites		
Natural Resources Wales	March 2023	Bi-Annually
Sites of Special Scientific Interest		
Natural Resources Wales	March 2023	Bi-Annually
Special Areas of Conservation		
Natural Resources Wales	April 2023	Bi-Annually
Special Protection Areas		
Natural Resources Wales	April 2023	Bi-Annually

environmental • geotechnical • building fabric

Data Suppliers

A selection of organisations who provide data within this report


Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SEPÃO Socitish Environment Protection Agency
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Stantec UK Ltd	Stantec

environmental - geotechnical - building fabric

Useful Contacts

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Natural Resources Wales Ty Cambria, 29 Newport Road, Cardiff, CF24 0TP	Telephone: 0300 065 3000 Email: enquiries@naturalresourceswales.gov.uk
3	Merthyr Tydfil County Borough Council - Environmental Health Department Civic Centre, Castle Street, Merthyr Tydfil, Mid Glamorgan, CF47 8AN	Telephone: 01685 725000 Fax: 01685 725024 Website: www.merthyr.gov.uk
4	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
5	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 03456 05 05 05 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
6	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0345 762 6848 Fax: 01623 637 338 Email: groundstability@coal.gov.uk Website: www2.groundstability.com
7	Stantec UK Ltd Caversham Bridge House, Waterman Place, Reading, RG1 8DN	Telephone: 0118 950 0761 Email: pba.reading@stantec.com Website: www.stantec.com
8	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website: www.pointx.co.uk
9	Merthyr Tydfil County Borough Council Civic Centre, Castle Street, Merthyr Tydfil, Mid Glamorgan, CF47 8AN	Telephone: 01685 725000 Fax: 01685 722146 Website: www.merthyr.gov.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

Index Map

For ease of identification, your site and buffer have been split into Slices, Segments and Quadrants. These are illustrated on the Index Map opposite and explained further below.

Slice

Each slice represents a 1:10,000 plot area (2.7km x 2.7km) for your site and buffer. A large site and buffer may be made up of several slices (represented by a red outline), that are referenced by letters of the alphabet, starting from the bottom left corner of the slice "grid". This grid does not relate to National Grid lines but is designed to give best fit over the site and buffer.

Segment

A segment represents a 1:2,500 plot area. Segments that have plot files associated with them are shown in dark green, others in light blue. These are numbered from the bottom left hand corner within each slice.

Quadrant

A quadrant is a quarter of a segment. These are labelled as NW, NE, SW, SE and are referenced in the datasheet to allow features to be quickly located on plots. Therefore a feature that has a quadrant reference of A7NW will be in Slice A, Segment 7 and the NW Quadrant.

A selection of organisations who provide data within this report:

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Envirocheck reports are compiled from 136 different sources of data.

Client Details

Ms S Ltd, Soiltechnics Limited, Cedar Barn, White Lodge, Walgrave, Northampton, NN6 9PY

Order Details

 Order Number:
 314168170_1_1

 Customer Ref:
 STV6119

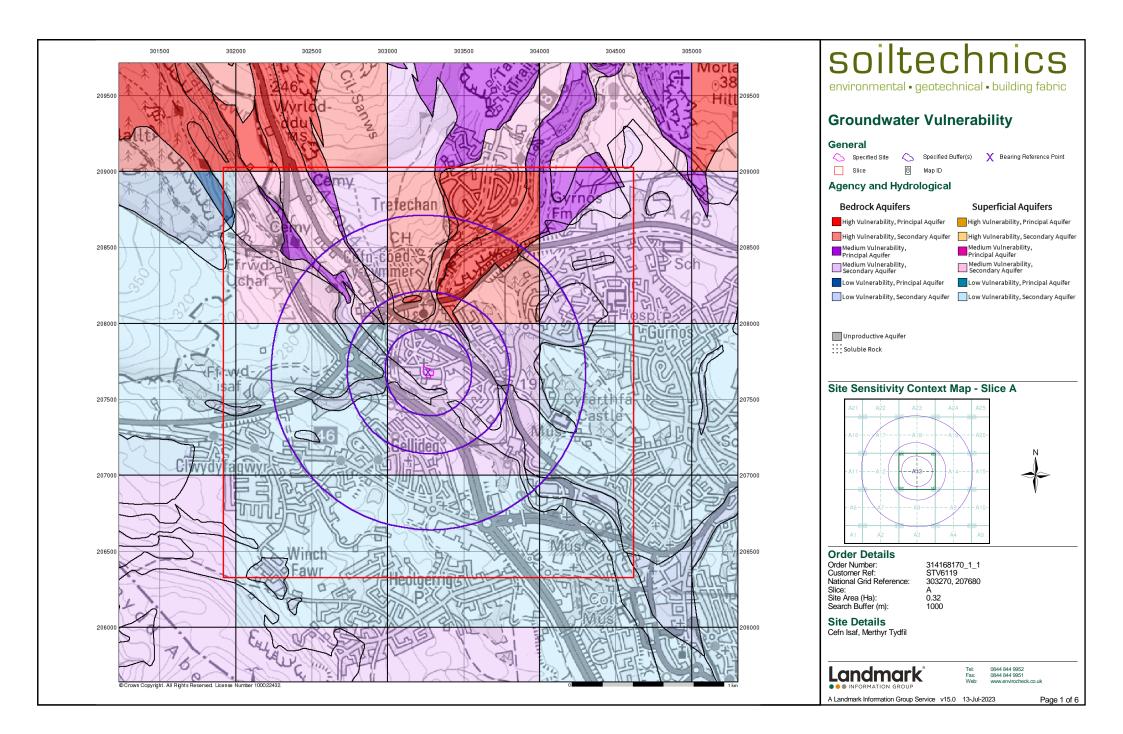
 National Grid Reference:
 303270, 207680

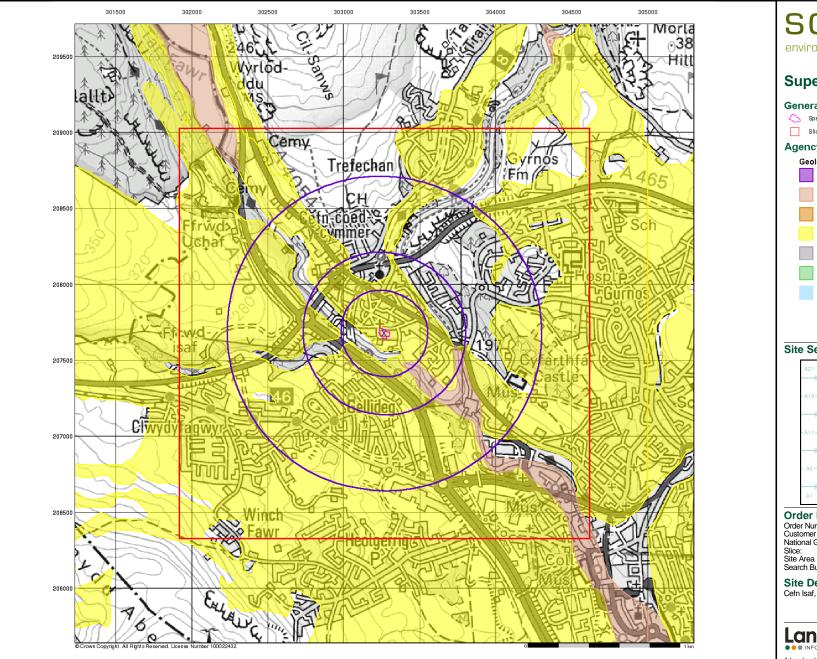
 Site Area (Ha):
 0.32

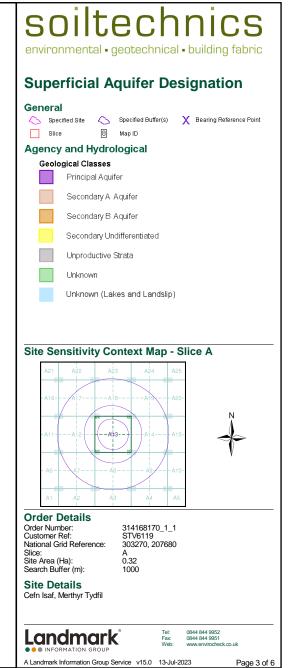
 Search Buffer (m):
 1000

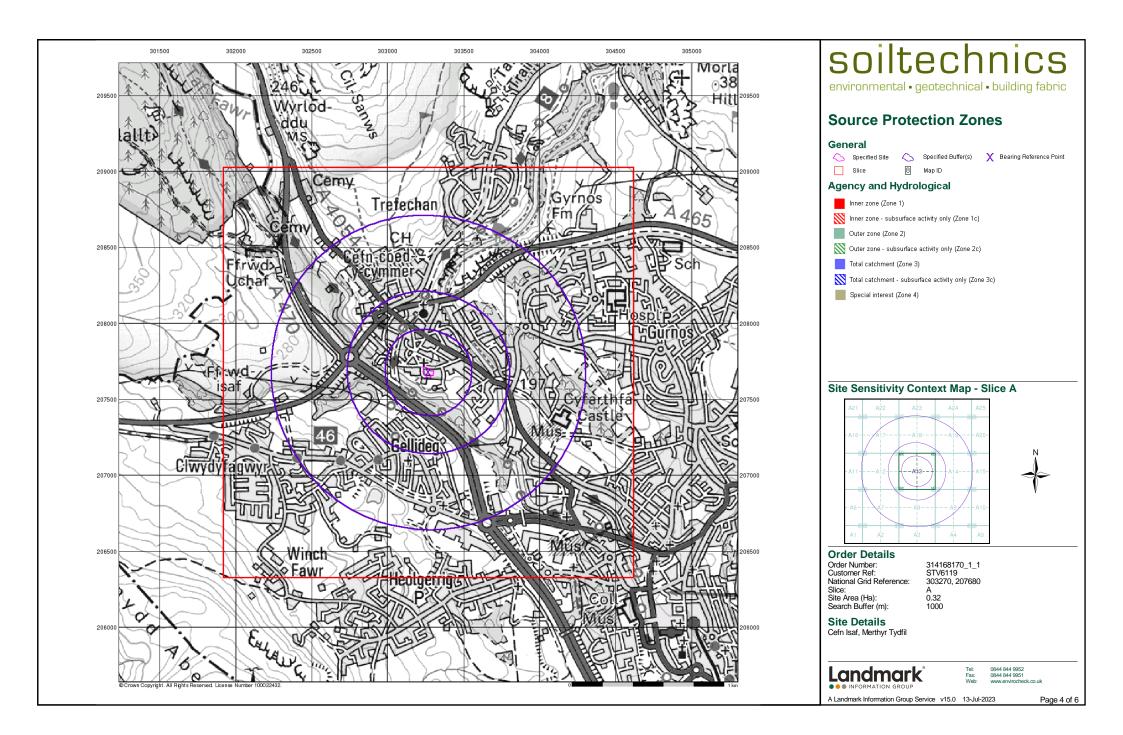
Site Details

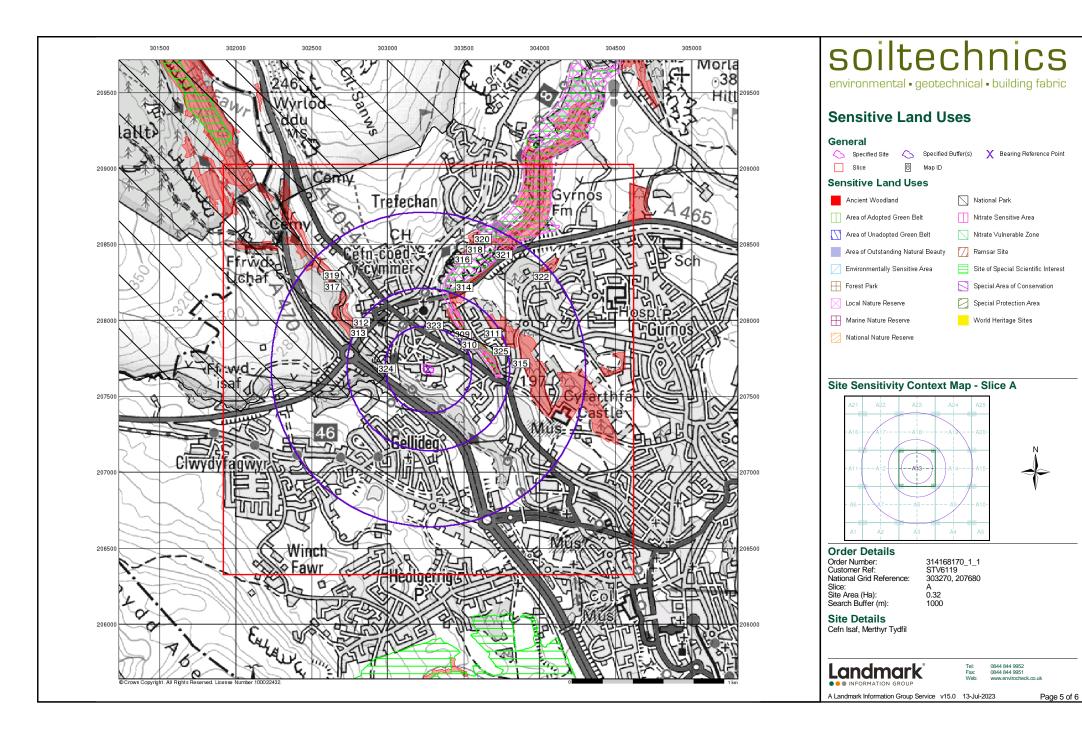
Cefn Isaf, Merthyr Tydfil

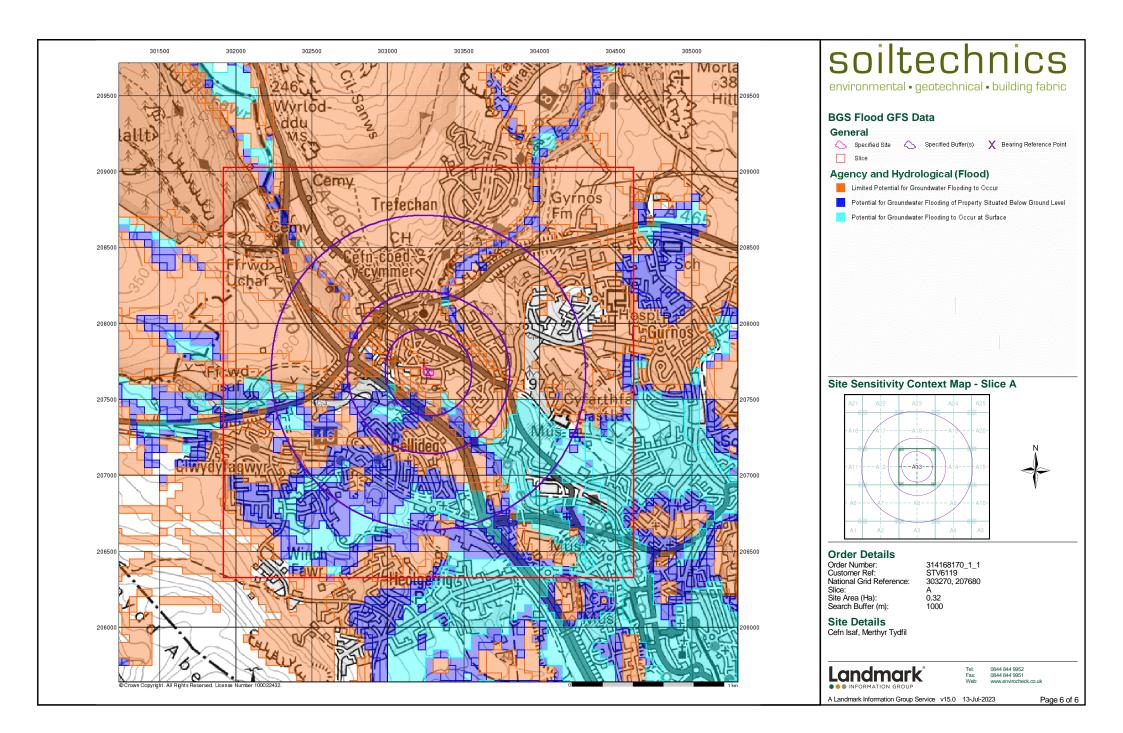

Full Terms and Conditions can be found on the following link: http://www.landmarkinfo.co.uk/Terms/Show/515


Tel: Fax: Web: 0844 844 9952 0844 844 9951 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 13-Jul-2023


Page 1 of 1





Colour					Colou	r		
\square	MGR	Made Ground (Undivided)	Artificial Deposit	Not Supplied - Holocene		PDO	Penderyn Oolite Member	Limestone, Ooidal
	WGR	Worked Ground (Undivided)	Void	Not Supplied - Holocene		DWL	Dowlais Limestone Formation	Limestone
Мар	Lex Code	Superficial C		Min and Max Age		LLY	Lianelly Formation	Limestone and [Subequal/Subordi nate] Argillaceous Rocks, Interbedded
Colour						ABO	Abercriban Oolite Subgroup	Limestone, Ooidal
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Not Supplied - Holocene		ABO	Abercriban Oolite Subgroup	Limestone, Ooidal
	TILLD	Till, Devensian	Diamicton	Not Supplied - Devensian		CCM	Cwmyniscoy Mudstone Formation	Mudstone
	TILLD	Till, Devensian	Diamicton	Not Supplied - Devensian		CCL	Castell Coch Limestone Formation	Limestone
	GFDUD	Glaciofluvial Deposits, Devensian	Sand and Gravel	Not Supplied - Devensian		GRG	Grey Grits Formation	Sandstone
	HEAD	Head	Clay, Silt, Sand and Gravel	Not Supplied - Quaternary			Faults	
	RTDU	River Terrace Deposits (Undifferentiated)	Sand and Gravel	Not Supplied - Quaternary			Rock Segments	

Geology 1:50,000 Maps Legends

Мар

Lex Code

Rock Name

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age	c
	MGR	Made Ground (Undivided)	Artificial Deposit	Not Supplied - Holocene	
	WGR	Worked Ground (Undivided)	Void	Not Supplied - Holocene	

numerennaleu)	
Bedrock and	Equite
Deurock anu	Гаинэ

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	SWMCM	South Wales Middle Coal Measures Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	SWMCM	South Wales Middle Coal Measures Formation	Sandstone	Not Supplied - Westphalian
	SWLCM	South Wales Lower Coal Measures Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	SWLCM	South Wales Lower Coal Measures Formation	Sandstone	Not Supplied - Westphalian
	BISHM	Bishopston Mudstone Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Namurian
	BISHM	Bishopston Mudstone Formation		
	TWR	Twrch Sandstone Formation	Sandstone and Conglomerate, Interbedded	Not Supplied - Namurian
	OHL	Oxwich Head Limestone Formation	Limestone	Not Supplied - Visean

soiltechnics

environmental - geotechnical - building fabric

Geology 1:50,000 Maps

Min and Max Age

Not Supplied -

Not Supplied -Tournaisian Not Supplied -

Tournaisian

Famennian

Tournaisian

Tournaisian

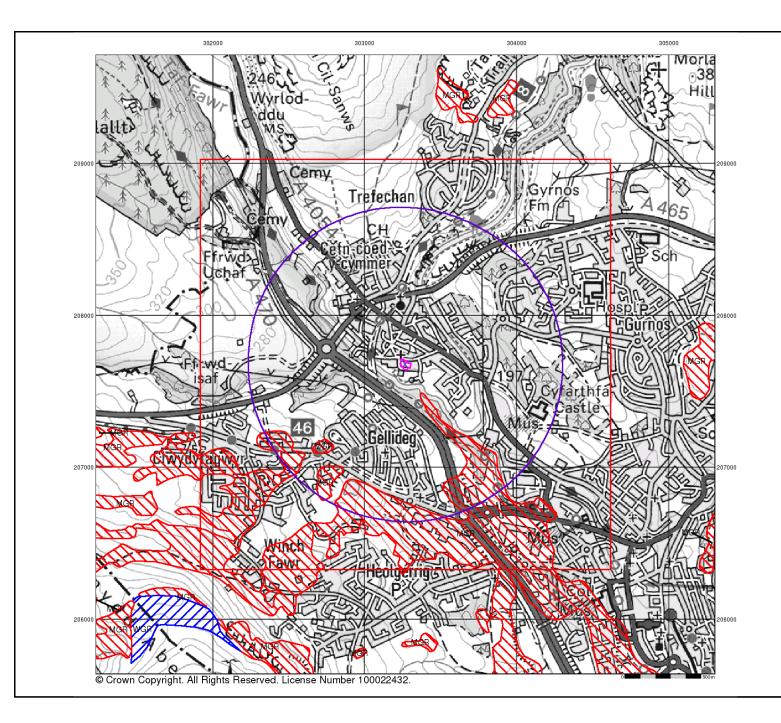
Visean

Visean

Visean

Rock Type

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.


The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

Map ID:	1
Map Sheet No:	231
Map Name:	Merthyr Tydfi
Map Date:	1979
Bedrock Geology:	Available
Superficial Geology:	Available
Artificial Geology:	Available
Faults:	Not Supplied
Landslip:	Available
Rock Segments:	Not Supplied

Map ID

Geology 1:50,000 Maps - Slice A -THB **Order Details:** 314168170_1_1 STV6119 Order Number: Customer Reference: National Grid Reference: 303270, 207680 Slice: A 0.32 Site Area (Ha): Search Buffer (m): 1000 Site Details: Cefn Isaf, Merthyr Tydfil Tel: Fax: 0844 844 9952 0844 844 9951 Landmark Web www.envirocheck.co.uk INFORMATION GI v15.0 13-Jul-2023 Page 1 of 5

environmental - geotechnical - building fabric

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.

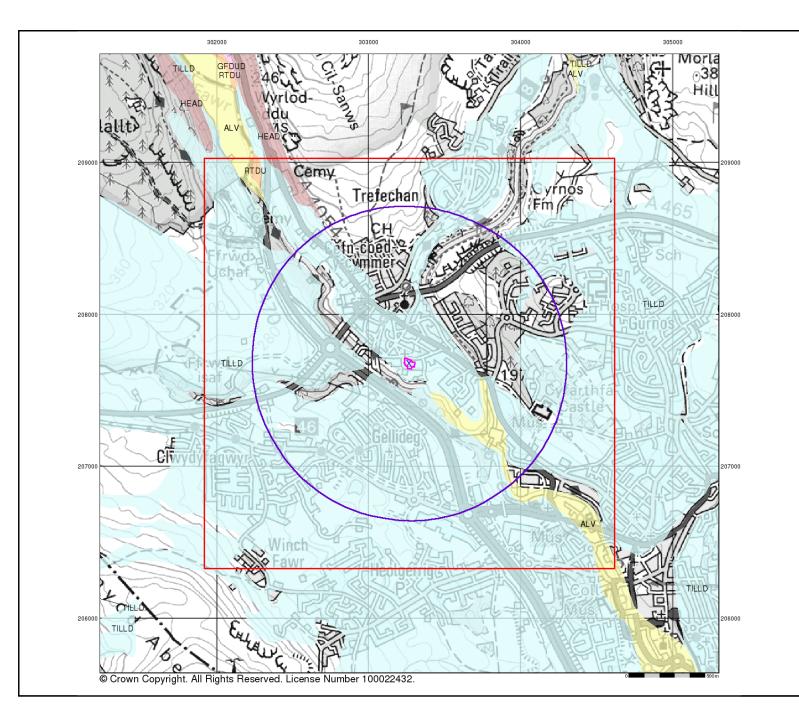
Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil heaps on the natural ground surface.
 Worked ground - areas where the ground has been cut away such as
- Worked ground areas where the ground has been cut away such as quarries and road cuttings.

- Infilled ground - areas where the ground has been cut away then wholly or partially backfilled.

 Landscaped ground - areas where the surface has been reshaped.
 Disturbed ground - areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground separately.

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

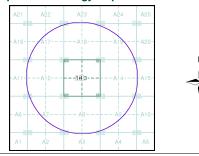

Artificial Ground and Landslip Map - Slice A

Order Details: Order Number: 314168170_1_1 Customer Reference: STV6119 National Grid Reference: 303270, 207680 Slice: A Site Area (Ha): 0.32 Search Buffer (m): 1000 Site Details: Cefn Isaf, Merthyr Tydfil

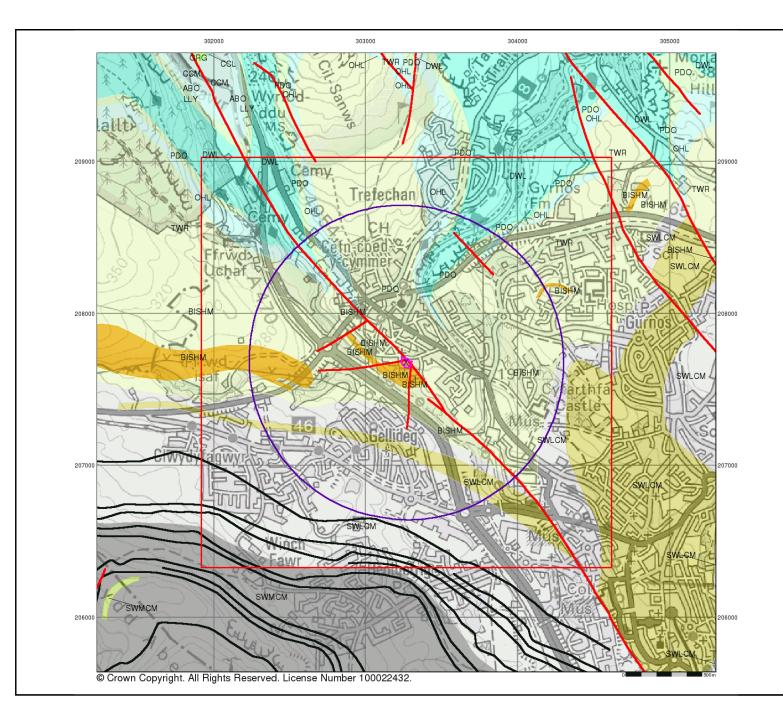
Landmark ••• INFORMATION GROUP v15.0 13-Jul-2023 0844 844 9952 0844 844 9951

www.envirocheck.co.uk

environmental • geotechnical • building fabric


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

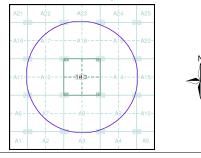

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Order Details: 314168170_1_1 STV6119 303270, 207680 Order Number: Customer Reference: National Grid Reference: Slice: Site Area (Ha): Search Buffer (m): A 0.32 1000 Site Details: Cefn Isaf, Merthyr Tydfil 0844 844 9952 0844 844 9951 Landmark Tel: Fax: Web: www.envirocheck.co.uk INFORMATION v15.0 13-Jul-2023

environmental - geotechnical - building fabric

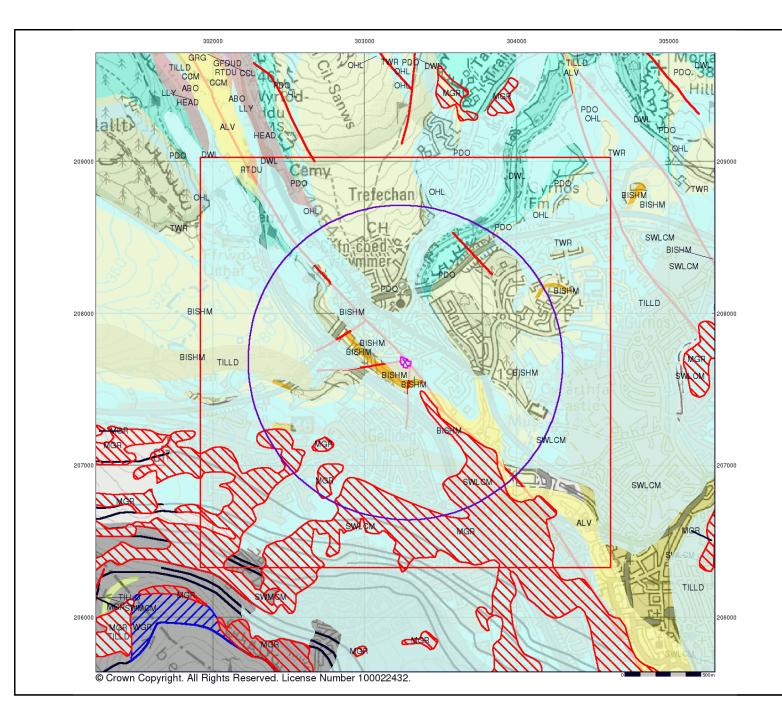
Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.



Order Details: 314168170_1_1 STV6119 Order Number: Customer Reference: National Grid Reference: 303270, 207680 Slice: A 0.32 Site Area (Ha): Search Buffer (m): 1000 Site Details: Cefn Isaf, Merthyr Tydfil Landmark Tel: Fax: 0844 844 9952 0844 844 9951 Web www.envirocheck.co.uk

v15.0 13-Jul-2023

Page 4 of 5

environmental • geotechnical • building fabric

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS website.

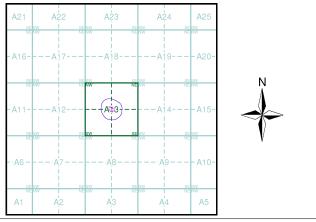
Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Combined Geology Map - Slice A Order Details: Order Number: Customer Reference: 314168170_1_1 STV6119 National Grid Reference: 303270, 207680 Slice: A 0.32 Site Area (Ha): Search Buffer (m): 1000 Site Details: Cefn Isaf, Merthyr Tydfil Tel: Fax: Web: 0844 844 9952 0844 844 9951 Landmark www.envirocheck.co.uk v15.0 13-Jul-2023

Page 5 of 5

Historical Mapping Legends


Ordnance Survey County Series 1:10,560			Ordnance Survey Plan 1:10,000				1:10,000 Raster Mapping			
Grave Pit	el Sand Pit	Other Million Pits	En aller	. Chalk Pit, Clay Pit or Quarry	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ç∂ Gravel Pit		Gravel Pit		Refuse tip or slag heap
C Quarr	ry Shingle	Orchard		Sand Pit	, 	 Disused Pit or Quarry 		Rock		Rock (scattered)
<u>پ</u> [*] / [*] /	rs	Marsh		Refuse or Slag Heap		Lake, Loch or Pond		Boulders	0 0 0 0	Boulders (scattered)
4 2 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		107 207 207 127 107 207 207		Dunes	°°°°°	b Boulders	· · · · · · · · · · · · · · · · · · ·	Shingle	Mud	Mud
Mixed Wood	Deciduous	Brushwood	* * *	Coniferous Trees	A A A	Non-Coniferous Trees	Sand	Sand		Sand Pit
		and a start of start	ф	Orchard Ω ດ_	Scrub	אן Coppice	*******	Slopes	لللللللللل	Top of cliff Underground
Fir	آتی میگیر Furze	Rough Pasture	ਜ ਜ ਜ	Bracken SMULL	Heath '	, , , , , Rough Grassland		General detail - O∨erhead detail		detail Narrow gauge railway
	row denotes▲ ⊮ of water	Trigonometrical Station	_ <u></u>	Marsh 、、、Y///	Reeds	<u>ے بح</u> ے Saltings	-	Multi-track railway		Single track railway
•	e of Antiquities 🔹 🛧	Bench Mark		Direct	tion of Flow of V	Water	_•_•	County boundary (England only) District, Unitary,	•••••	Ci∨il, parish or community boundary
• Sig	mp, Guide Post, gnal Post rface Level	Well, Spring, Boundary Post		Glasshouse	*	Sand		Metropolitan, London Borough boundary		Constituency boundary
Sketched	Instrum Contou	200		Sloping Masonry	Pylon — — 🗆 — 🖓 Pole	 Electricity Transmission Line 	Q CA * [‡]		۵۵ ۵۵	Non-coniferou trees
Main Roads	Fenced Minor F	Fenced Un-Fenced	Cutting	Embankme		-	Ω ↓	Non-coniferous trees (scattered) Coniferous	** **	Coniferous trees Positioned
	Un-Fenced Sunken Road	Raised Road	····			Multiple Track	* *	trees (scattered)	<u>A</u>	tree
an international contraction of the second	Road over Railway	Railway over River	Road ' ' '∏ Under	''' Road // Leve Over Crossi		Single Track Siding, Tramway or Mineral Line	چ چ چ چ	Orchard Rough	K di	or Ösiers
and the second s	Railway over	Level Crossing	-++	+ + + + +		→ Narrow Gauge	ູ ເງິ <i>ໂ</i> , 	Grassland		Heath Marsh, Salt
	Road over	Road over		Geographical Cou	ounty, County E	Borough	00-	Scrub	_ <u>√</u> ∠	Marsh or Reed
	River or Canal Road over) Stream		or County of City Municipal Boroug Burgh or District	gh, Urban or Ru Council	·	MHW(S)	Water feature Mean high	< MLW(S)	Flow arrows Mean low
//	Stream County Boundary (Geogra	aphical)	· · · · · · · · · · · · · · · · · · ·	Shown only when no	ot coincident with			water (springs) Telephone line	-	water (springs Electricity
	County & Civil Parish Bou	•		_				(where shown) Bench mark	+-	transmission l (with poles)
+·+·+·+	Administrati∨e County & 0	_	Ch (Boundary Post or Stone Church Club House	PO	Police Station Post Office Public Convenience	← BM 123.45 m	where shown) Point feature	Δ	Triangulation station
	County Borough Boundar		F E Sta F	Fire Engine Station Foot Bridge	PH	Public Convenience Public House Signal Box	•	(e.g. Guide Post or Mile Stone)		Pylon, flare st or lighting tow
Co. Boro. Bdy.				-		-				
Co. Boro. Bdy. Co. Burgh Bdy.	County Burgh Boundary (Rural District Boundary	Scolland)	GP (Fountain Guide Post Mile Post	тсв	Spring Telephone Call Box Telephone Call Post	•	Site of (antiquity)		Glasshouse

soiltechnics environmental • geotechnical • building fabric

Historical Mapping & Photography included:

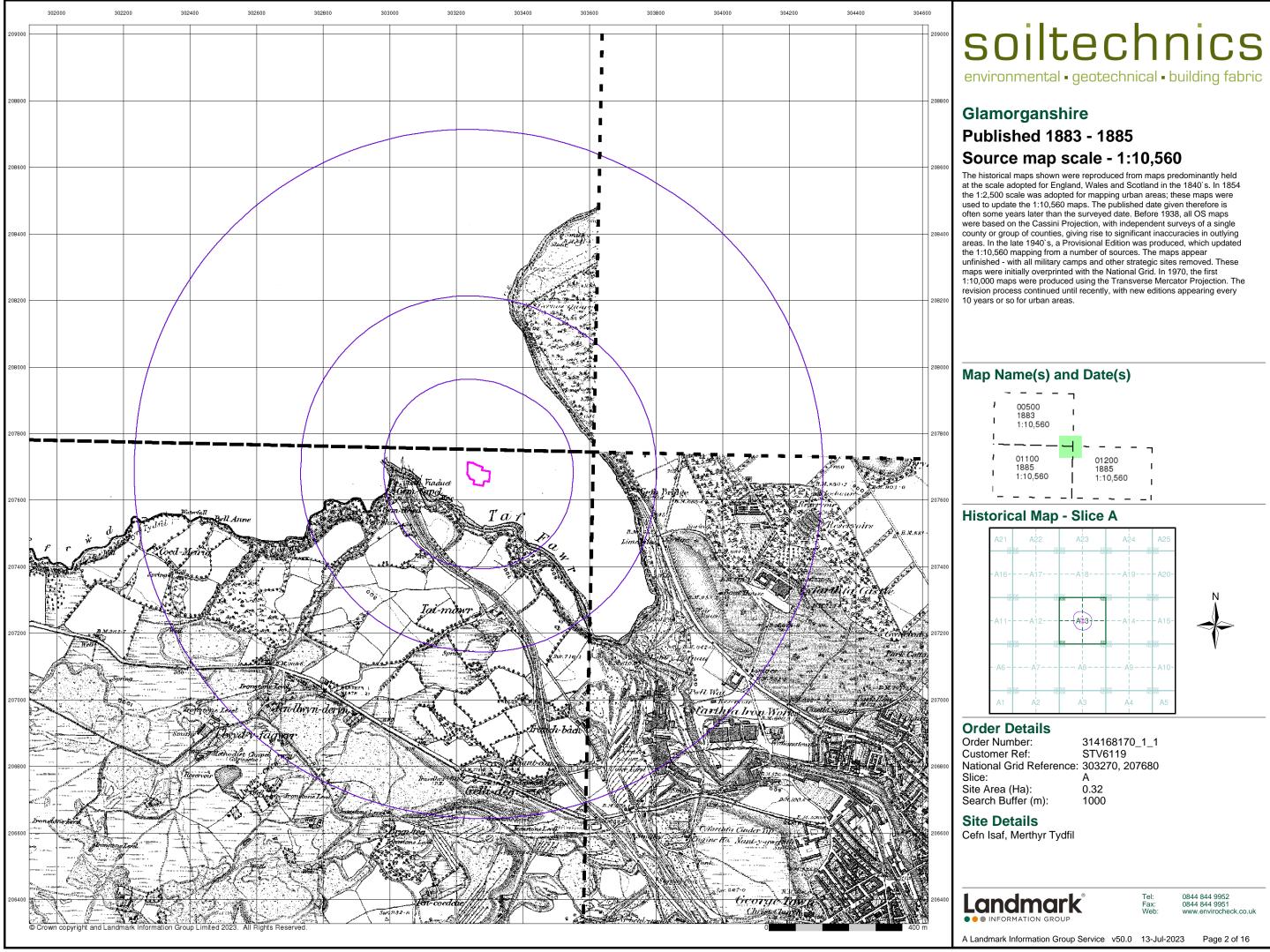
Mapping Type	Scale	Date	Pg
Glamorganshire	1:10,560	1883 - 1885	2
Brecknockshire	1:10,560	1884 - 1885	3
Monmouthshire	1:10,560	1884	4
Glamorganshire	1:10,560	1901	5
Brecknockshire	1:10,560	1905	6
Brecknockshire	1:10,560	1921 - 1922	7
Brecknockshire	1:10,560	1938 - 1952	8
Historical Aerial Photography	1:10,560	1945	9
Brecknockshire	1:10,560	1951 - 1952	10
Ordnance Survey Plan	1:10,000	1965	11
Ordnance Survey Plan	1:10,000	1979	12
Ordnance Survey Plan	1:10,000	1992	13
10K Raster Mapping	1:10,000	1999	14
10K Raster Mapping	1:10,000	2006	15
VectorMap Local	1:10,000	2023	16

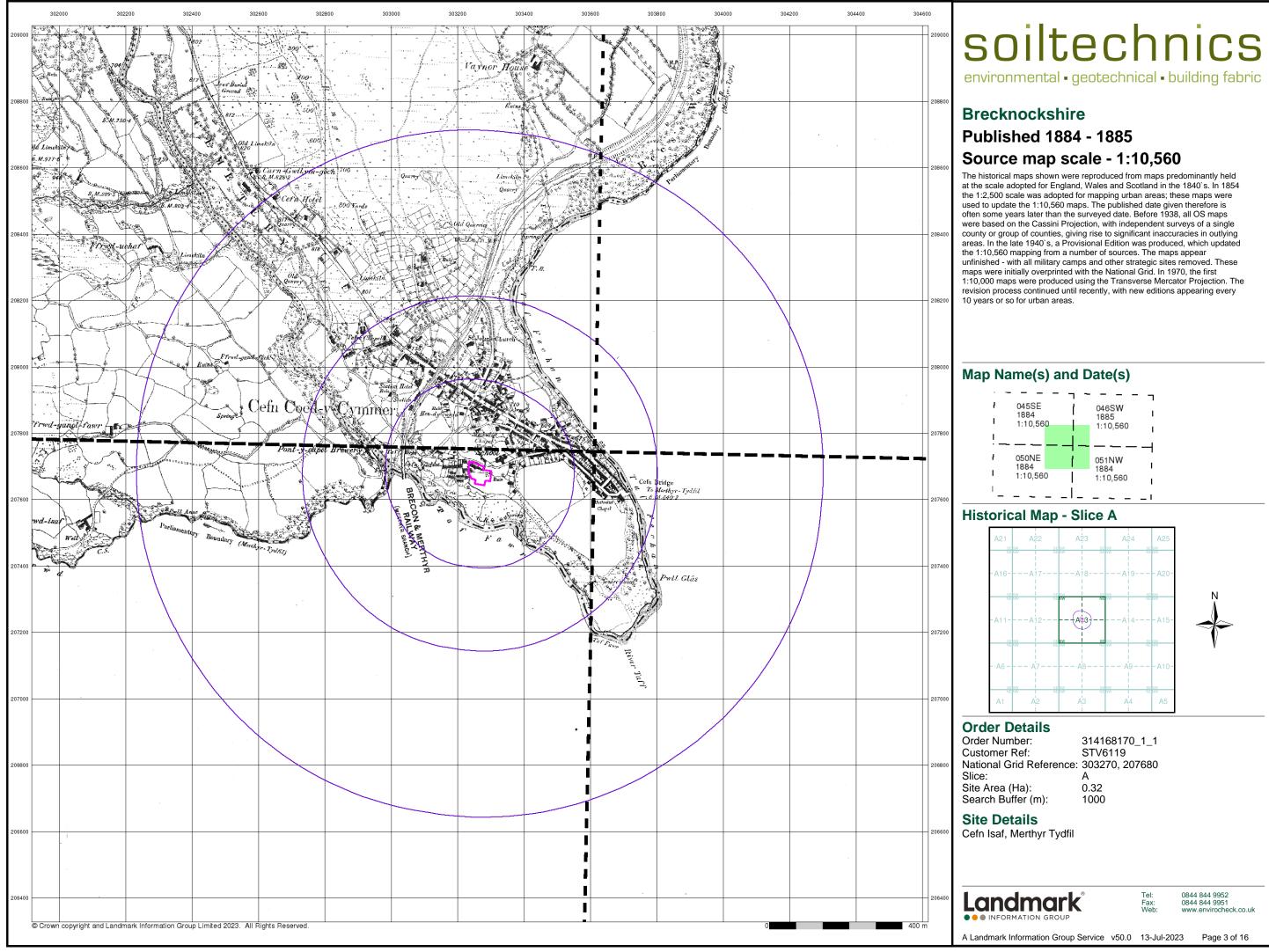
Historical Map - Slice A

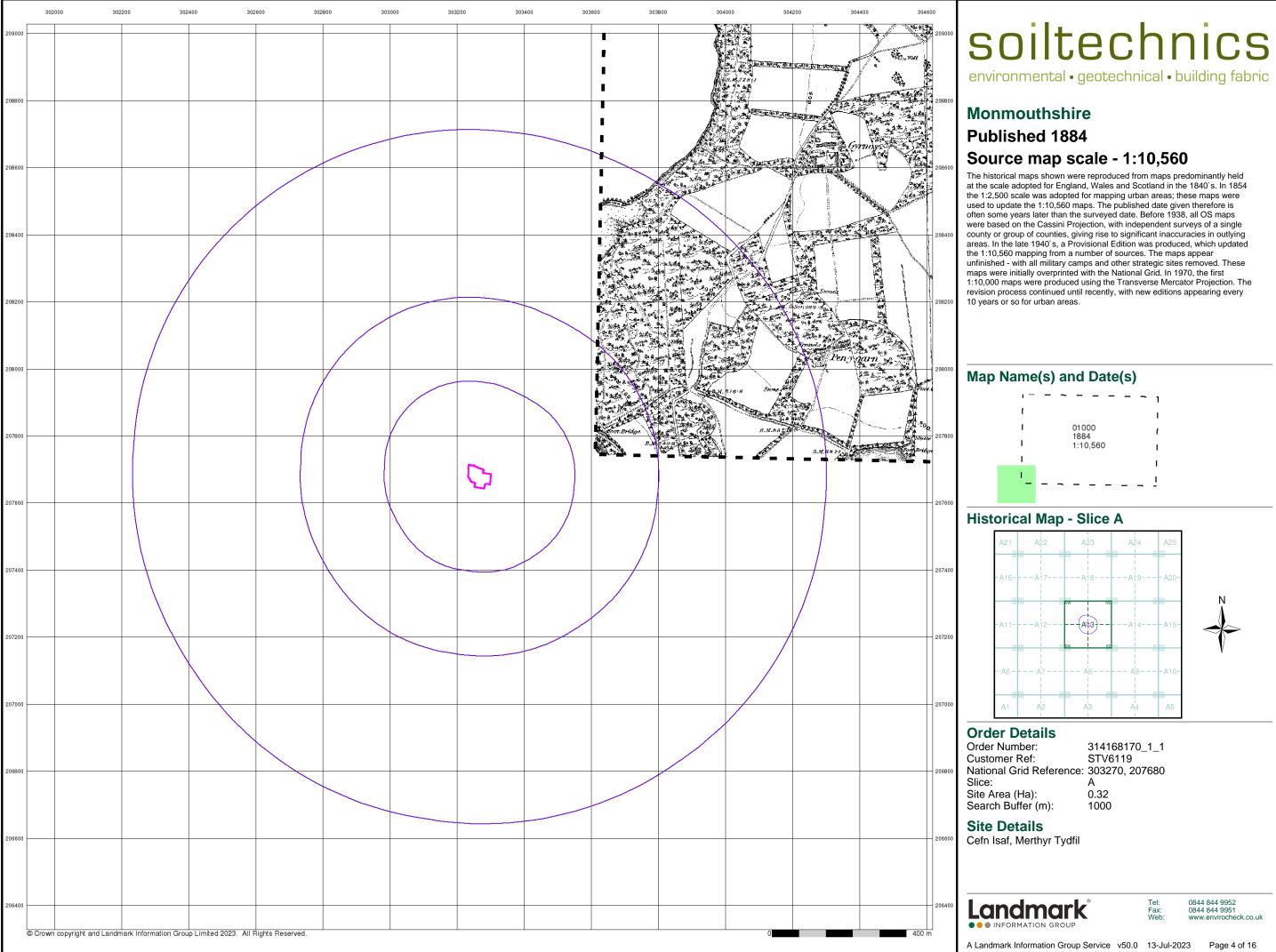
Order Details

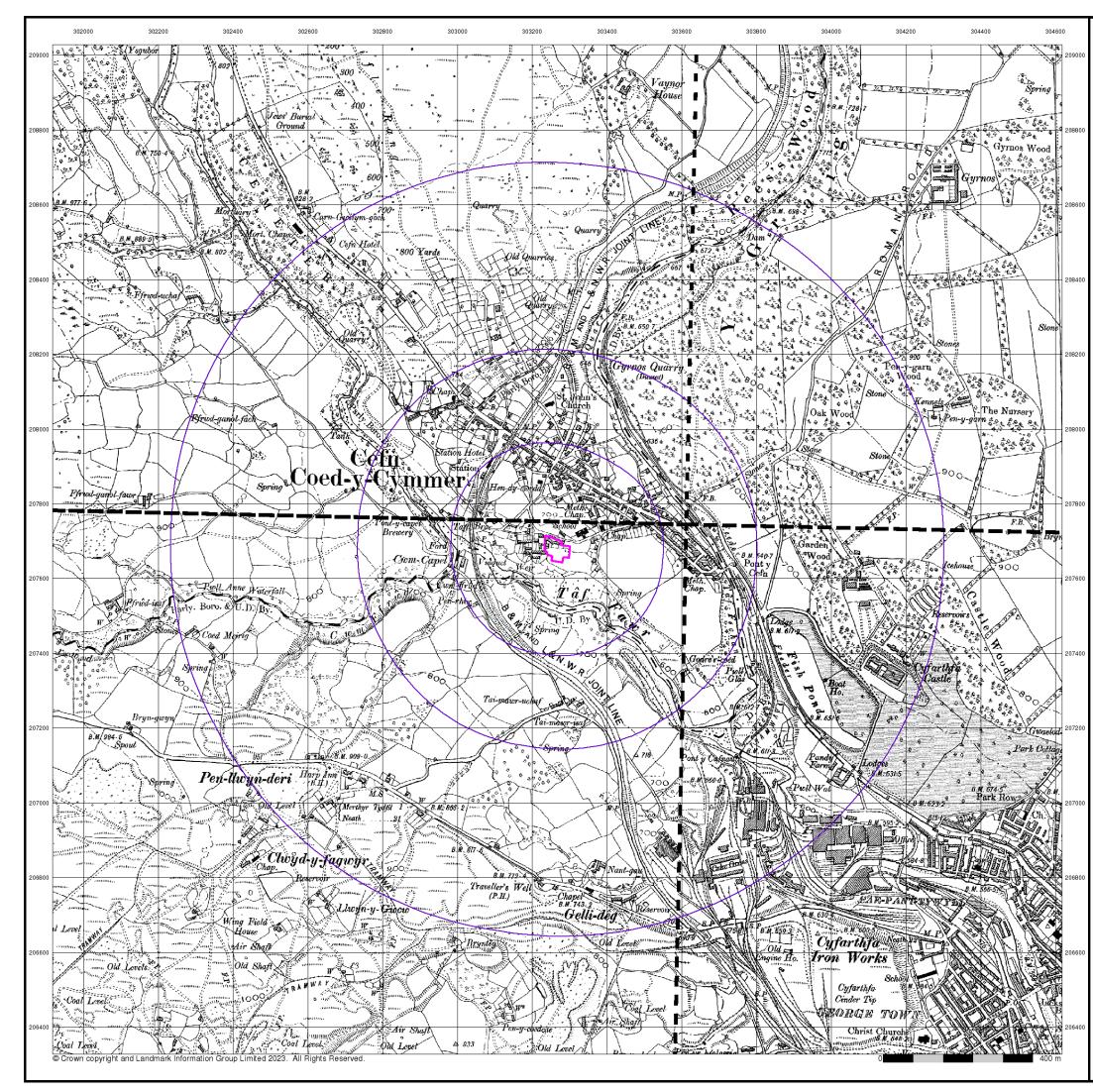
Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Site Area (Ha): Search Buffer (m):

314168170_1_1 STV6119 А 0.32 1000

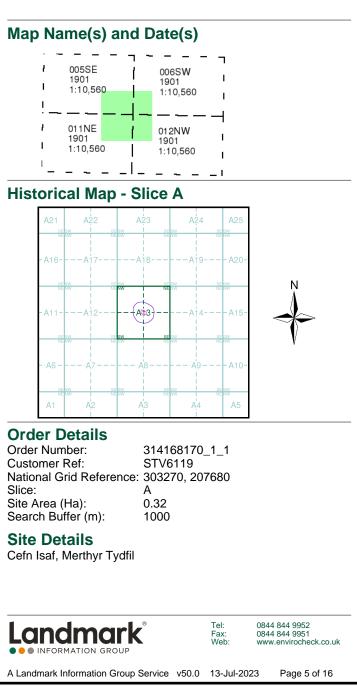

Tel: Fax: Web:

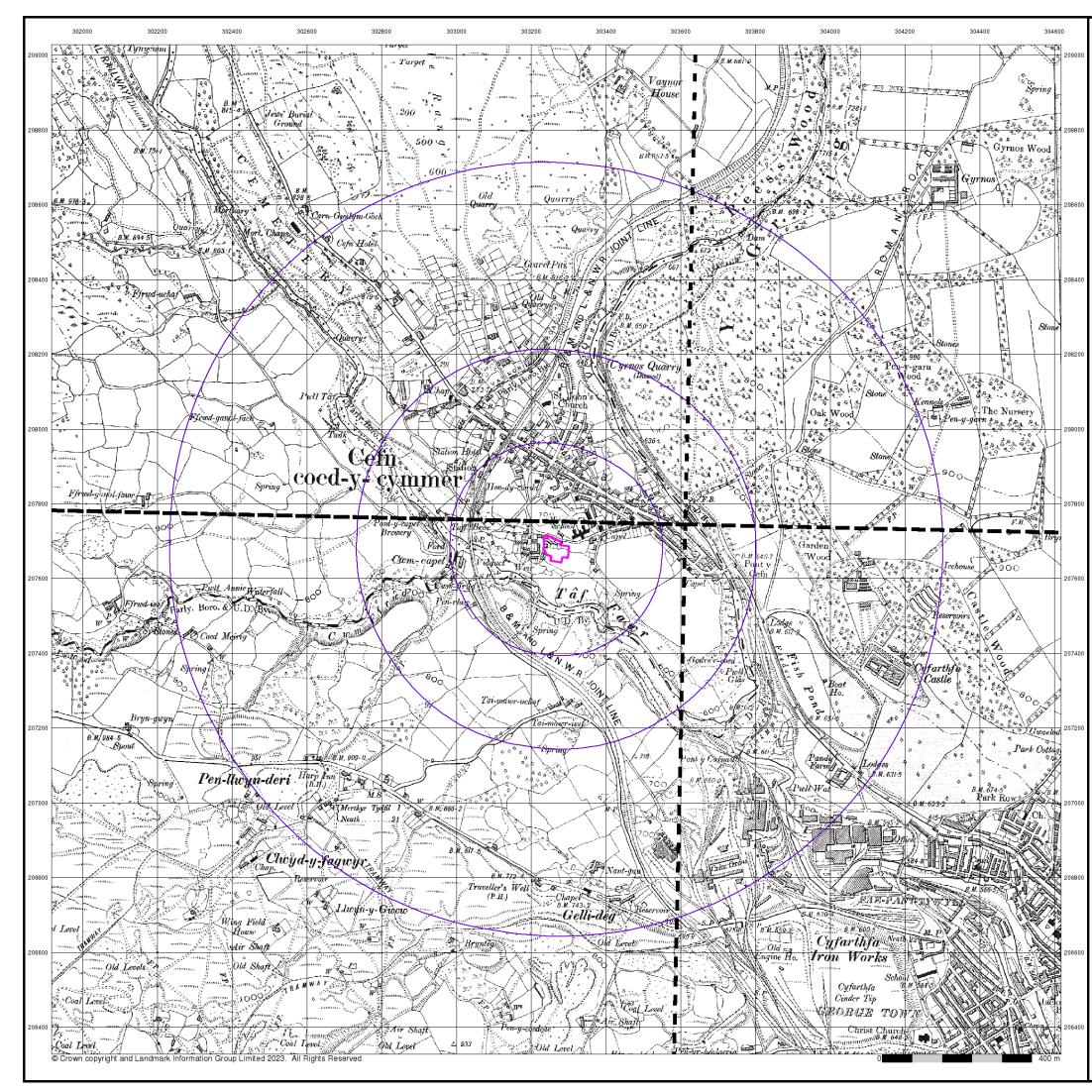



Cefn Isaf, Merthyr Tydfil



0844 844 9952 0844 844 9951 www.envirocheck.co.uk

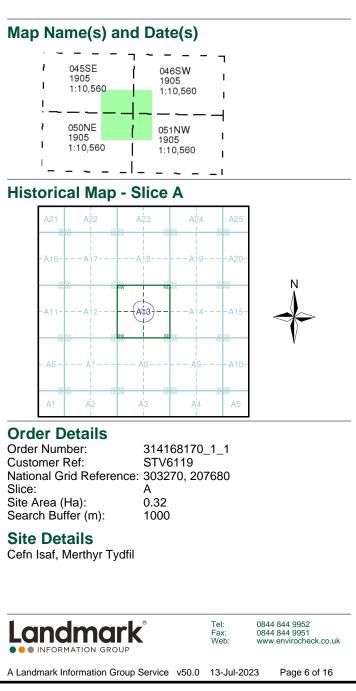


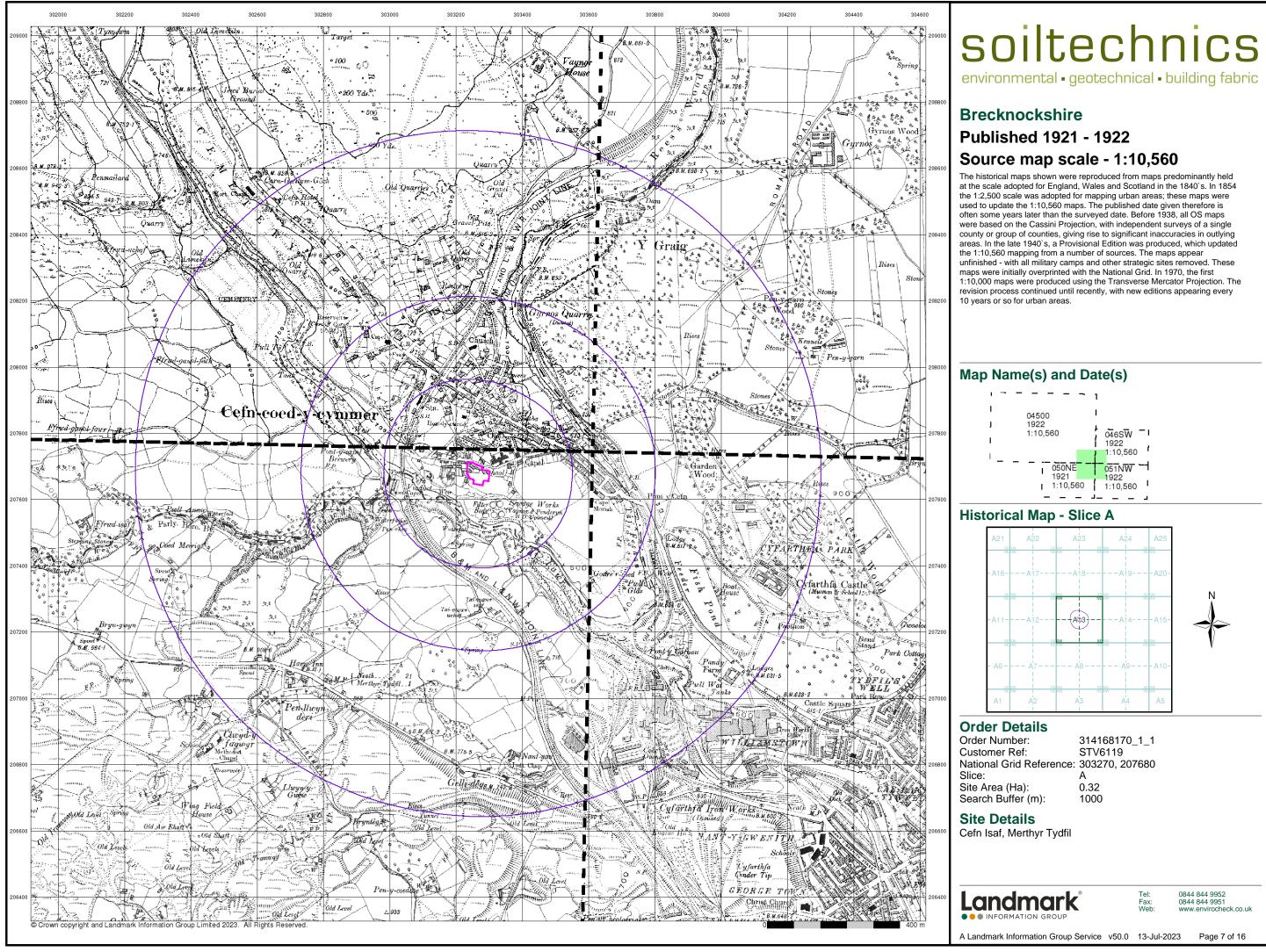


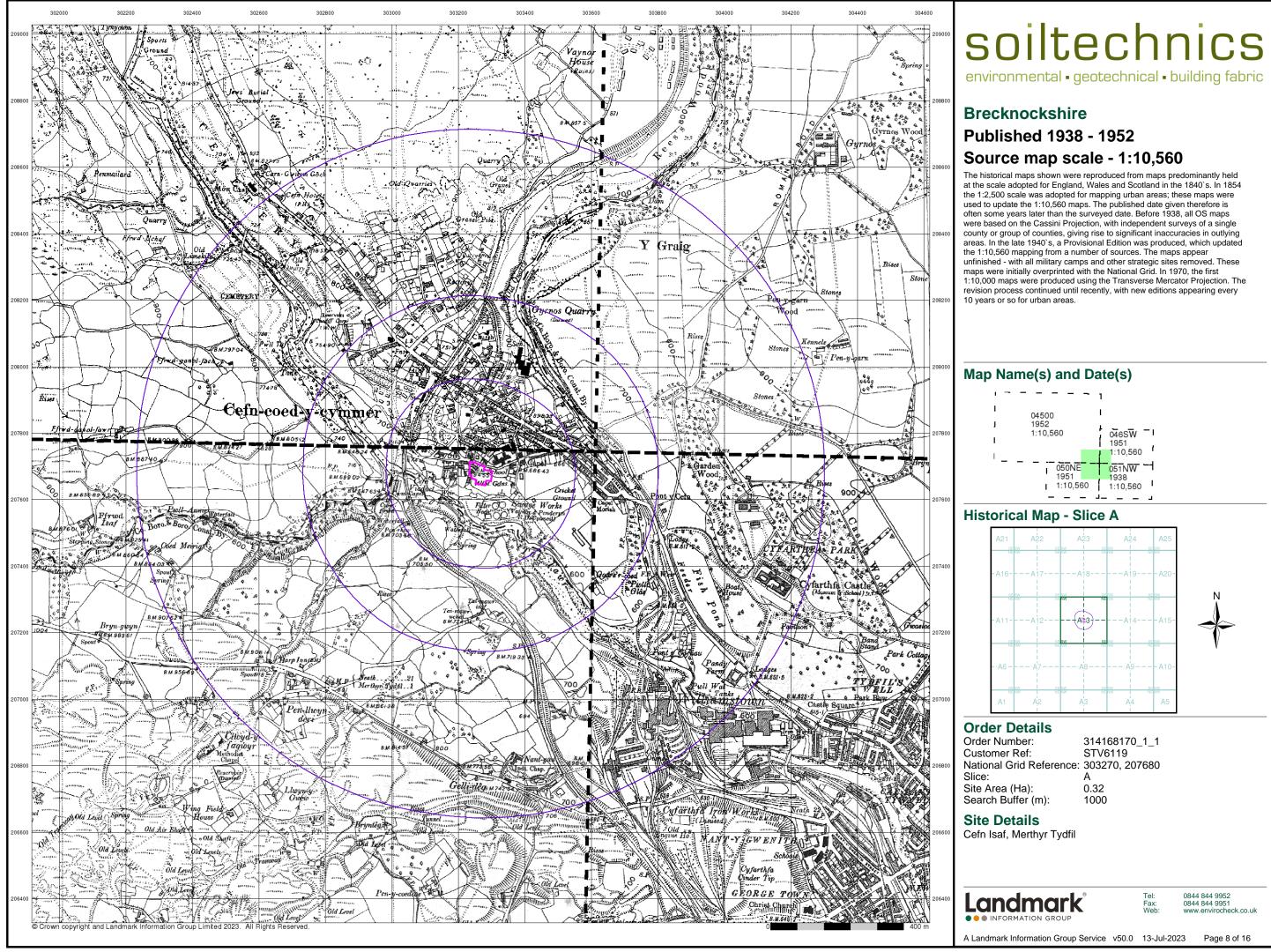
Glamorganshire Published 1901

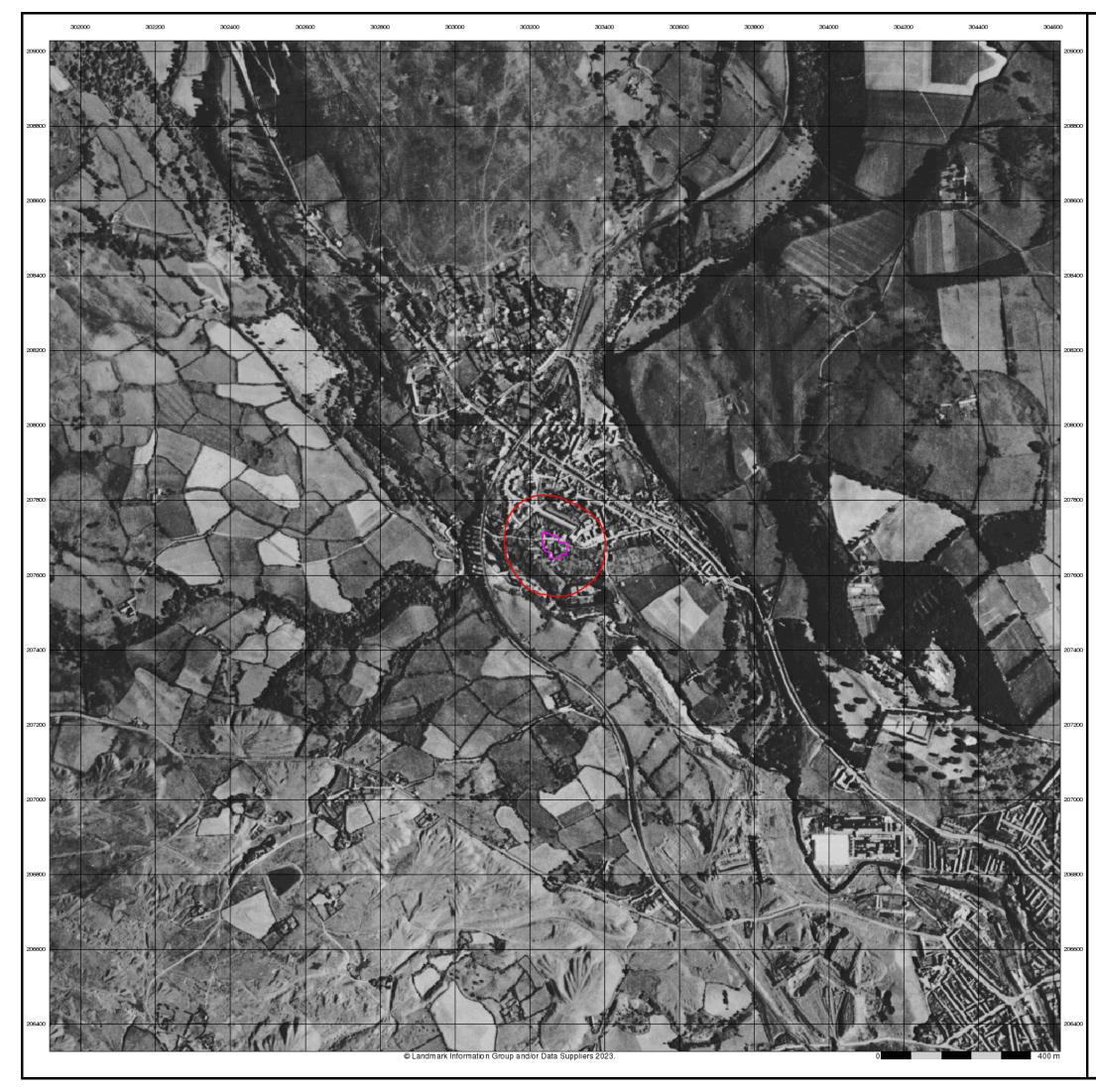
Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.



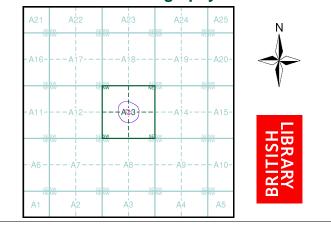



Brecknockshire Published 1905


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Historical Aerial Photography Published 1945 Source map scale - 1:10,560


The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was re-checked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

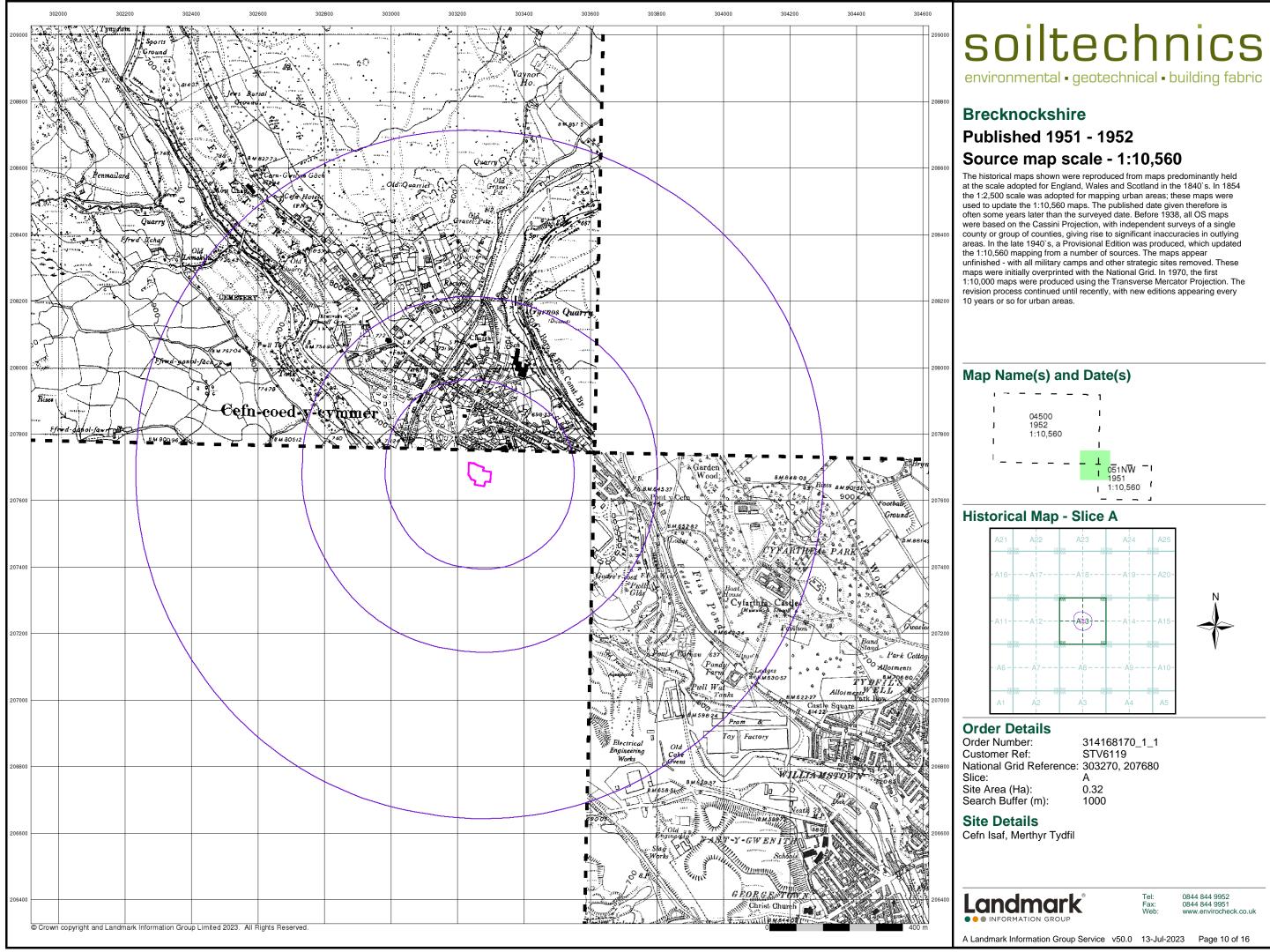
© Landmark Information Group and/or Data Suppliers 201

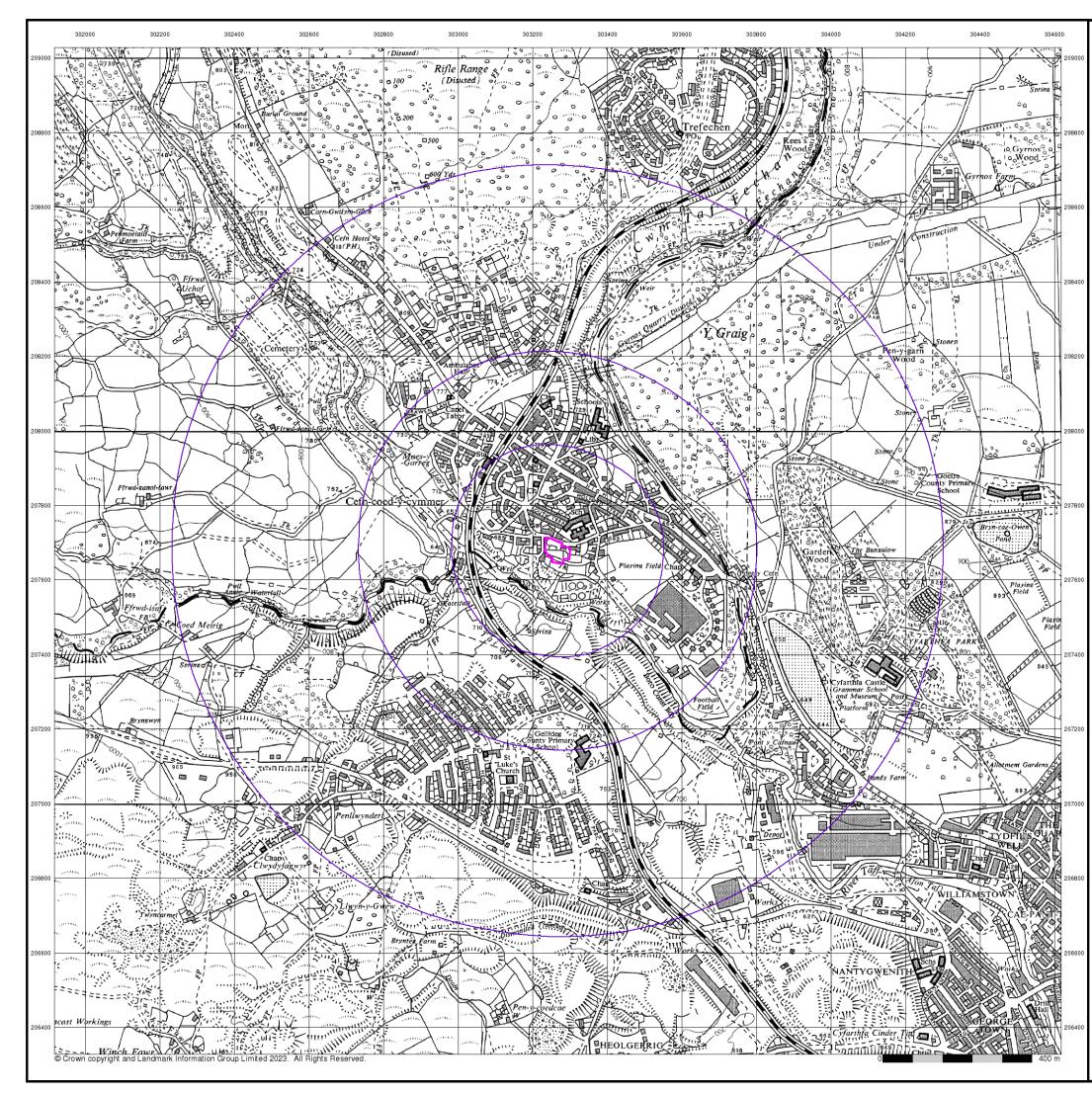
Map Name(s) and Date(s)

Historical Aerial Photography - Slice A

Order Details

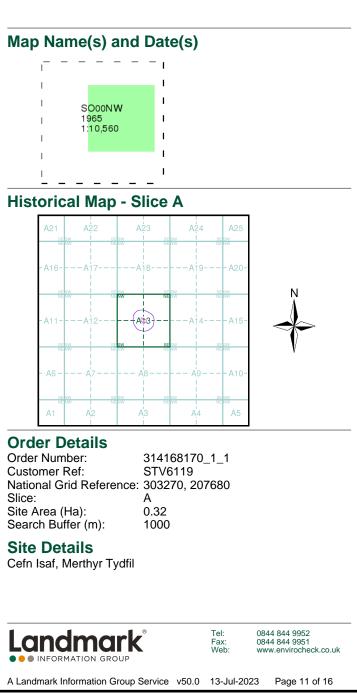
Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	A
Site Area (Ha):	0.32
Search Buffer (m):	1000

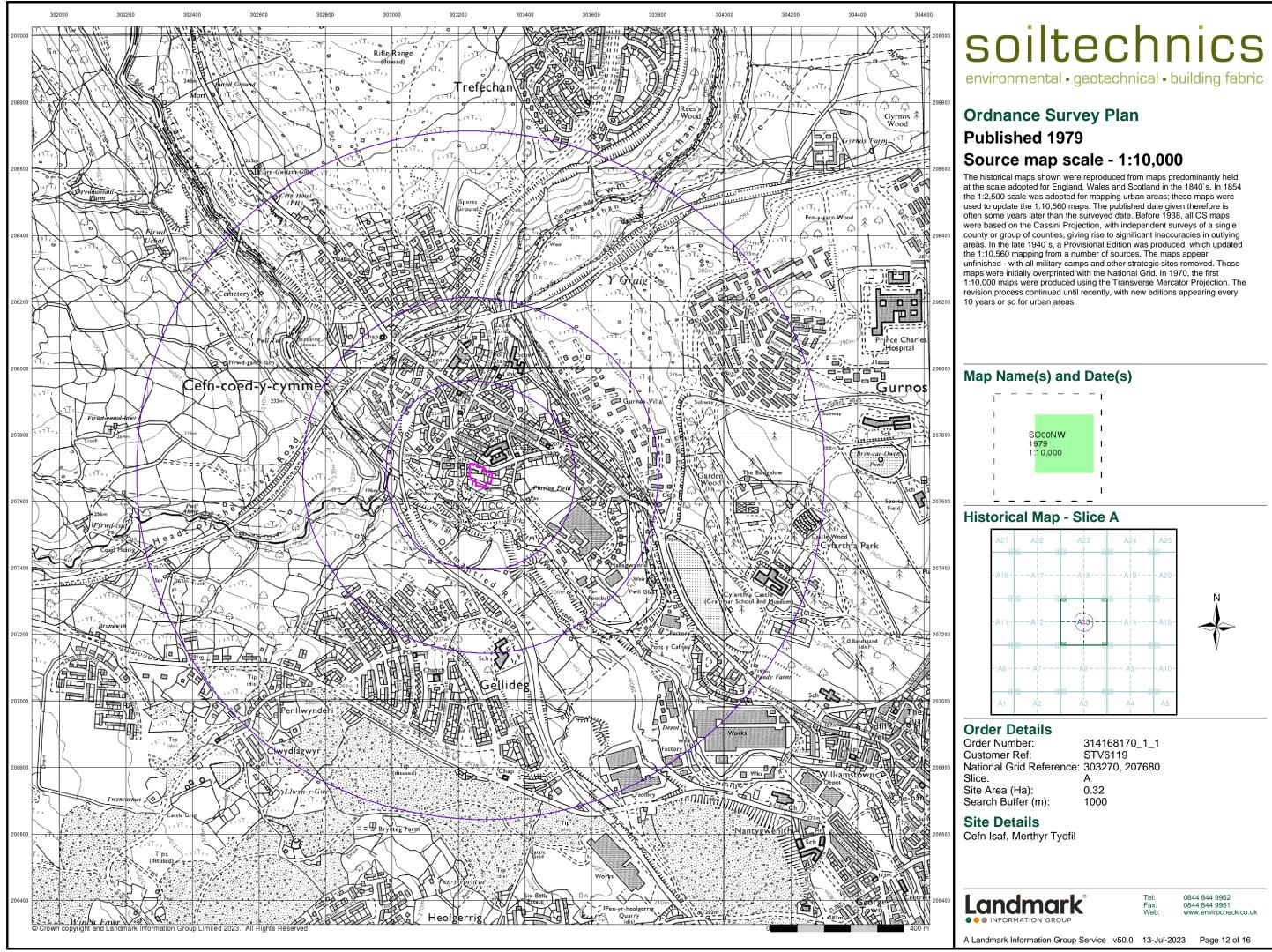

Site Details

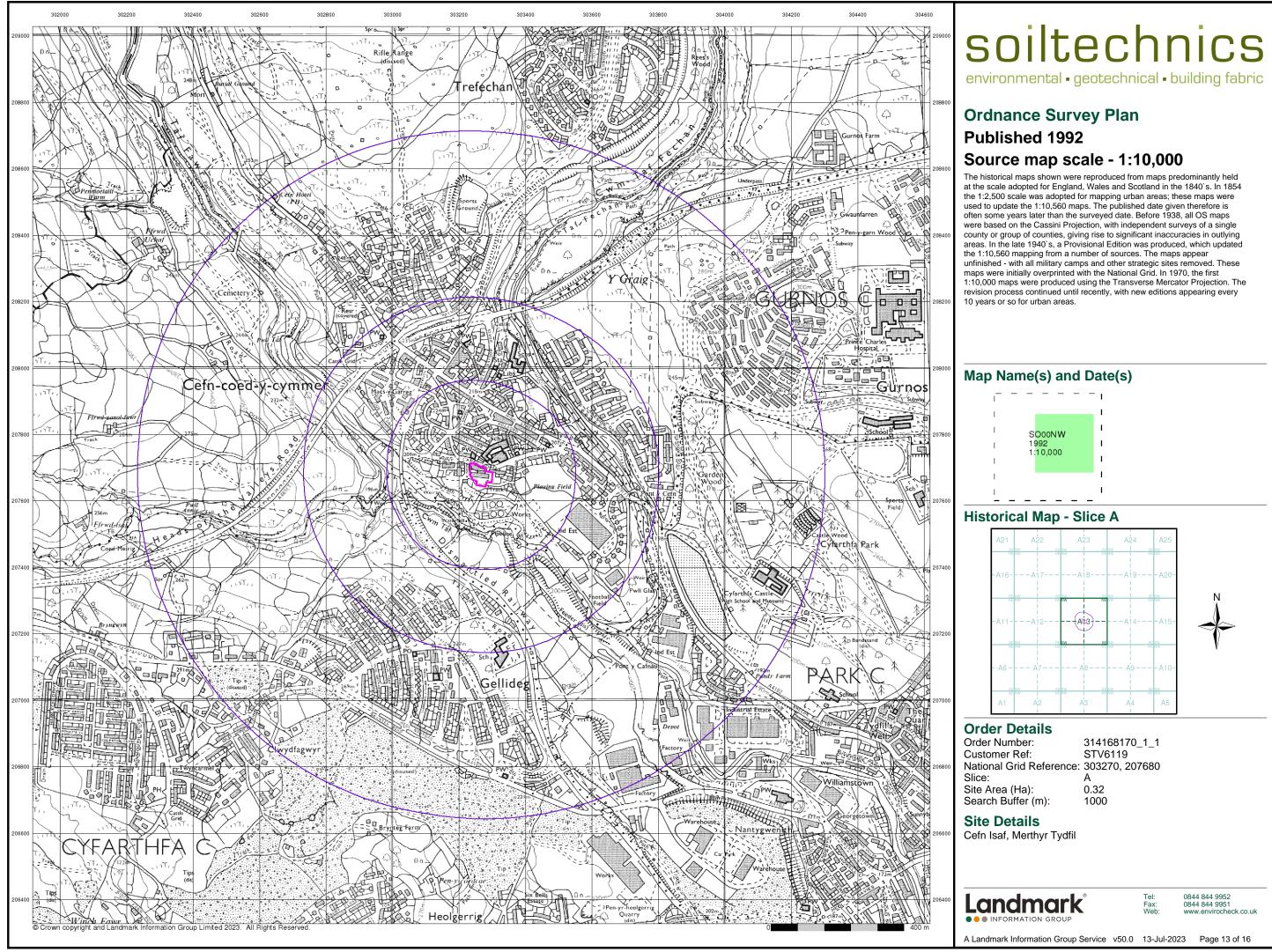

Cefn Isaf, Merthyr Tydfil

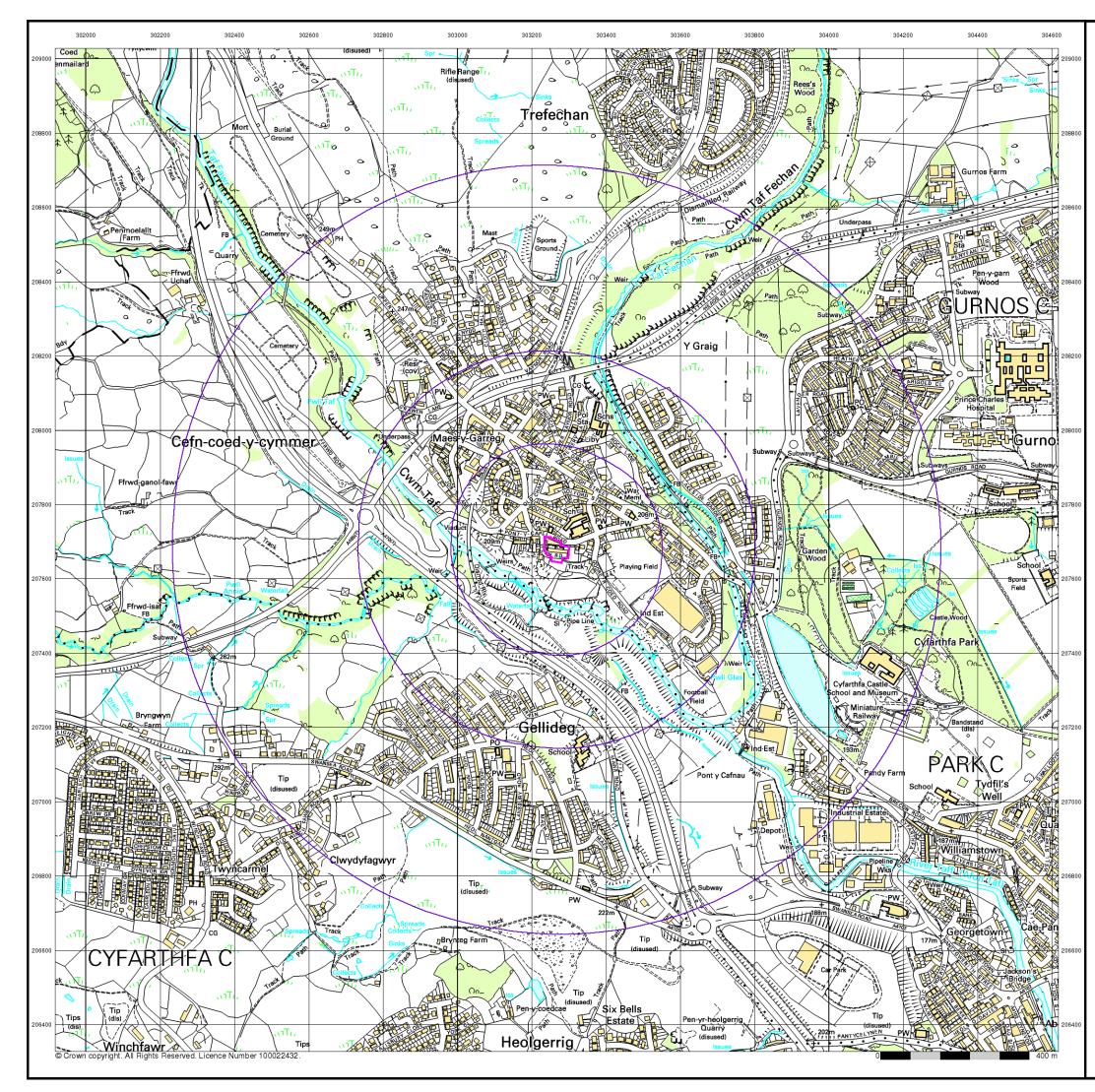
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:



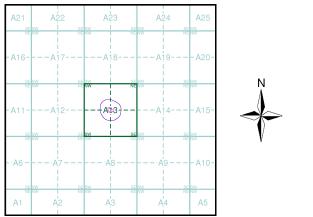



Ordnance Survey Plan Published 1965


Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

10k Raster Mapping Published 1999


Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

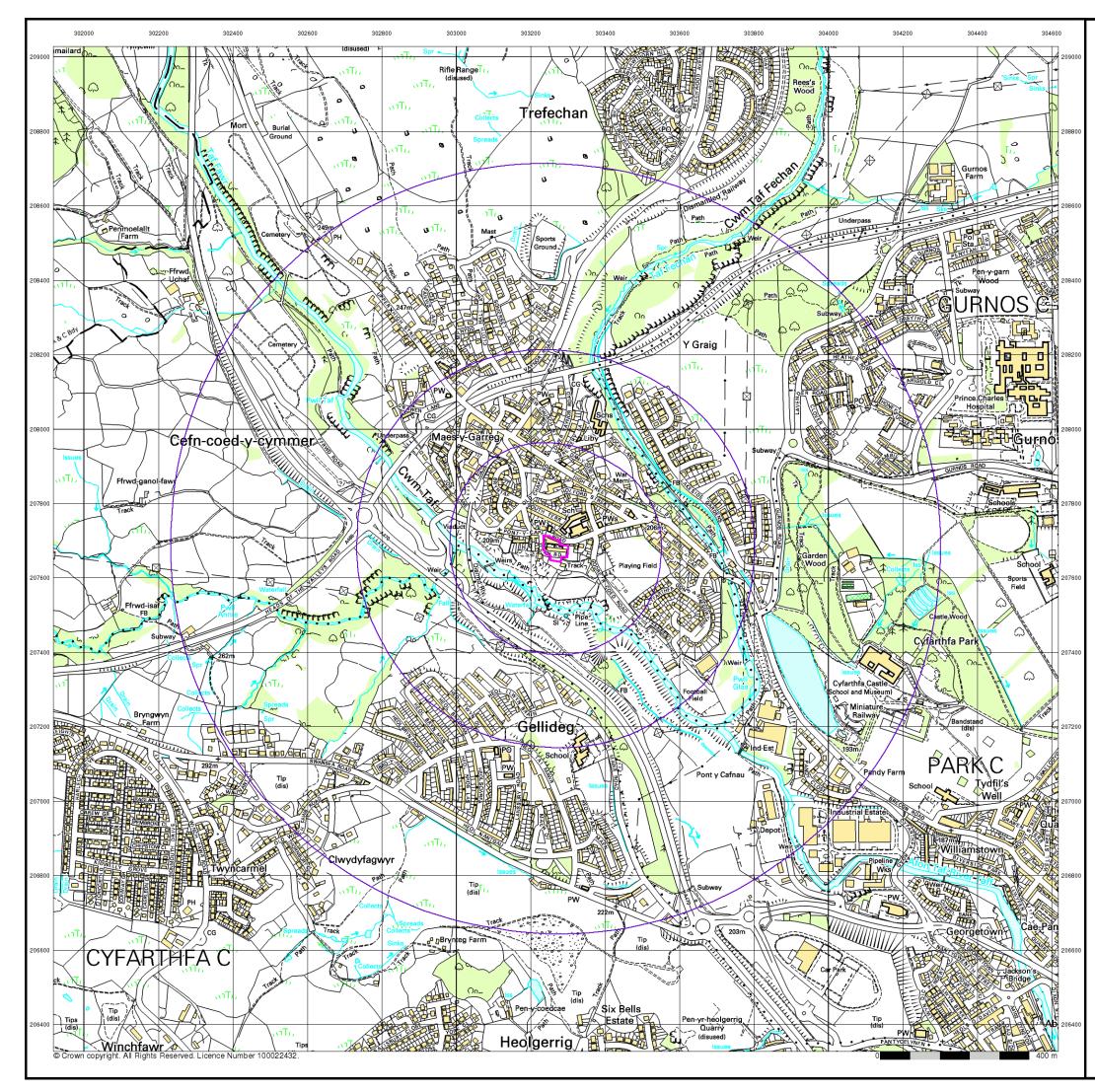
ı	—	—	_	—	_	-	I
L							I
L		s	100C	w			I
T		19	999 10,0				I
L		- ''	10,0	00			I
L							I
I							I

Historical Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: А Site Area (Ha): Search Buffer (m):

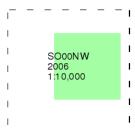
314168170_1_1 STV6119 0.32 1000


Site Details

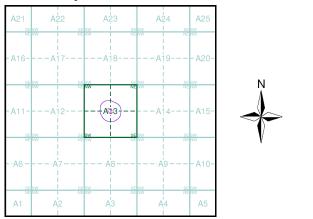
Cefn Isaf, Merthyr Tydfil

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:



10k Raster Mapping Published 2006


Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

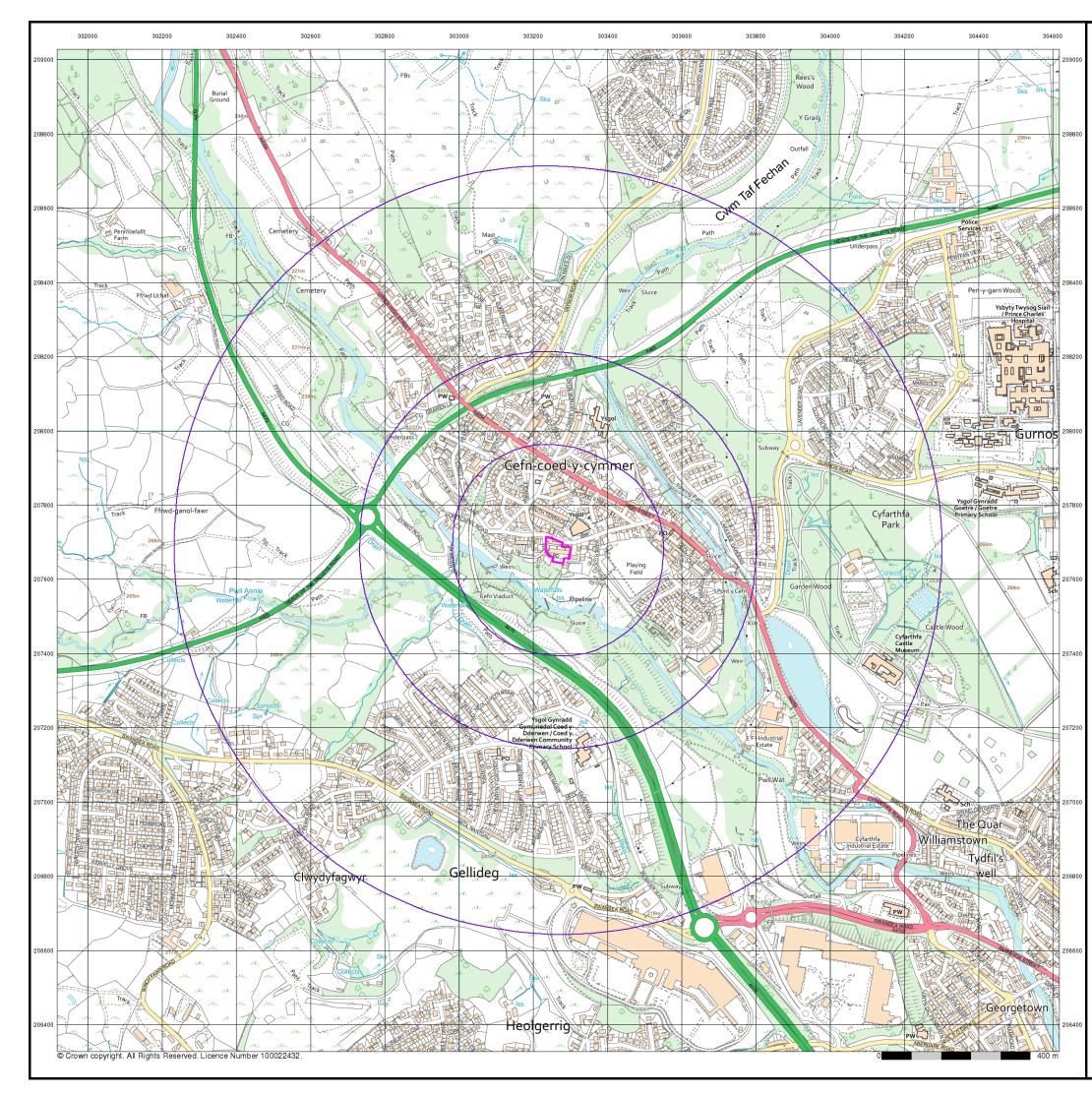
Historical Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: А Site Area (Ha): Search Buffer (m):

314168170_1_1 STV6119 0.32 1000

Site Details

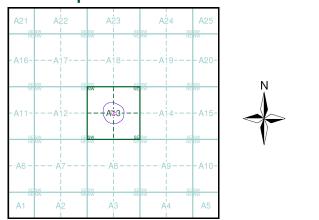

Cefn Isaf, Merthyr Tydfil

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

A Landmark Information Group Service v50.0 13-Jul-2023 Page 15 of 16

VectorMap Local Published 2023


Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and river estuary areas).

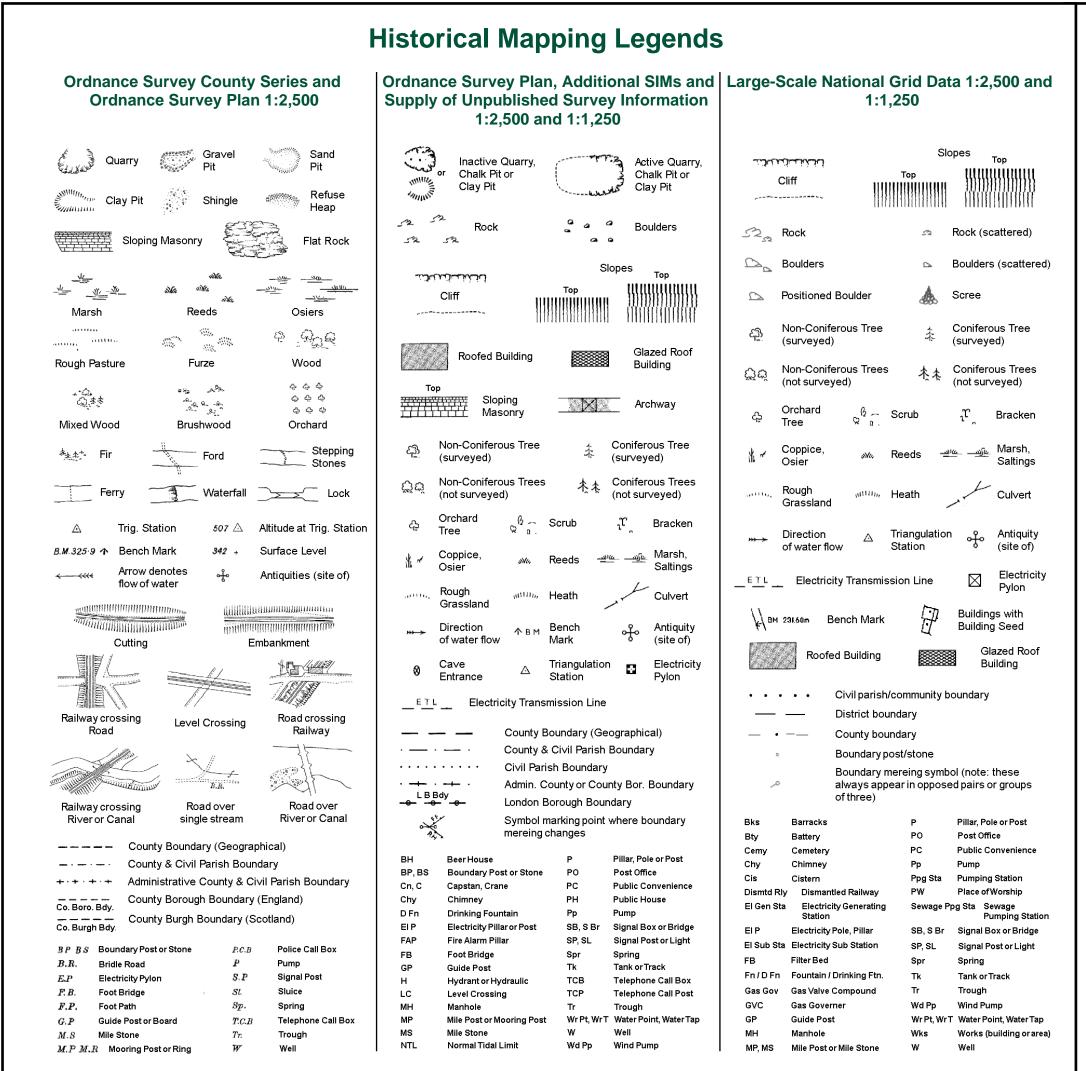
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

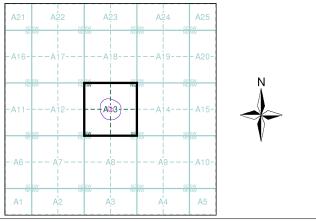
Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Site Area (Ha): Search Buffer (m):

314168170_1_1 STV6119 Α 0.32 1000



Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:


0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Glamorganshire	1:2,500	1875	2
Brecknockshire	1:2,500	1885	3
Glamorganshire	1:2,500	1900 - 1904	4
Brecknockshire	1:2,500	1904	5
Brecknockshire	1:2,500	1919 - 1920	6
Ordnance Survey Plan	1:1,250	1956 - 1980	7
Ordnance Survey Plan	1:1,250	1963 - 1986	8
Additional SIMs	1:1,250	1963 - 1990	9
Ordnance Survey Plan	1:2,500	1964	10
Supply of Unpublished Survey Information	1:2,500	1973	11
Additional SIMs	1:1,250	1979 - 1990	12
Ordnance Survey Plan	1:1,250	1987	13
Additional SIMs	1:1,250	1988	14
Additional SIMs	1:2,500	1990	15
Additional SIMs	1:1,250	1990	16
Large-Scale National Grid Data	1:1,250	1993	17
Historical Aerial Photography	1:2,500	2001	18

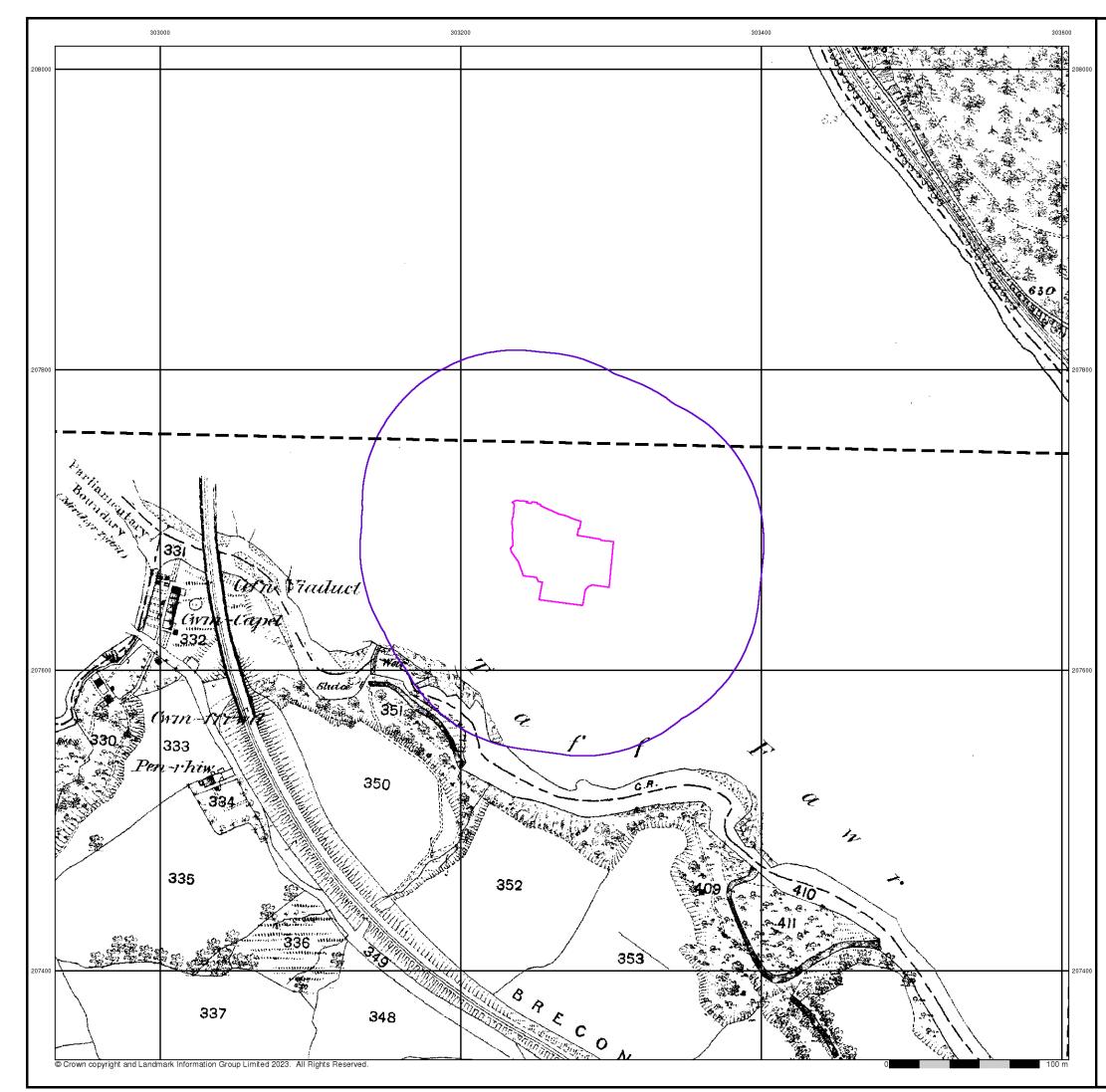
Historical Map - Segment A13

Order Details

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Α Site Area (Ha): 0.32 Search Buffer (m): 100

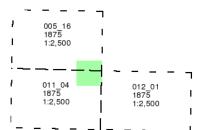
314168170_1_1 STV6119

Tel

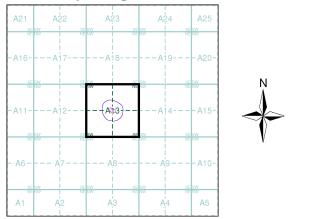

Fax: Web

Cefn Isaf, Merthyr Tydfil

0844 844 9952 0844 844 9951 virocheck.co.uk


Glamorganshire

Published 1875


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

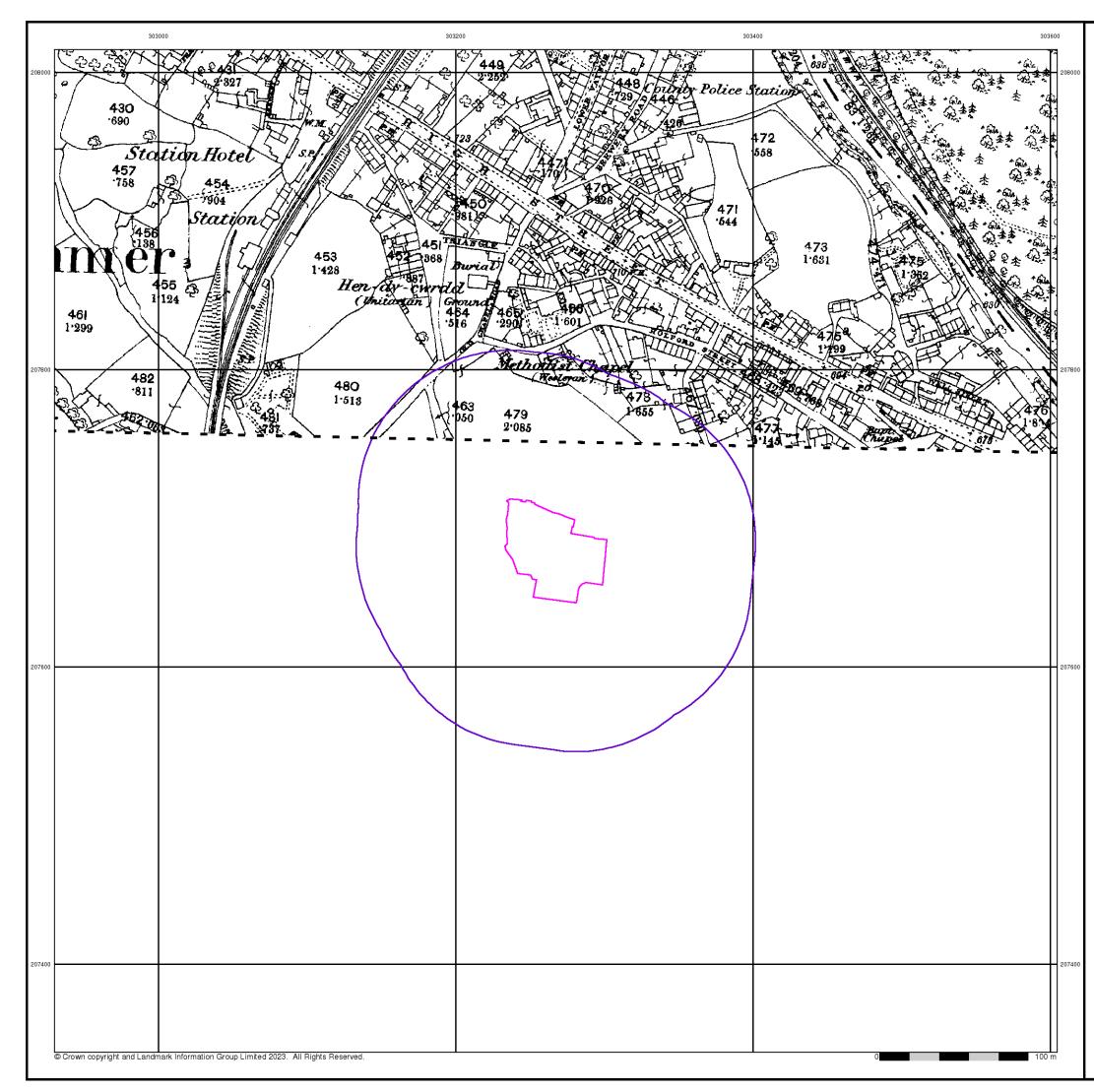
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	A
Site Area (Ha):	0.32
Search Buffer (m):	100

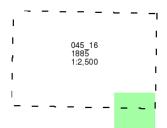
Site Details


Cefn Isaf, Merthyr Tydfil

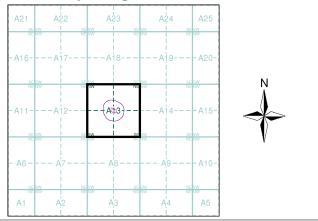
0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk


Brecknockshire

Published 1885


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered tor mapping urban areas and by 189 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

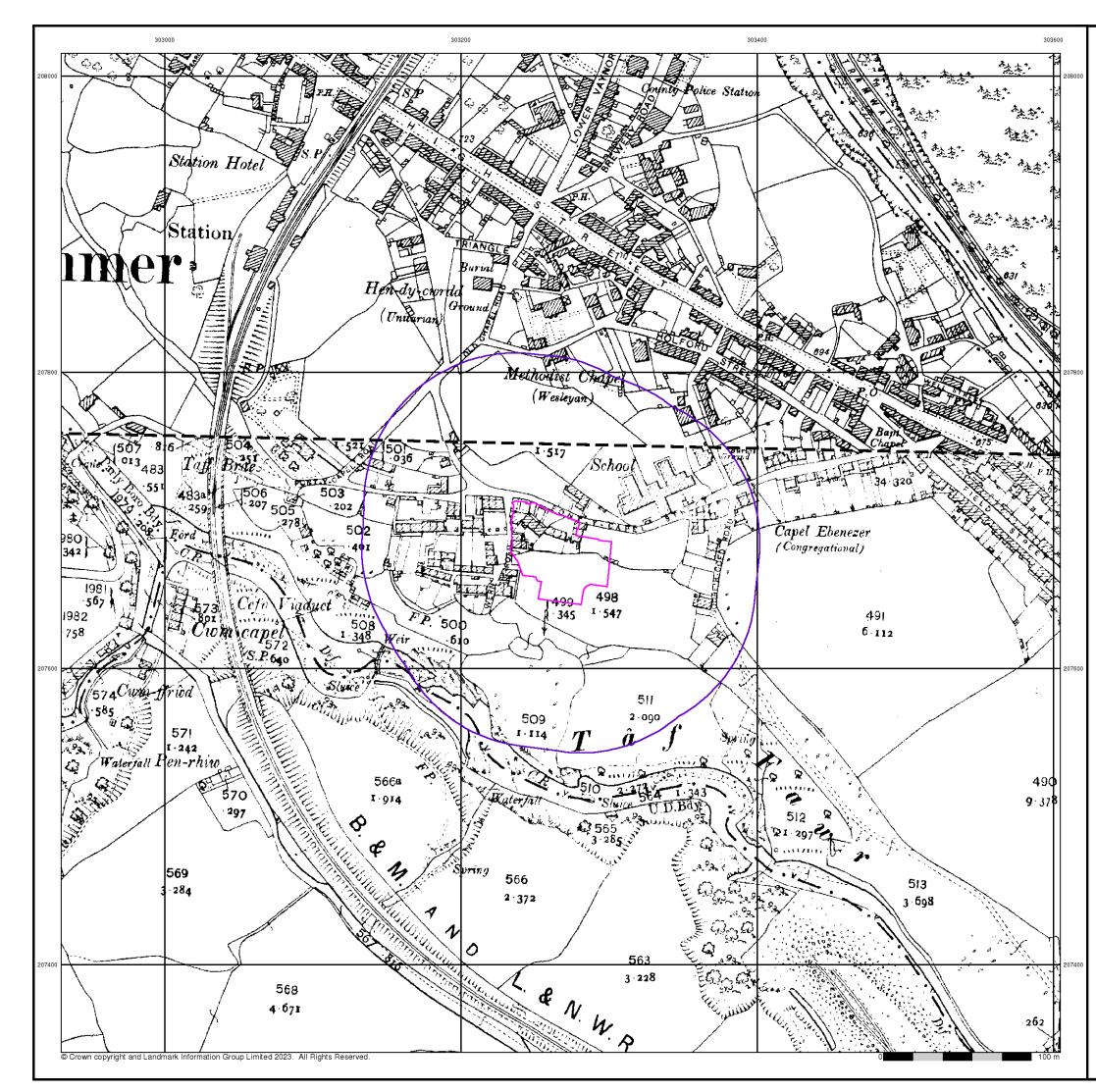
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

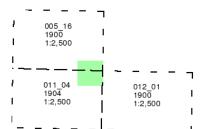
Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

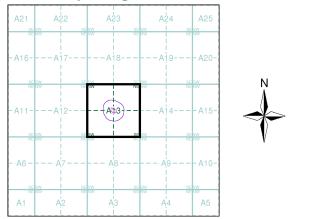
Site Details


Cefn Isaf, Merthyr Tydfil

0844 844 9952

Tel: Fax: Web:


0844 844 9951 www.envirocheck.co.uk


Glamorganshire Published 1900 - 1904 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

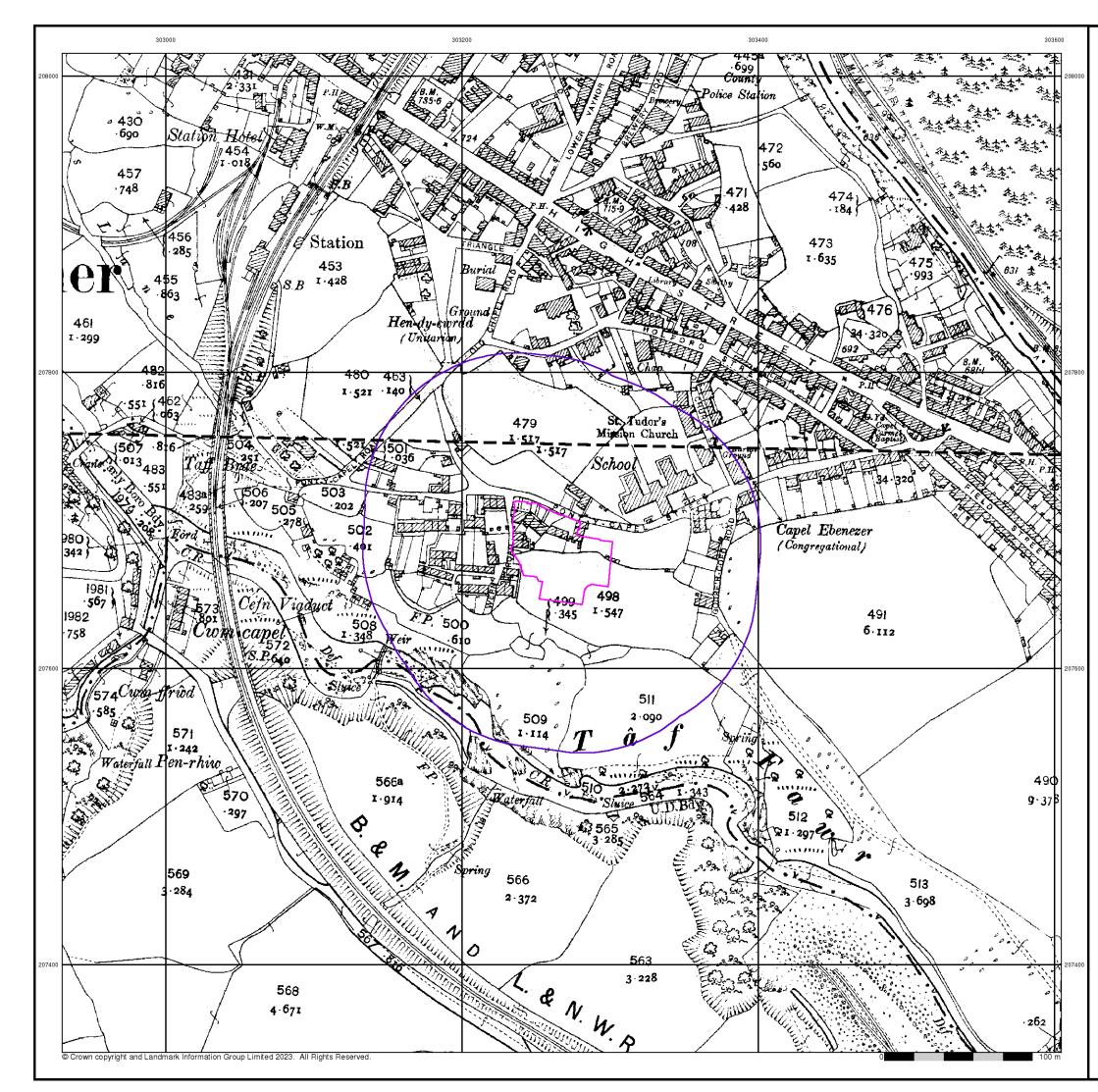
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

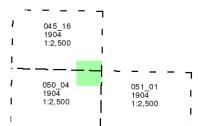
Site Details


Cefn Isaf, Merthyr Tydfil

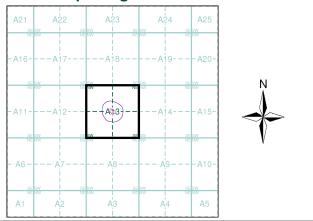
0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk


Brecknockshire

Published 1904


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

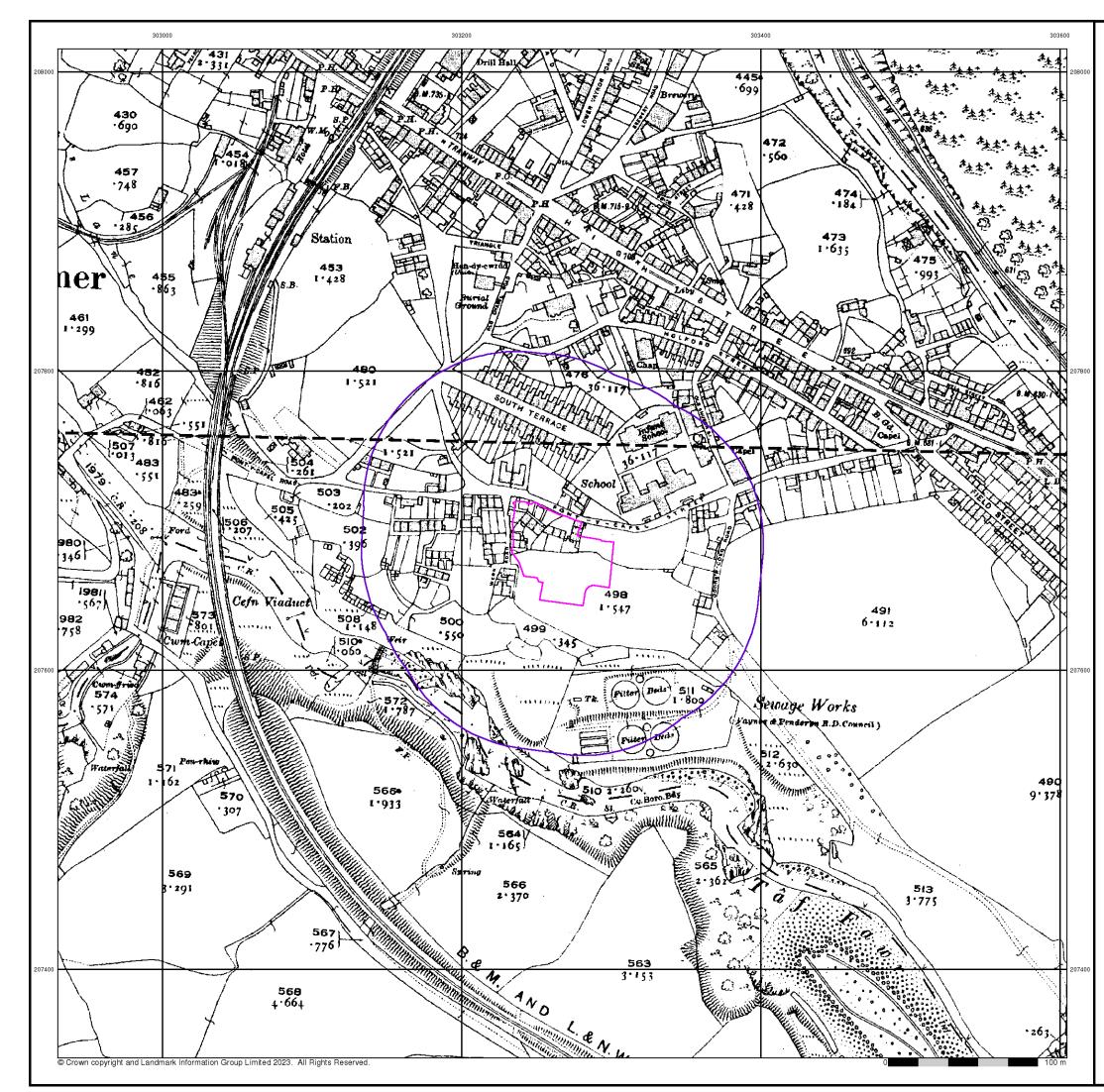
Map Name(s) and Date(s)

Historical Map - Segment A13

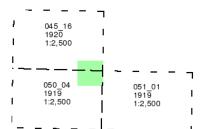
Order Details

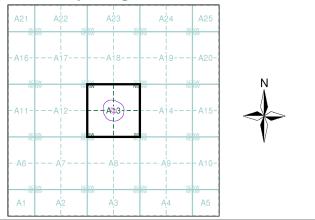
Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

Site Details


Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:


0844 844 9951 www.envirocheck.co.uk


Brecknockshire Published 1919 - 1920 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

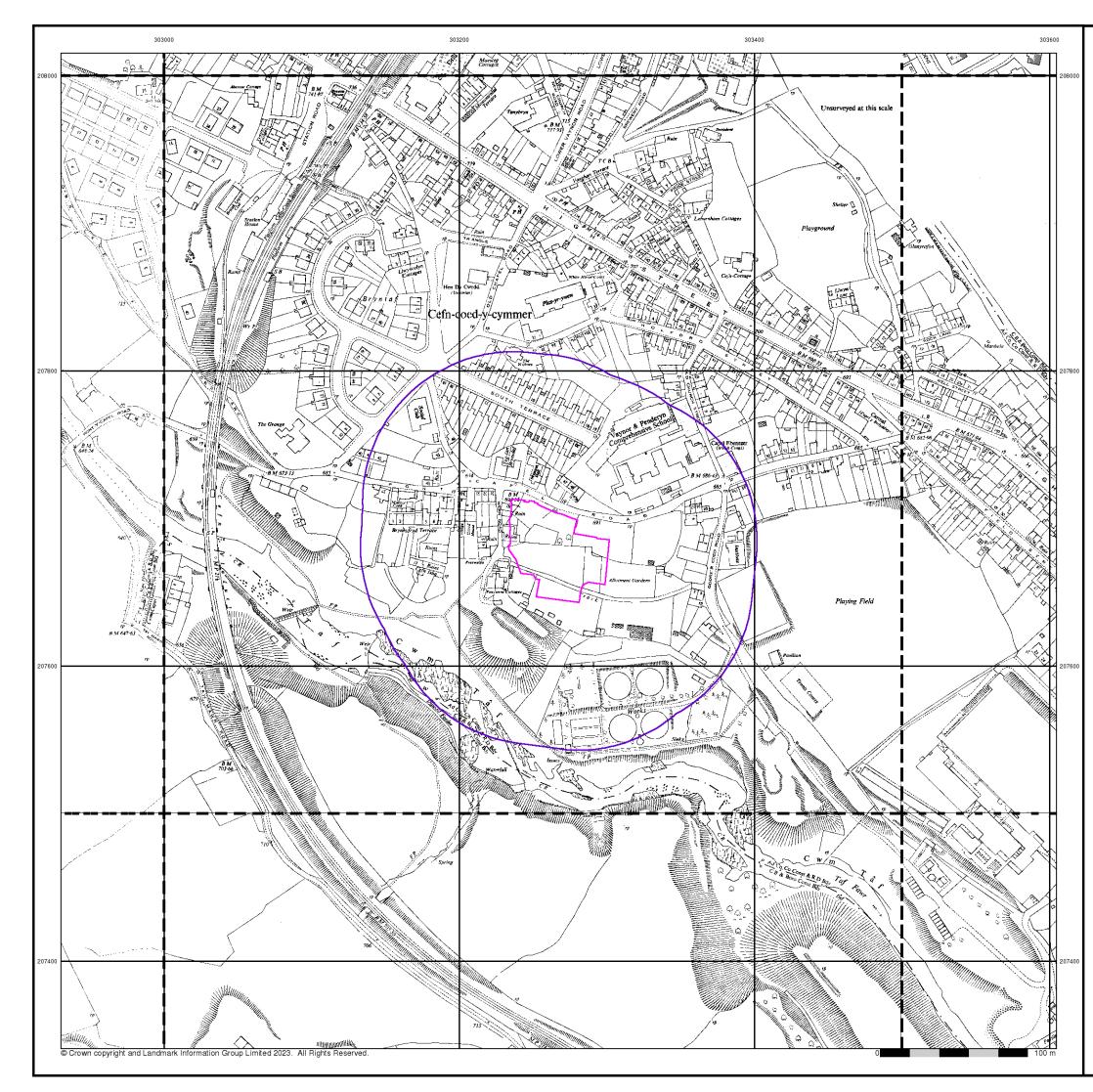
Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

Site Details

Cefn Isaf, Merthyr Tydfil

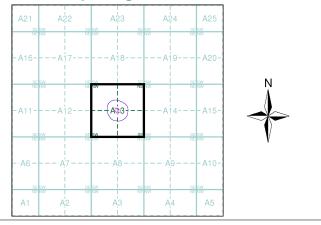

0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 13-Jul-2023

Page 6 of 18


Ordnance Survey Plan Published 1956 - 1980 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

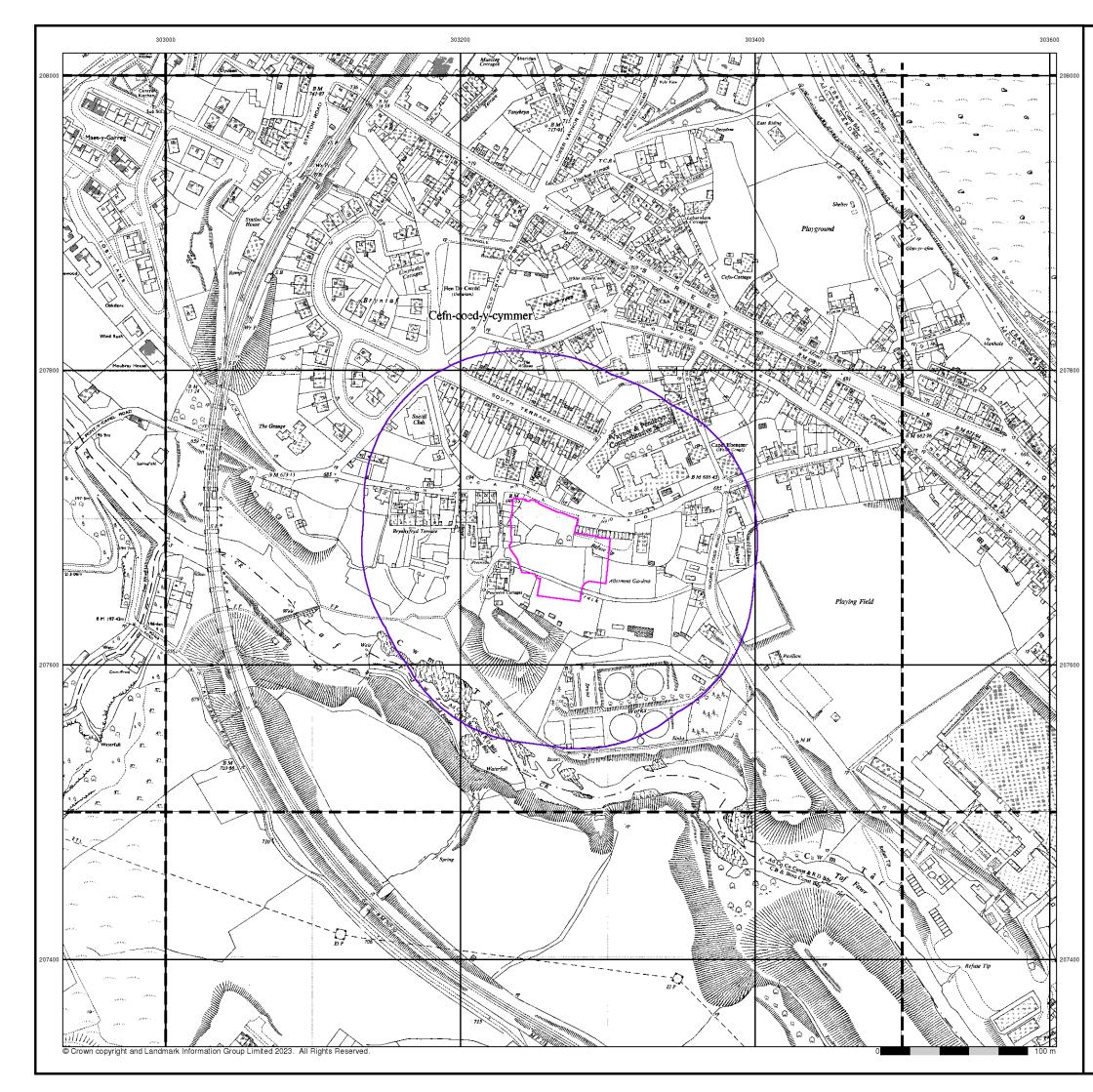
6002085E6003085W6003085E 1961 1961 1980 1:1,250 :1,250 1:1,250 рО0207N 1956 1:1,250 0307NE :1.250 :1.250 FO0207S<mark>B5O0307SW5</mark>O0307SE 1956 958 1958 1:1,250 :1,250 1:1,250 1958 1958 1:1,250 1:1,250 _ _ _ _

Historical Map - Segment A13

Order Details

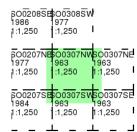
Order Number: 314168170_1_1 STV6119 Customer Ref: National Grid Reference: 303270, 207680 Slice: Α Site Area (Ha): Search Buffer (m): 0.32 100

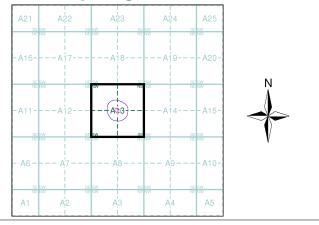
Site Details


Cefn Isaf, Merthyr Tydfil

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:


A Landmark Information Group Service v50.0 13-Jul-2023


Ordnance Survey Plan Published 1963 - 1986 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

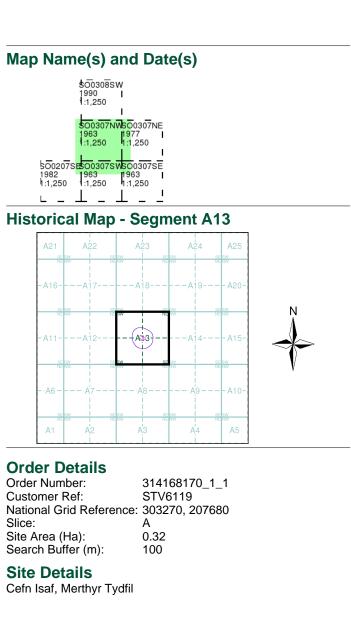
Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

Site Details

Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:

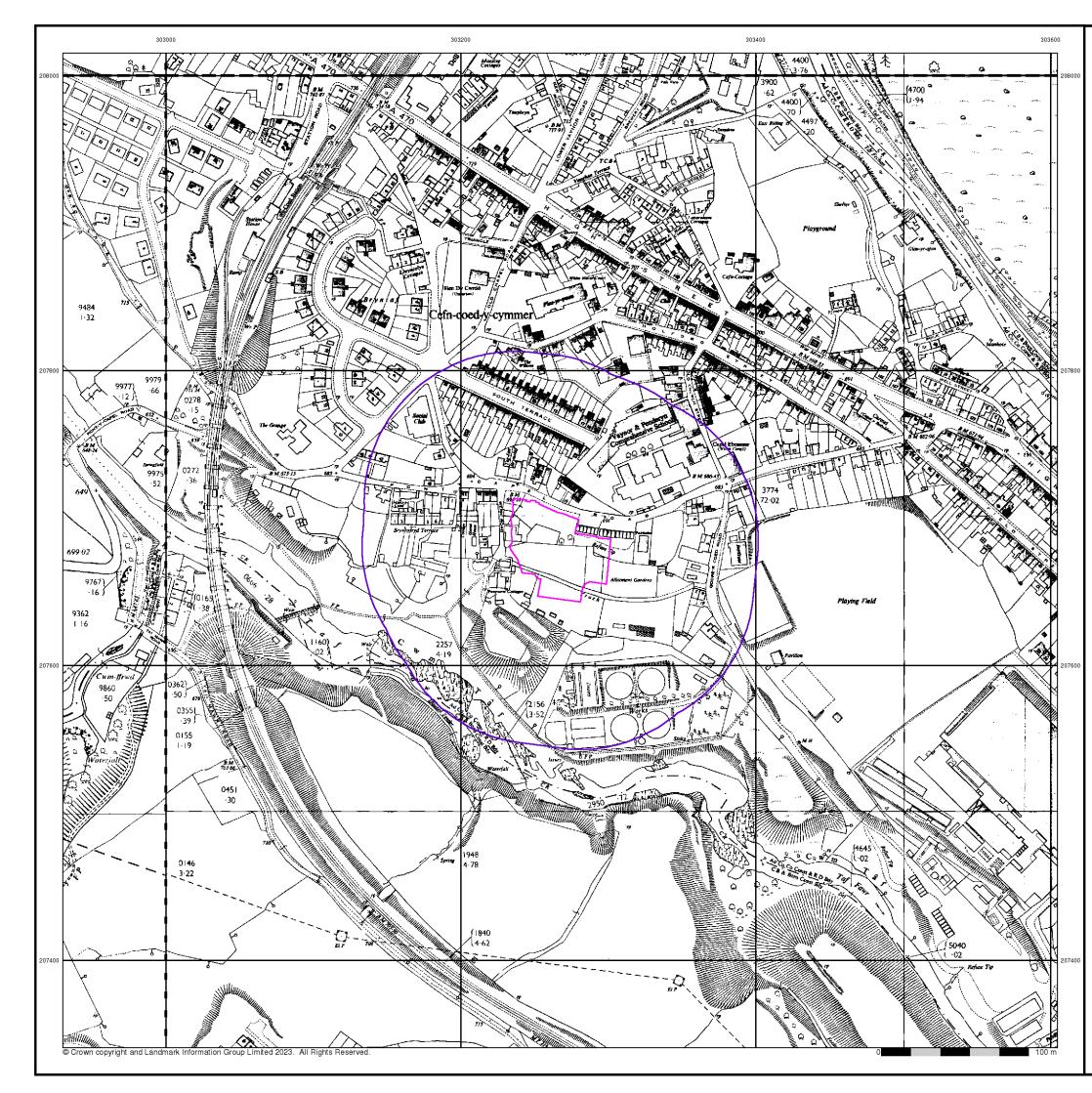
0844 844 9951 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 13-Jul-2023

soiltechnics

Additional SIMs Published 1963 - 1990 Source map scale - 1:1,250

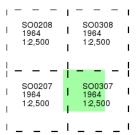
The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.



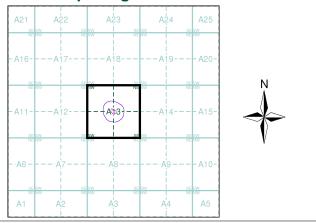
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:

A Landmark Information Group Service v50.0 13-Jul-2023



Ordnance Survey Plan Published 1964


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

Site Details

Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 13-Jul-2023 Page 10 of 18

	303000 303	3200 303	400 303600
20800			208
20780			207
20760			207
20740	© Crown copyright and Landmark Information Group Limited 2023. All Rights Reserved.		0 0 100 m

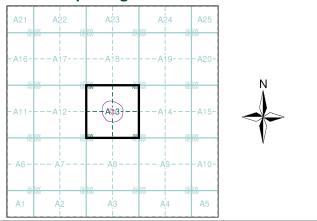
Supply of Unpublished Survey Information

Published 1973

Source map scale - 1:2,500

SUSI maps (Supply of Unpublished Survey Information) were produced between 1972 and 1977, mainly for internal use at Ordnance Survey. These were more of a `work-in-progress' plan as they showed updates of individual areas on a map. These maps were unpublished, and they do not represent a single moment in time. They were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

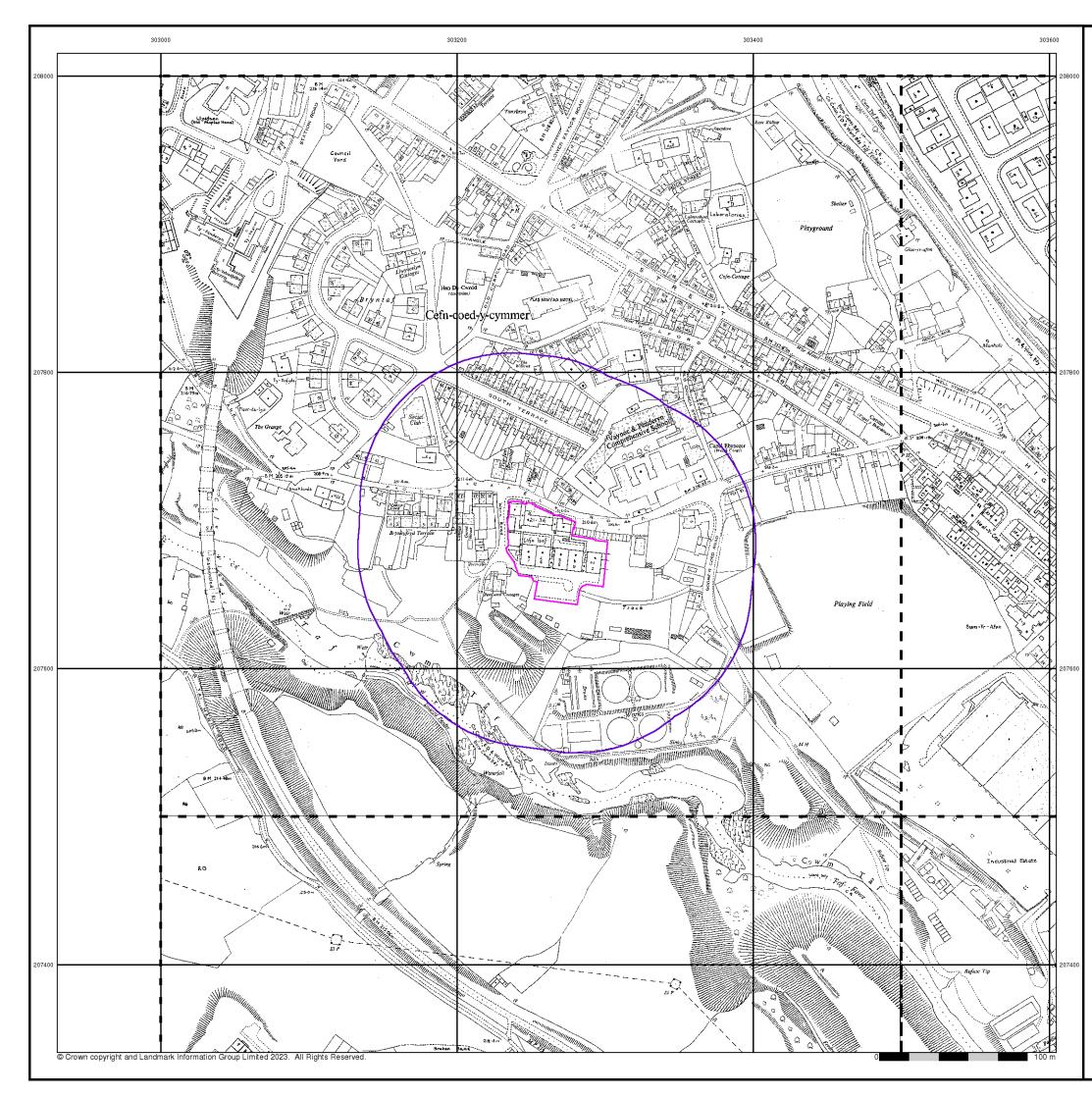

1973 1:2,500 I

Т

Historical Map - Segment A13

.

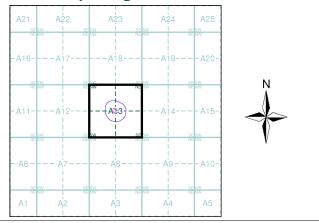
Order Details


Order Number:	314168170_1_1	
Customer Ref:	STV6119	
National Grid Reference:	303270, 207680	
Slice:	A	
Site Area (Ha):	0.32	
Search Buffer (m):	100	

Site Details

Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:


Additional SIMs Published 1979 - 1990 Source map scale - 1:1,250

The SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

I SO0307NW	SO0307NE
1979 1:1,250	1984 1:1,250
1	1 1
SO0307SW	SO0307SE
1990 1:1.250	1989 1:1,250
1	

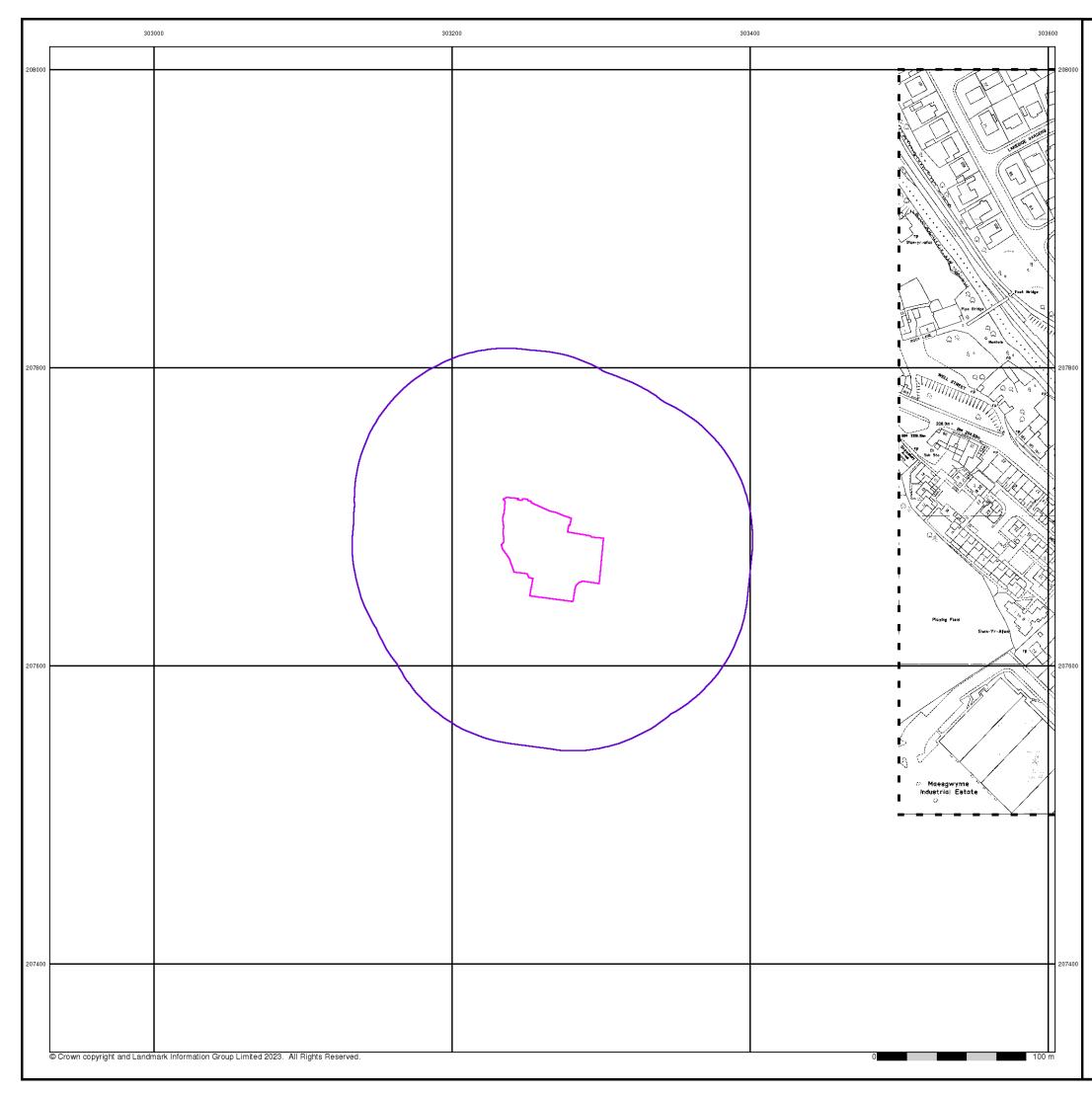
Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	A
Site Area (Ha):	0.32
Search Buffer (m):	100

Site Details

Cefn Isaf, Merthyr Tydfil



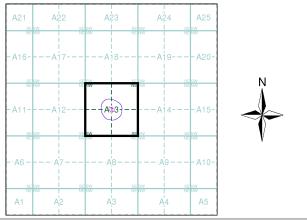
0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 13-Jul-2023 Page 12 of 18

Ordnance Survey Plan Published 1987


Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

۲	-		-	-	٦
T.					I
T.		SO03 1987	307N	E	I
T.		1:1,2	50		I
T.					I
L	_	_	_	_	_

Historical Map - Segment A13

Order Details

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: А Site Area (Ha): Search Buffer (m): 0.32 100

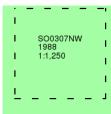
314168170_1_1 STV6119



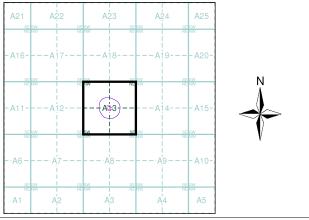
Cefn Isaf, Merthyr Tydfil

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Tel: Fax: Web:


Additional SIMs

Published 1988

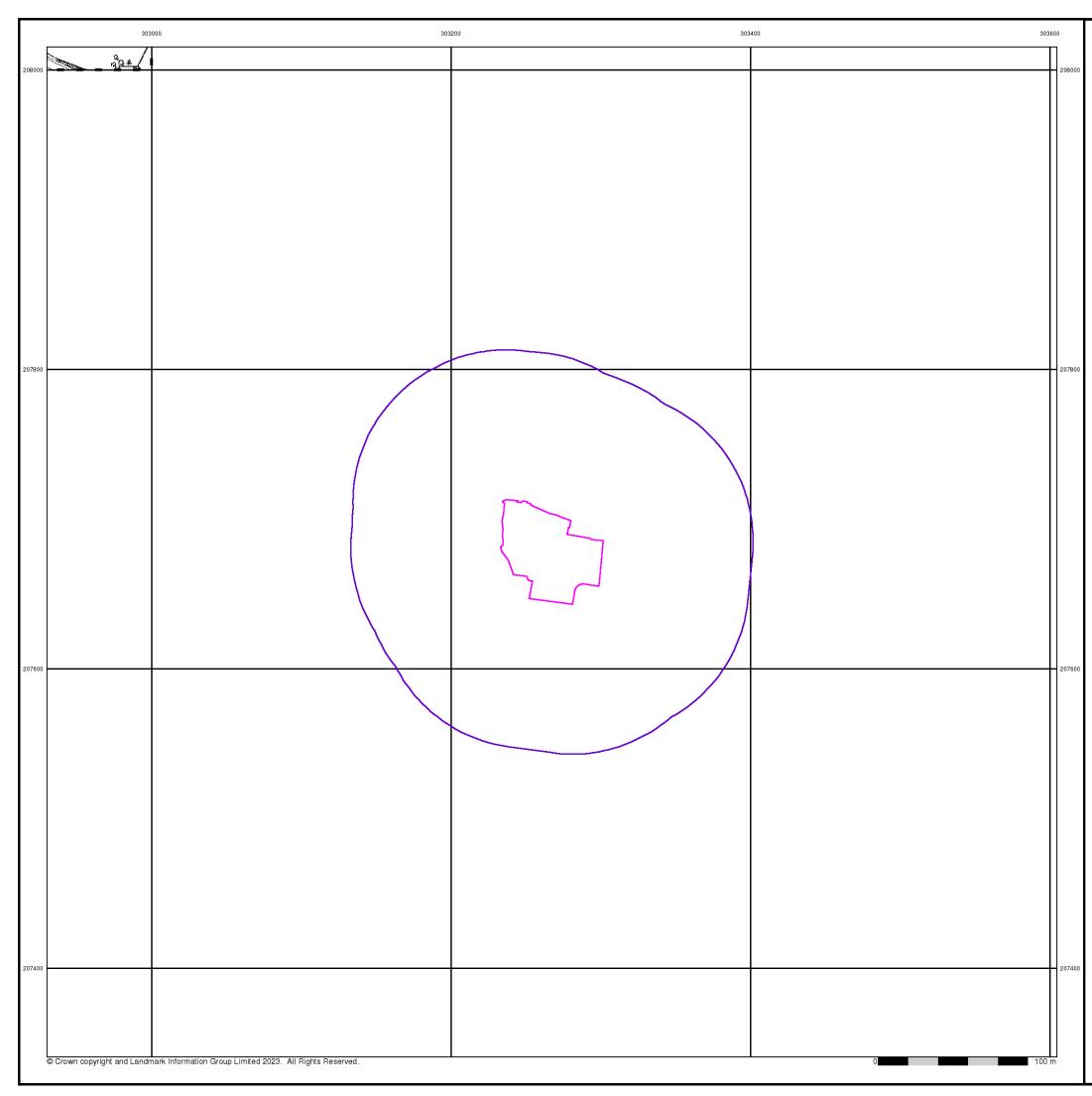

Source map scale - 1:1,250

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

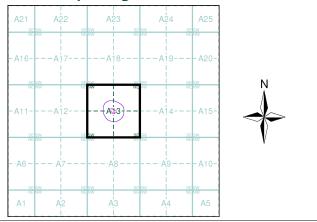

314168170_1_1	
STV6119	
303270, 207680	
A	
0.32	
100	

Site Details

Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:

Additional SIMs Published 1990


Source map scale - 1:2,500

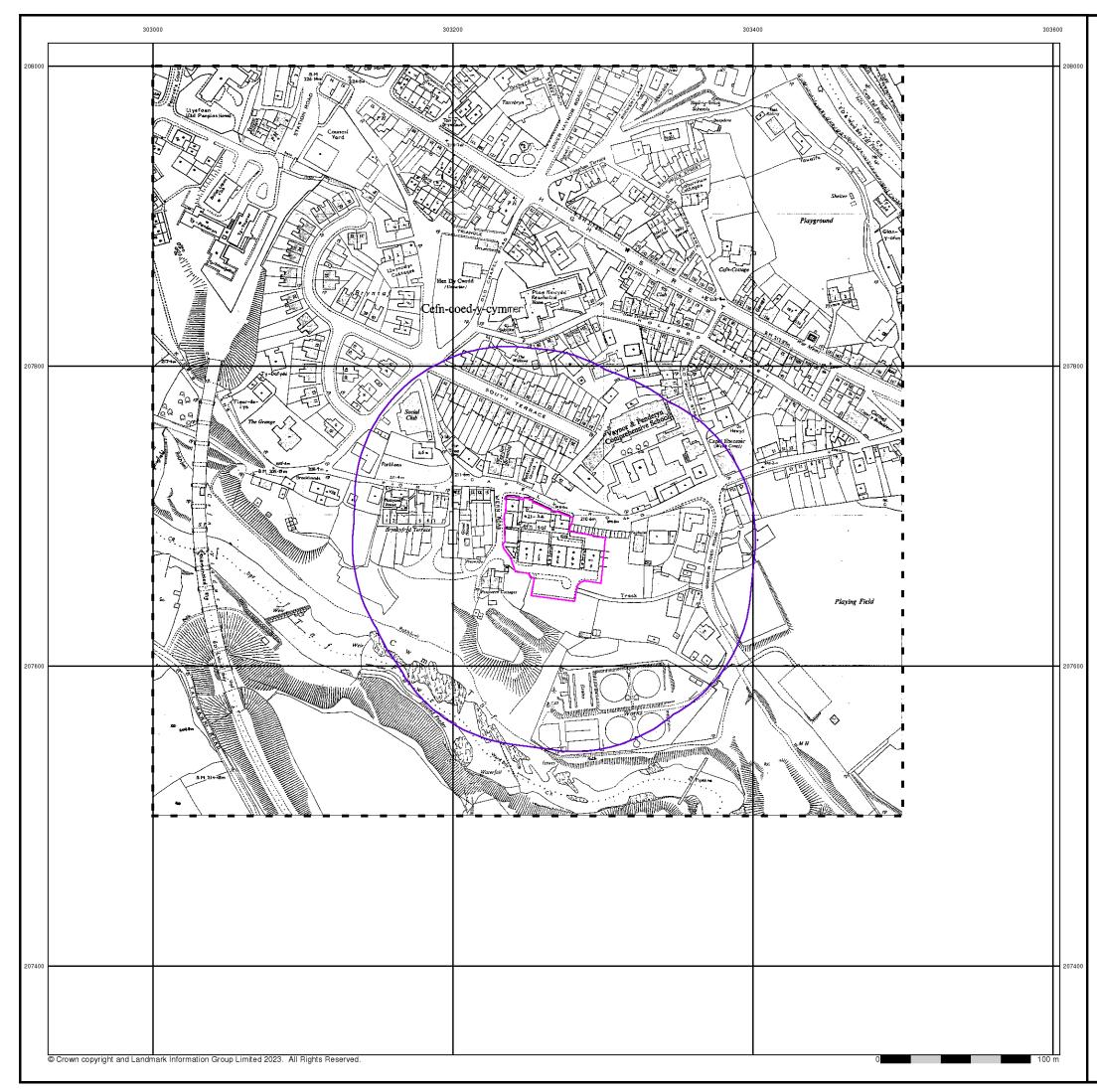
The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

	_	_	_	
I				1
L		SO02 1990		÷
		1:2,5	00	I
				I
I				1
_				

Historical Map - Segment A13

Order Details

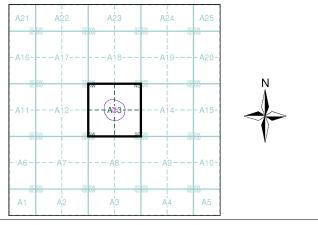

Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	A
Site Area (Ha):	0.32
Search Buffer (m):	100

Site Details

Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web:

Additional SIMs Published 1990


Source map scale - 1:1,250

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

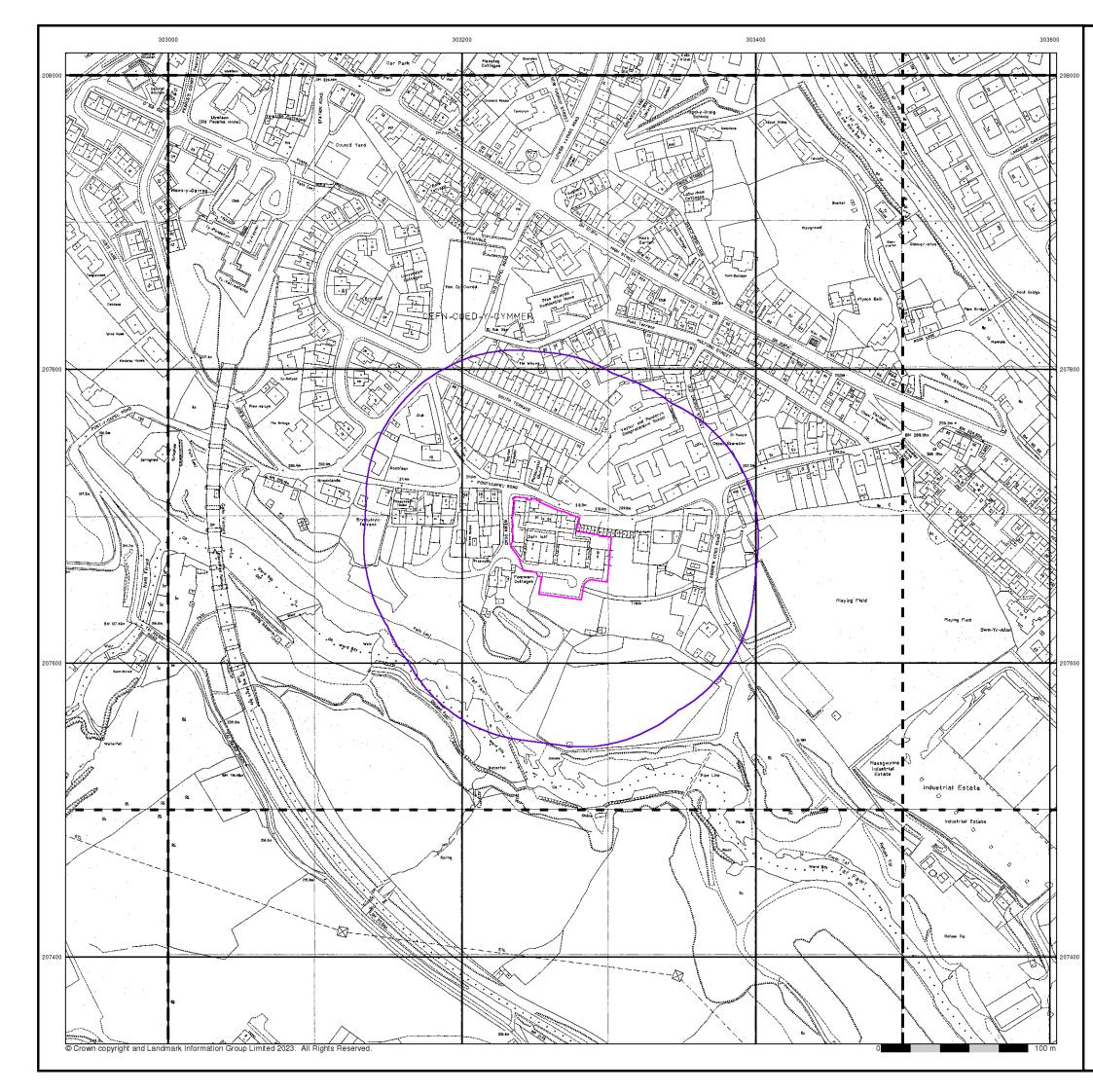
Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	A
Site Area (Ha):	0.32
Search Buffer (m):	100

Site Details

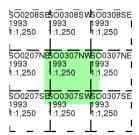
Cefn Isaf, Merthyr Tydfil



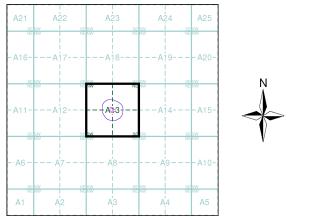
0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 13-Jul-2023 Page 16 of 18

Tel: Fax: Web:



Large-Scale National Grid Data Published 1993


Source map scale - 1:1,250

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	Α
Site Area (Ha):	0.32
Search Buffer (m):	100

Site Details

Cefn Isaf, Merthyr Tydfil

0844 844 9952

Tel: Fax: Web:

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 13-Jul-2023 Page 17 of 18

Historical Aerial Photography Published 2001

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

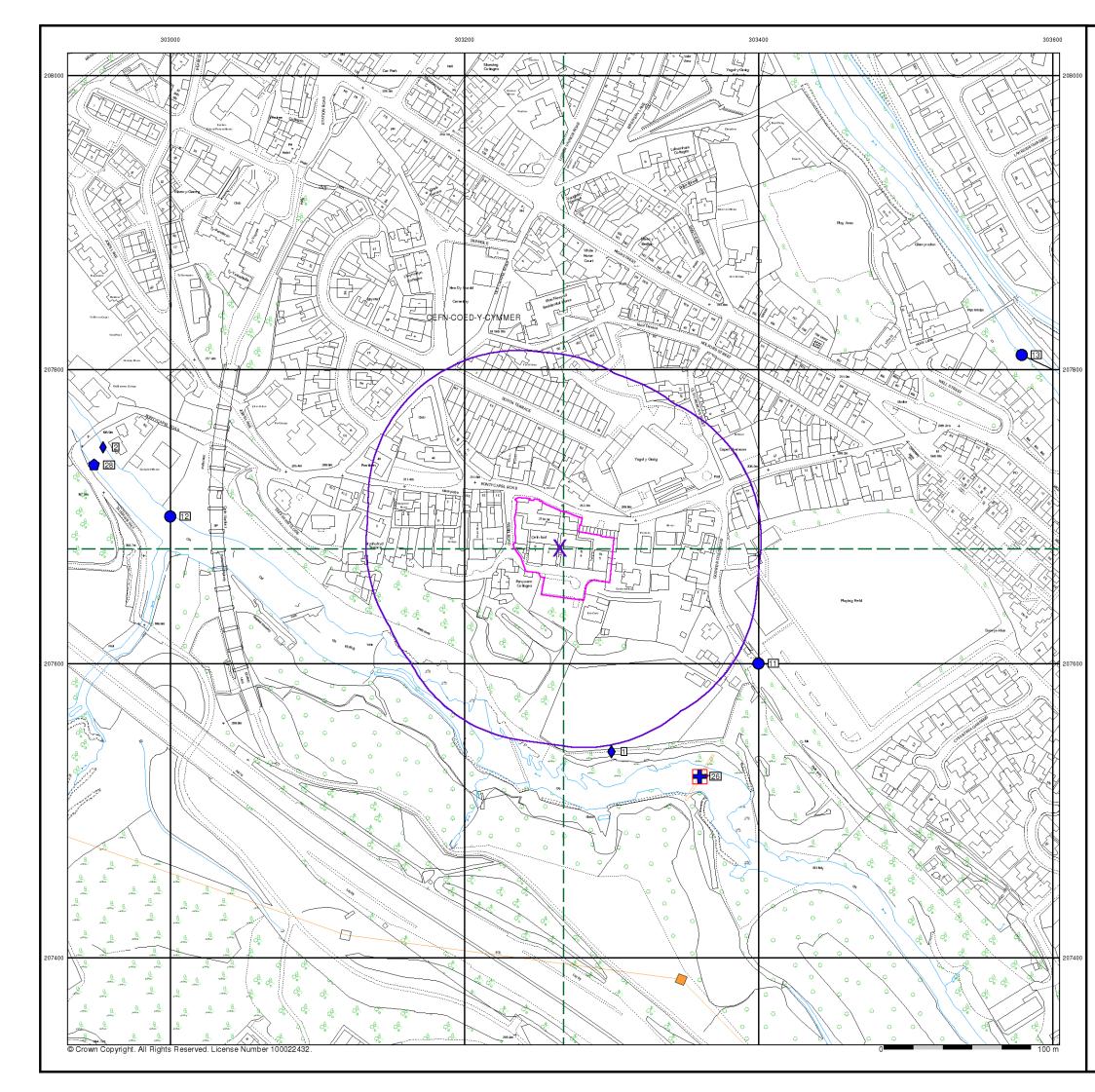
Historical Aerial Photography - Segment A13

A21		SE SW NE NW		SE SW NE NW		A25	
-A16	-A17-		-A18		-A19-	A20-	
SE SW NE NW		SEISW NE NW		SEISW NENW		SESW NENW	N
-A11	-A12-		-(A(1)3)		-A14-	A15-	
SE SW NE NW		SE SW NE NW		SE SW NE NW		SE SW NE NW	V
- · A6	- A7-		- • <mark>4</mark> 8 - •		- • Å9 -	A10-	
SE SW NE NW	A2	SE SW NE NW	A3	SE SW NE NW	A4	se sw Ne NW A5	

Order Details

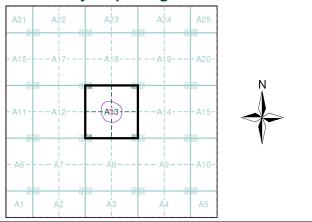
Order Number:314168170_1_1Customer Ref:STV6119National Grid Reference:303270, 207680Slice:ASite Area (Ha):0.32Search Buffer (m):100

Site Details


Cefn Isaf, Merthyr Tydfil

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

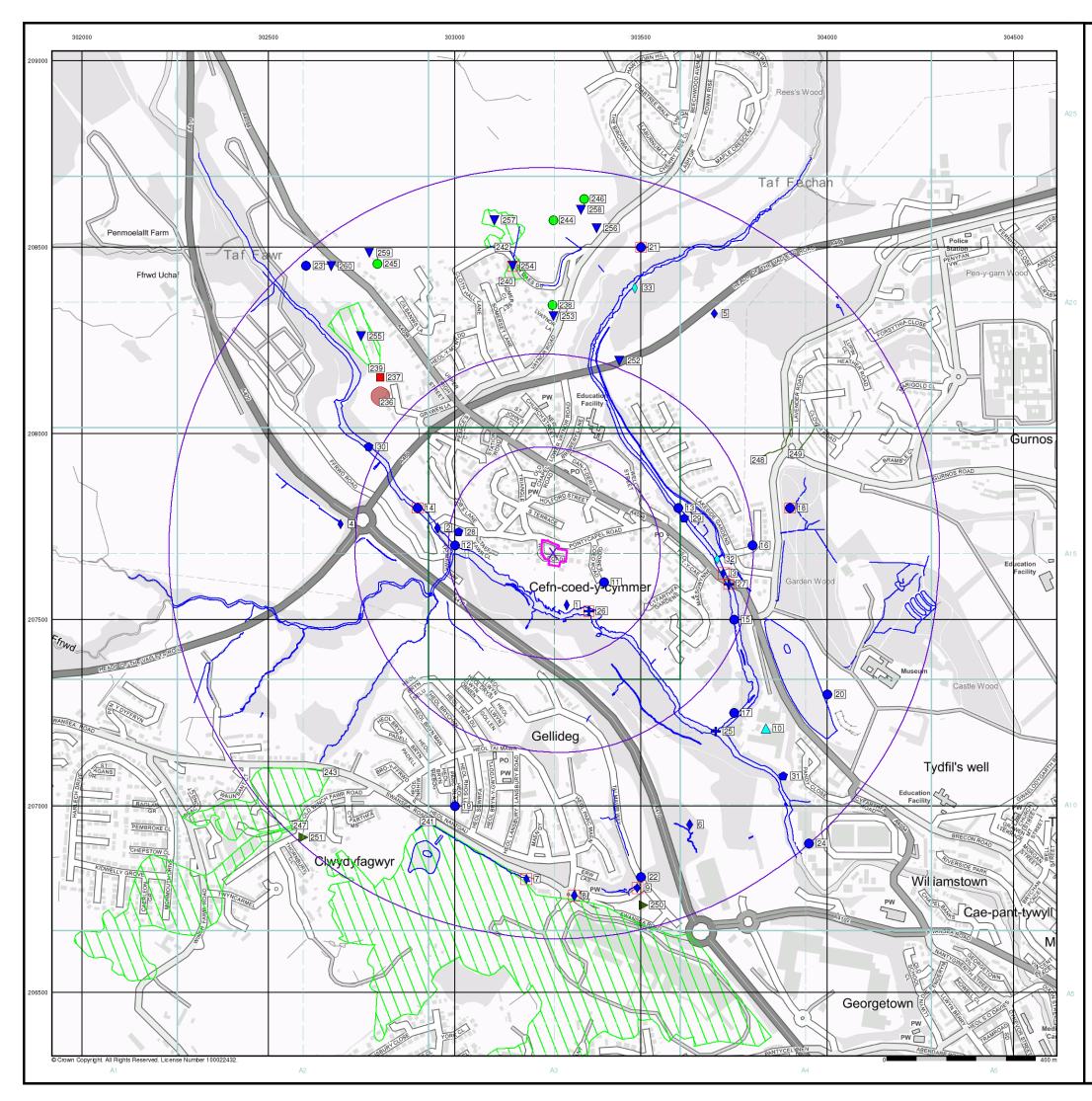
A Landmark Information Group Service v50.0 13-Jul-2023 Page 18 of 18


Tel: Fax: Web:

General

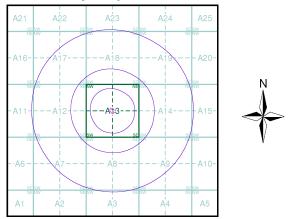
Site Sensitivity Map - Segment A13

Order Details


0.00.00	
Order Number:	314168170_1_1
Customer Ref:	STV6119
National Grid Reference:	303270, 207680
Slice:	A
Site Area (Ha):	0.32
Plot Buffer (m):	100

Site Details

Cefn Isaf, Merthyr Tydfil



Tel: Fax: Web:

Site Sensitivity Map - Slice A

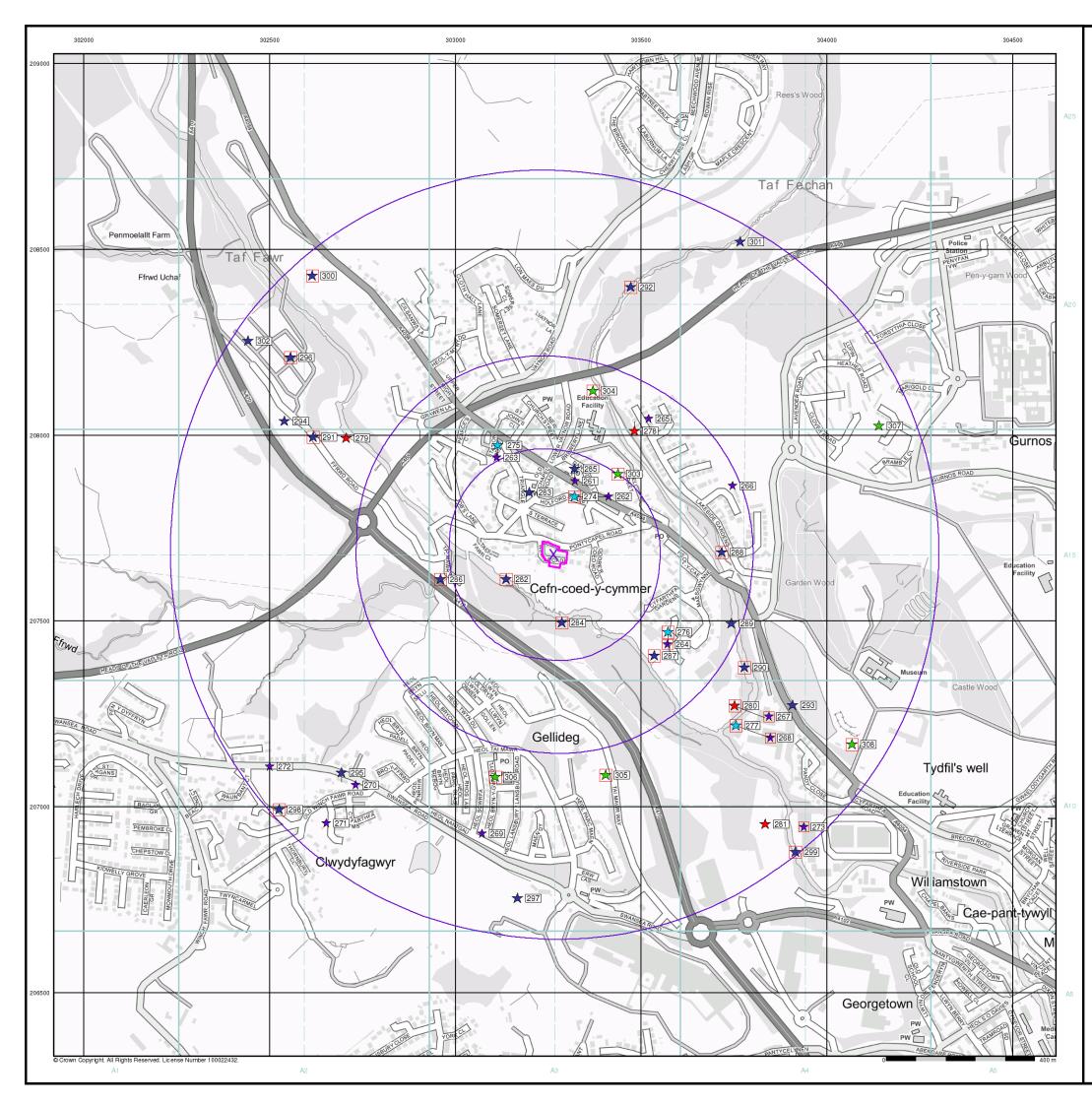
Order Details

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Site Area (Ha): Search Buffer (m):

314168170_1_1 STV6119 А 0.32 1000

Site Details

Cefn Isaf, Merthyr Tydfil



Tel: Fax: Web

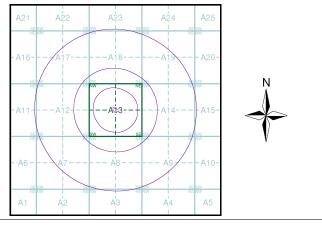
0844 844 9952 0844 844 9951 www.enviroched check.co.uk

A Landmark Information Group Service v50.0 13-Jul-2023

Page 1 of 6

Industrial Land Use Map

General


8 Map ID

Specified Site
Specified Buffer(s)
Specified Buffer(s)

Industrial Land Use

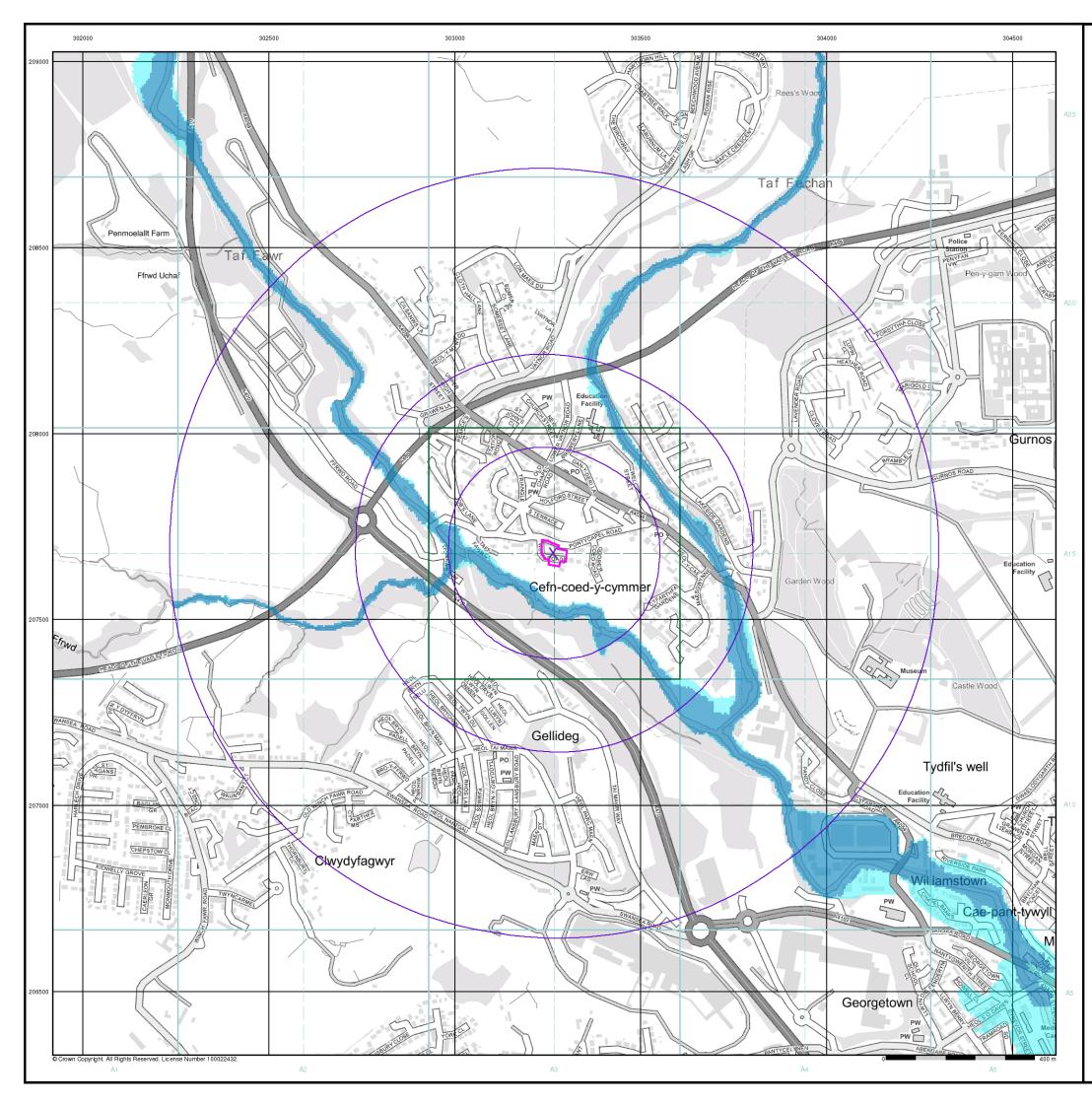
- ★ Contemporary Trade Directory Entry
- ★ Fuel Station Entry
- 🗸 Gas Pipeline
- 🔆 Points of Interest Commercial Services
- 🖕 Points of Interest Education and Health
- ★ Points of Interest Manufacturing and Production
- 🚖 Points of Interest Public Infrastructure
- 🚖 Points of Interest Recreational and Environmental
- 🔍 Underground Electrical Cables

Industrial Land Use Map - Slice A

Order Details

Order Number: 314168170_1_1 Customer Ref: STV6119 National Grid Reference: 303270, 207680 Slice: Α Site Area (Ha): Search Buffer (m): 0.32 1000

Site Details


Cefn Isaf, Merthyr Tydfil

A Landmark Information Group Service v50.0 13-Jul-2023

Tel: Fax: Web:

General

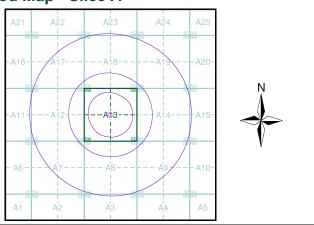
🔼 Specified Site

- C Specified Buffer(s)
- X Bearing Reference Point

Agency and Hydrological (Flood)

Extreme Flooding from Rivers or Sea without Defences (Zone 2)

Flooding from Rivers or Sea without Defences (Zone 3)

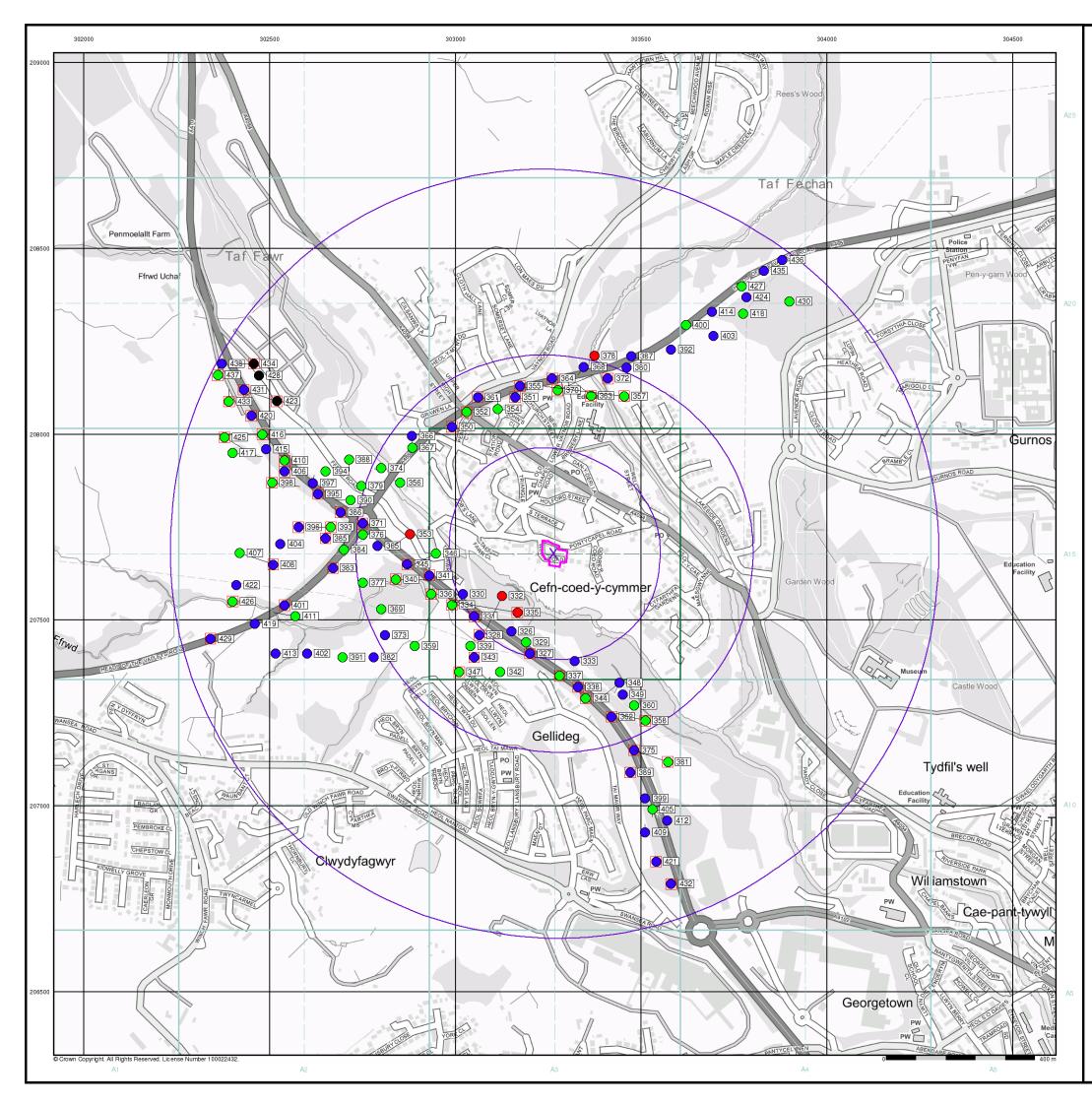

Area Benefiting from Flood Defence

Flood Water Storage Areas

--- Flood Defence

Flood Map - Slice A

Order Details

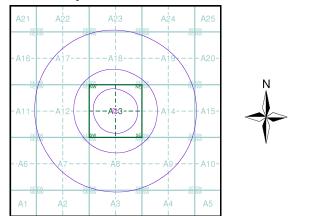

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Site Area (Ha): Search Buffer (m):

314168170_1_1 STV6119 А 0.32 1000

Cefn Isaf, Merthyr Tydfil

General

- 🔼 Specified Site C Specified Buffer(s) X Bearing Reference Point 8 Map ID
- Several of Type at Location

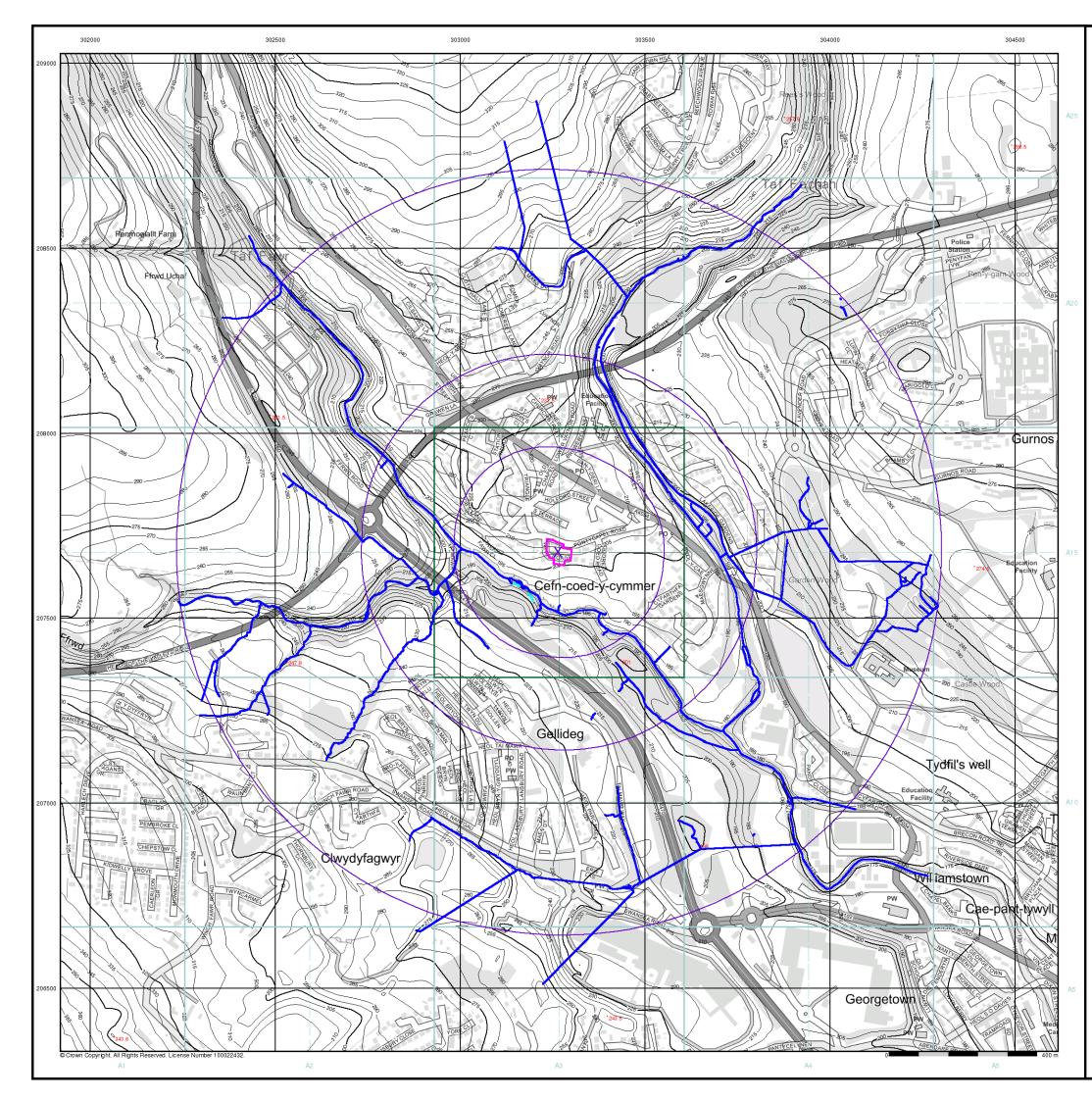

Agency and Hydrological (Boreholes)

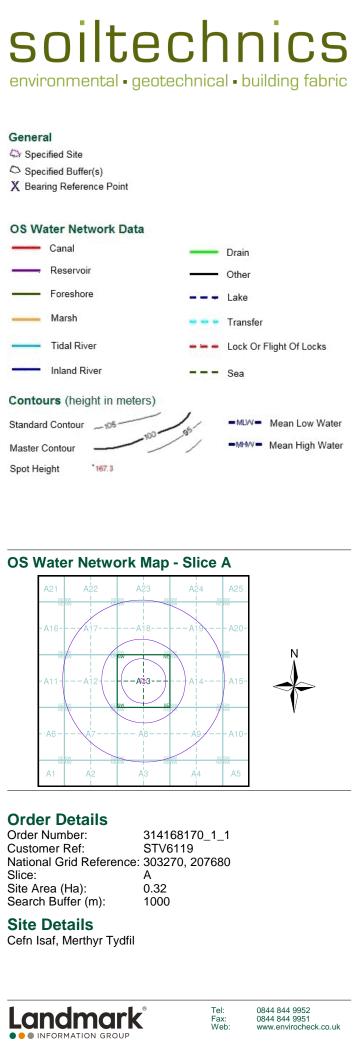
- 😑 BGS Borehole Depth 0 10m
- BGS Borehole Depth 10 30m
- 🔴 BGS Borehole Depth 30m +
- Confidential
- ⊖ Other

For Borehole information please refer to the Borehole .csv file which accompanied this slice.

A copy of the BGS Borehole Ordering Form is available to download from the Support section of www.envirocheck.co.uk.

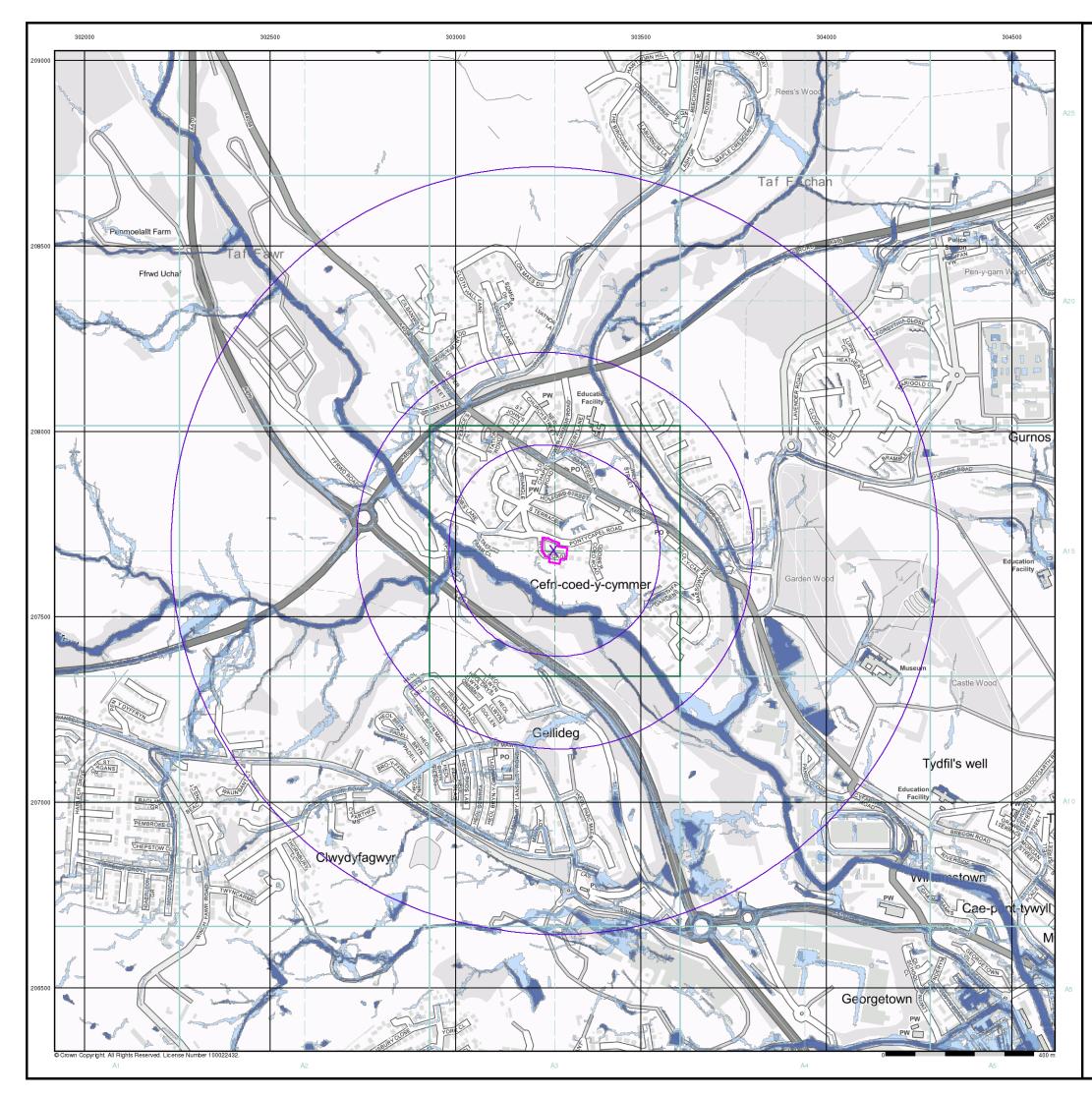
Order Details


Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Site Area (Ha): Search Buffer (m):


314168170_1_1 STV6119 Α 0.32 1000

Site Details

Cefn Isaf, Merthyr Tydfil



A Landmark Information Group Service v50.0 13-Jul-2023

Page 5 of 6

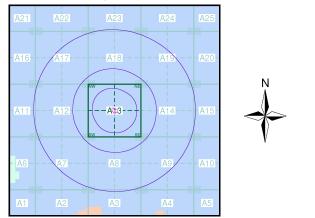
General

- 🔼 Specified Site
- Specified Buffer(s)
- X Bearing Reference Point

Risk of Flooding from Surface Water

High - 30 Year Return
Medium - 100 Year Return

Low - 1000 Year Return


Suitability See the suitability map below

National to county
County to town
Town to street

Street to parcels of land

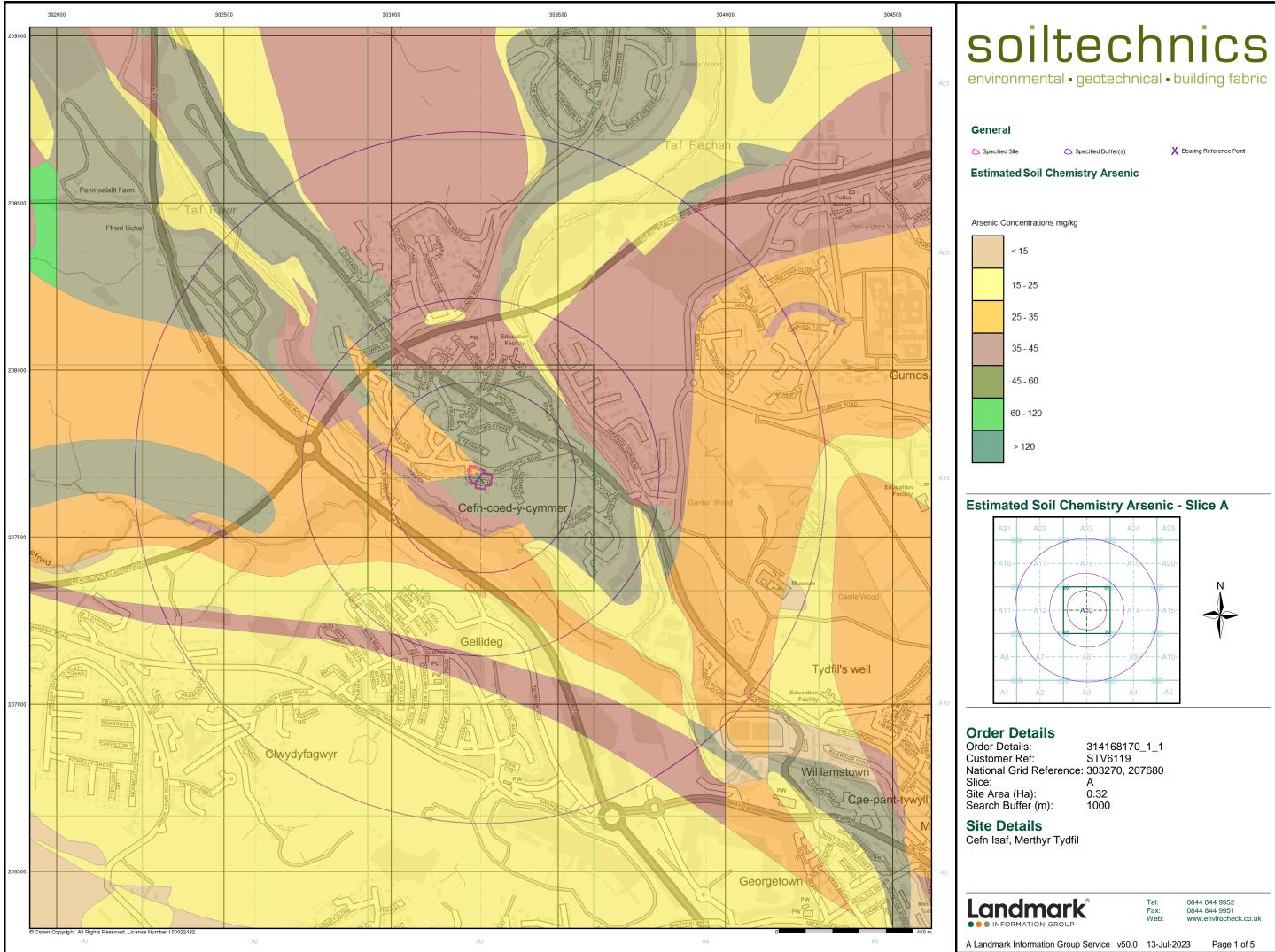
Property

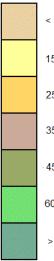
EA/NRW Suitability Map - Slice A

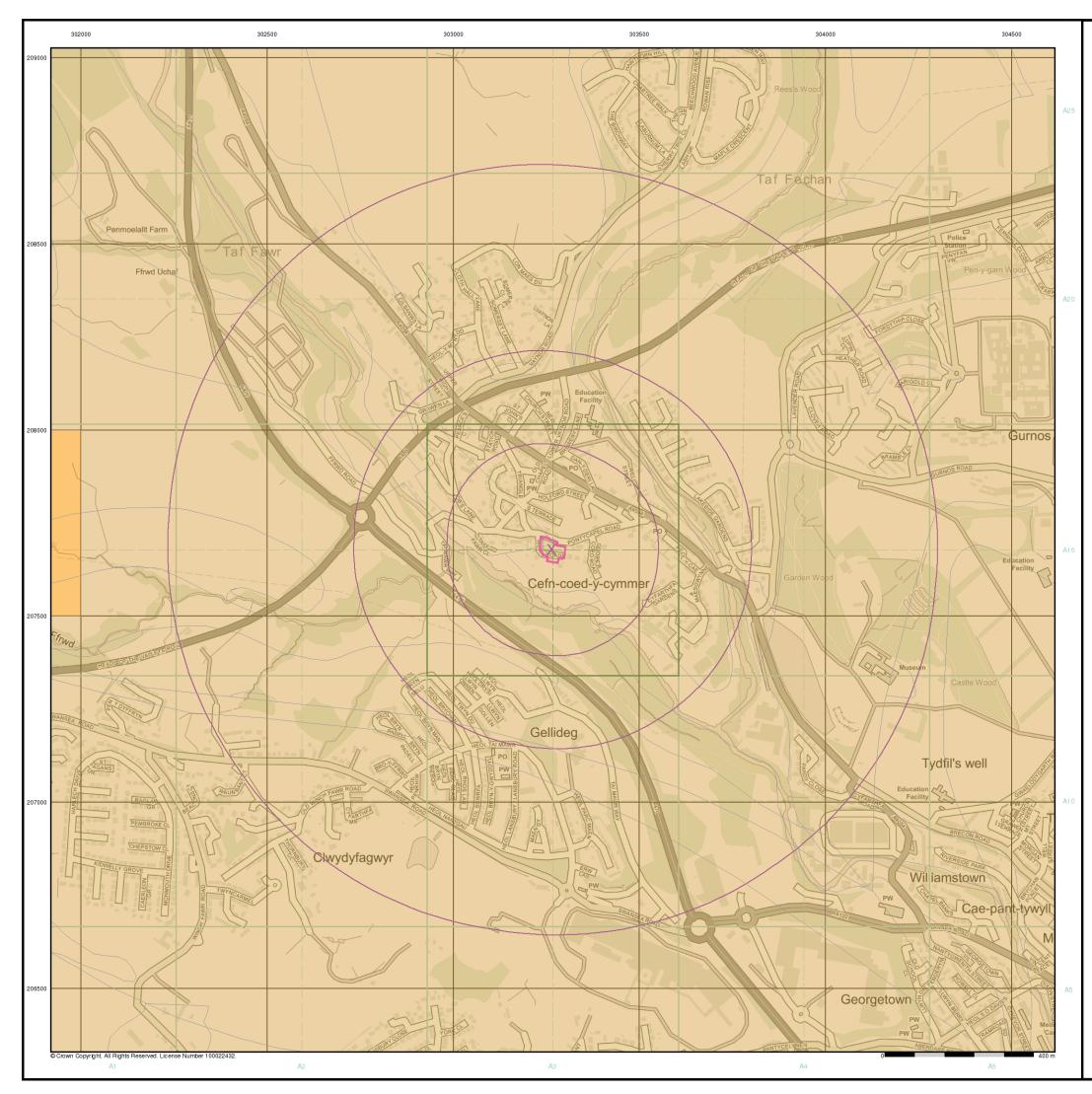
Order Details

Order Number: Customer Ref: National Grid Reference: 303270, 207680 Slice: Site Area (Ha): Search Buffer (m):

314168170_1_1 STV6119 А 0.32 1000

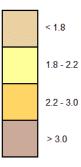

Site Details

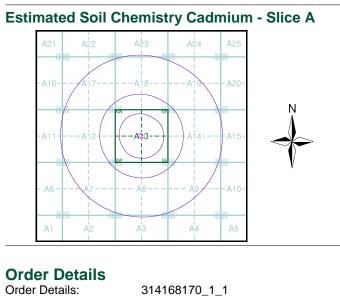

Cefn Isaf, Merthyr Tydfil



Tel: Fax: Web:

General


🔼 Specified Site

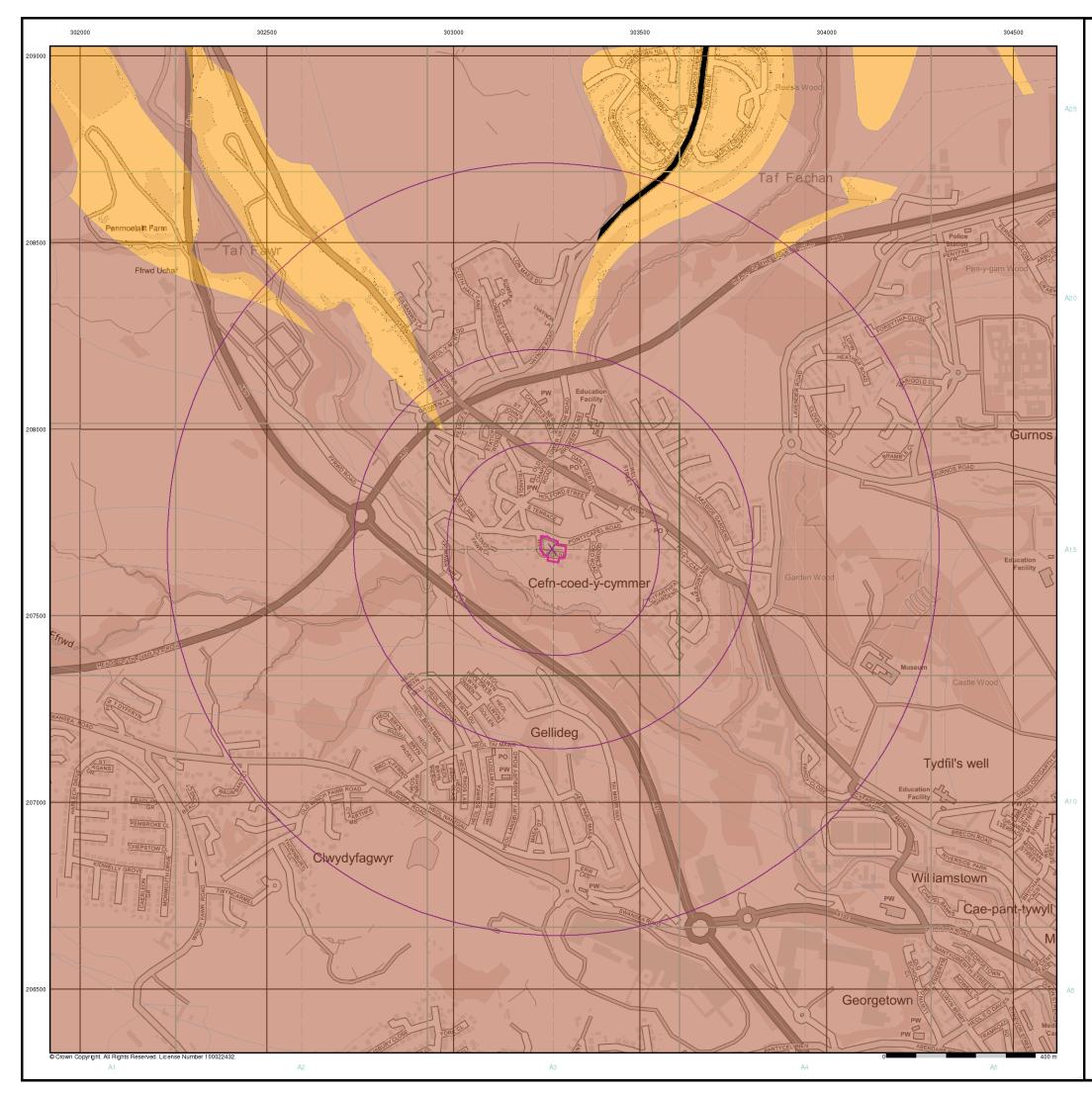

C Specified Buffer(s)

X Bearing Reference Point

Estimated Soil Chemistry Cadmium

Cadmium Concentrations mg/kg

Customer Ref: National Grid Reference: 303270, 207680 Slice: А Site Area (Ha): Search Buffer (m): 0.32 1000


314168170_1_1 STV6119

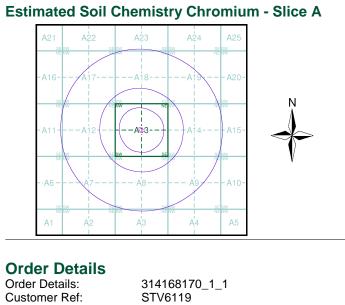
Tel: Fax: Web:

Cefn Isaf, Merthyr Tydfil

General

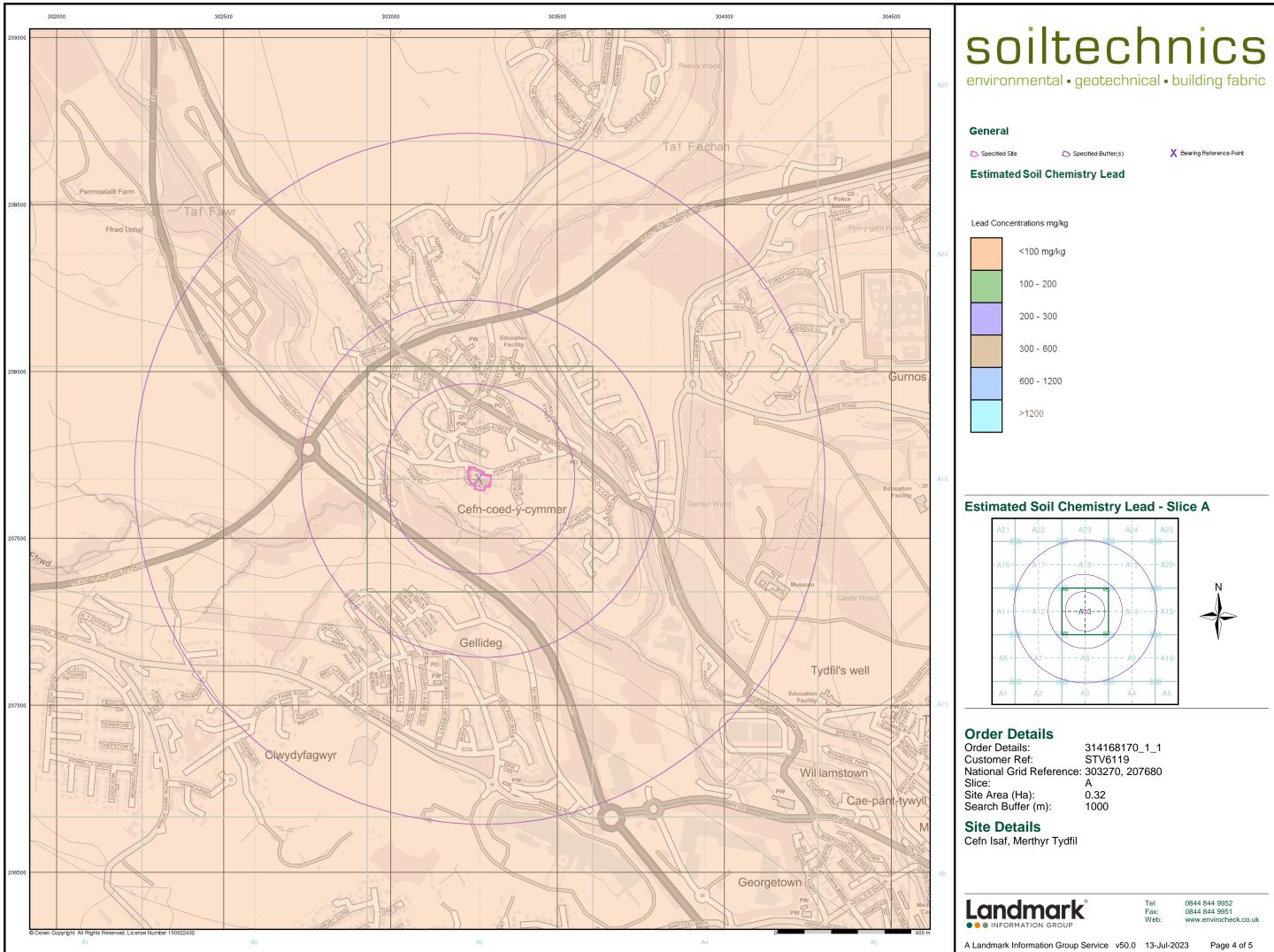
🔼 Specified Site

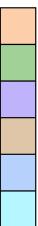
Specified Buffer(s)

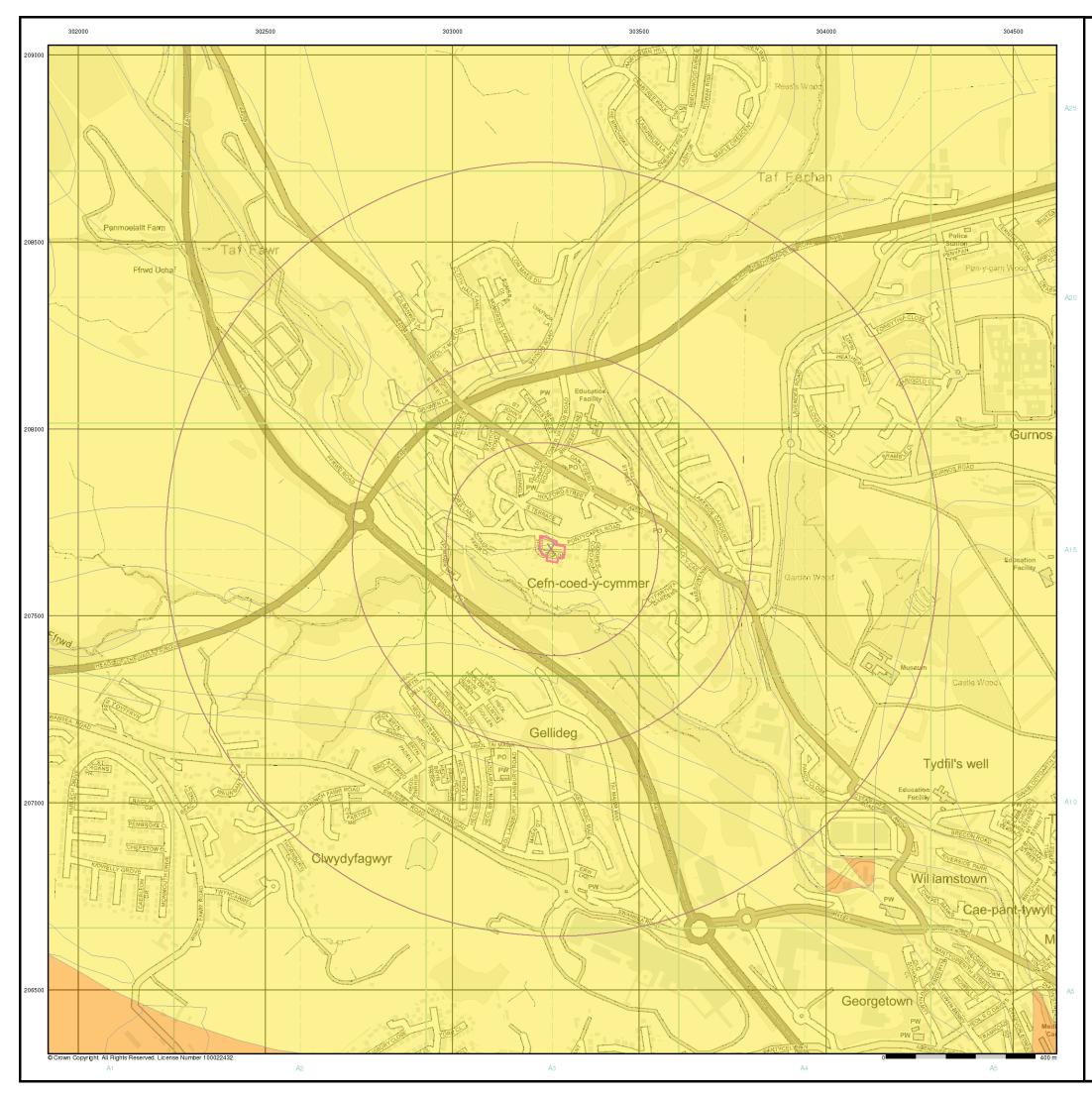

X Bearing Reference Point

Estimated Soil Chemistry Chromium

Chromium Concentrations mg/kg




Order Details:314188170_1_1Customer Ref:STV6119National Grid Reference:303270, 207680Slice:ASite Area (Ha):0.32Search Buffer (m):1000


Site Details

Cefn Isaf, Merthyr Tydfil

General

🔼 Specified Site

Specified Buffer(s)

X Bearing Reference Point

Estimated Soil Chemistry Nickel

Nickel Concentrations mg/kg

Estimated Soil Chemistry Nickel - Slice A A22 Ażs Aż4 - - Ath3-AЗ A4 **Order Details**

314168170_1_1 STV6119 Order Details: Customer Ref: National Grid Reference: 303270, 207680 Slice: А Site Area (Ha): Search Buffer (m): 0.32 1000

Site Details

Cefn Isaf, Merthyr Tydfil

Tel: Fax: Web: