

Document control sheet

Issued by	Hydrock Consultants Limited Wharton Place 13 Wharton Street Cardiff CF10 1GS United Kingdom	T +44 (0)2920 023 665 E cardiff@hydrock.com hydrock.com
Client	Morgan Sindall Construction & Infrastructure Ltd	
Project name	SWITCH Building	
Project title	Combined Phase 1 and Phase 2 Ground In	vestigation Report
BIM reference	26279-HYD-XX-XX-RP-GE-1000	
Project reference	26279	
Date	01/12/2023	

Document production record		
Issue Number	S2 P1	Name
Prepared by		Emily Wareing BSc (Hons) MSc FGS
Checked by		Matthew Holbourn BSc (Hons) MSc FGS
Approved by		Alexandra Edwards BSc (Hons) MSc FGS

Document revision record			
Issue Number	Status	Date	Revision Details
S2	P1	01/12/23	First Issue

Hydrock Consultants Limited (Hydrock) has prepared this report in accordance with the instructions of the above-named Client, under the terms of appointment for Hydrock, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock's appointment.

Contents

1.	Introduction	8		
2.	Desk study (and field reconnaissance)	11		
3.	Initial conceptual site model	25		
4.	Ground investigations	28		
5.	Ground investigation records and data	31		
6.	Geotechnical assessment			
7.	Geo-environmental assessment			
8.	Waste and materials management			
9.	Uncertainties and limitations			
	Recommendations for further work			
10.				
11.	References	63		
Table	es e			
Table 2	2.1: Site referencing information	11		
	2.2: Site description			
	2.3: Site history review			
	2.4: Geology			
	2.5: Aquifer system 2.6: Surface water features			
	2.7: Regulatory information within 500m of the site			
	2.8: Natural soil chemistry			
	2.9: Non-specialist UXO screening (for the purposes of ground investigation)			
	4.1: Summary of site works			
	4.2: Summary of monitoring installations			
	4.3: Geo-environmental analyses of soils			
Table 4	4.4: Geo-environmental analyses of leachate	30		
Table 4	4.5: Geo-environmental analyses of waters	3C		
	4.6: Summary of sample numbers for geotechnical tests			
	5.1: Strata encountered			
	5.2: Visual and olfactory evidence of contamination - soils			
	Fable 5.3: Groundwater occurrence3 Fable 5.4: Groundwater level and PID data summary3			
	5.5: Visual and olfactory evidence of contamination - waters			
	Fable 5.6: Range of ground gas data			
	able 5.7: Volume change potential			
	able 5.8: PSD results summary3			
	able 5.9: Relative density results and derived values			
	Fable 5.10: Aggressive chemical environment concrete classification3			
	able 5.11: Rapid slag expansion test results			
Table 6	able 6.1: Characteristic geotechnical values			

Executive summary4

	PC in soils which require further assessment (human health)	
Table 7.2: Asbestos in soil samples (laboratory testing)		
	PPC which require further assessment (controlled waters) EQS inland	
Table 7.6: CoPC which require further assessment (controlled waters) EQS other Table 7.8: Ground gas risk assessment		
	esidual risks following risk evaluation	
	ias protection score by CS and type of building (after BS 8485:2015 +A1:2019)	
Figures		
	te location	
	xtract from the Ordnance Survey Map	
Figure 2.3: Access from the east of the site.		
Figure 2.4: S	uDs pond feature in the south-east of the site	13
	iew across the north of the site	
_	iew across the southern portion of site uperficial deposits	
0	olid geology	
•	tificial Ground	
rigare 2.5 7		10
Appendice	es e	
Appendix A	Drawings	
Appendix B	Field reconnaissance photographs	
Appendix C	Historical ordnance survey maps	

Plausible source-pathway-receptor contaminant linkages

Appendix K

Executive summary

The objectives of the Phase 1 Desk Study are to formulate a preliminary Ground Model and an Initial Conceptual Site Model of the site to identify and make a preliminary assessment of any potential geo-environmental and geotechnical risks to the proposed development. The objectives of the Phase 2 Ground Investigation are to resolve any geotechnical and geo-environmental uncertainties identified in the Phase 1 Desk Study by refining and updating the outline Ground Model, to identify any geo-environmental mitigation requirements to enable development to progress, and provide preliminary geotechnical recommendations for development design.	Site information and setting		
Client Morgan Sindall Construction & Infrastructure Ltd. Site name and location Talbot. Proposed development design. The site development proposals are understood to comprise a carbon hub research facility for Swansea University, with areas of car parking, and soft landscaping. Site description The site is irregular in shape, and covers an approximate area of 2.07 hectares. The site is bordered to the north by a footpath running between the site and car parking for Port Talbot Parkway train station. The site is bound to the west by a fence line which marks the limit of the site, and to the south by Harbour Way (dual carriageway). The site is bound to the east by Cramic Way, which provides vehicle access from Harbour Way to Port Talbot Parkway station. Desk study summory Topography The site is largely level, with standing water present and is therefore poorly draining. Hydrology Drainage ditch - on site, orientated east west in the centre of the site. Pond - on site, in the south-east of the site. Former harbour - off site, 50m south of the site. Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer	Objectives	Model and an Initial Conceptual Site Model of the site to identify and make a preliminary assessment of any potential geo-environmental and geotechnical risks to the proposed development. The objectives of the Phase 2 Ground Investigation are to resolve any geotechnical and geo-environmental uncertainties identified in the Phase 1 Desk Study by refining and updating the outline Ground Model, to identify any	
Site name and location South Wales Industrial Transition from Carbon Hub (SWITCH) building, Port Talbot. Proposed development The site development proposals are understood to comprise a carbon hub research facility for Swansea University, with areas of car parking, and soft landscaping. Site description The site is irregular in shape, and covers an approximate area of 2.07 hectares. The site is bordered to the north by a footpath running between the site and car parking for Port Talbot Parkway train station. The site is bound to the west by a fence line which marks the limit of the site, and to the south by Harbour Way (dual carriageway). The site is bound to the east by Cramic Way, which provides vehicle access from Harbour Way to Port Talbot Parkway station. Posk study summary Topography The site is largely level, with standing water present and is therefore poorly draining. Hydrology Drainage ditch - on site, orientated east west in the centre of the site. Former harbour - off site, 50m south of the site. Former harbour - off site, 50m south of the site. Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer		progress, and provide preliminary geotechnical recommendations for	
location Talbot. Proposed development The site development proposals are understood to comprise a carbon hub research facility for Swansea University, with areas of car parking, and soft landscaping. Site description The site is irregular in shape, and covers an approximate area of 2.07 hectares. The site is bordered to the north by a footpath running between the site and car parking for Port Talbot Parkway train station. The site is bound to the west by a fence line which marks the limit of the site, and to the south by Harbour Way (dual carriageway). The site is bound to the east by Cramic Way, which provides vehicle access from Harbour Way to Port Talbot Parkway station. Desk study summary Topography The site is largely level, with standing water present and is therefore poorly draining. Hydrology Drainage ditch - on site, orientated east west in the centre of the site. Pond - on site, in the south-east of the site. Former harbour - off site, 50m south of the site. Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer	Client	Morgan Sindall Construction & Infrastructure Ltd.	
development research facility for Swansea University, with areas of car parking, and soft landscaping. The site is irregular in shape, and covers an approximate area of 2.07 hectares. The site is bordered to the north by a footpath running between the site and car parking for Port Talbot Parkway train station, The site is bound to the west by a fence line which marks the limit of the site, and to the south by Harbour Way (dual carriageway). The site is bound to the east by Cramic Way, which provides vehicle access from Harbour Way to Port Talbot Parkway station. **Desk study summary** Topography The site is largely level, with standing water present and is therefore poorly draining. Hydrology Drainage ditch - on site, orientated east west in the centre of the site. Pond - on site, in the south-east of the site. Former harbour - off site, 50m south of the site. Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks, WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer			
The site is bordered to the north by a footpath running between the site and car parking for Port Talbot Parkway train station, The site is bound to the west by a fence line which marks the limit of the site, and to the south by Harbour Way (dual carriageway). The site is bound to the east by Cramic Way, which provides vehicle access from Harbour Way to Port Talbot Parkway station. **Desk study summary** Topography** The site is largely level, with standing water present and is therefore poorly draining. Hydrology** Drainage ditch - on site, orientated east west in the centre of the site. Pond - on site, in the south-east of the site. Former harbour - off site, 50m south of the site. Site History** The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology** Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology** Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer	•	research facility for Swansea University, with areas of car parking, and soft	
Topography The site is largely level, with standing water present and is therefore poorly draining. Bydrology Drainage ditch - on site, orientated east west in the centre of the site. Pond - on site, in the south-east of the site. Former harbour - off site, 50m south of the site. The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer	Site description	The site is bordered to the north by a footpath running between the site and car parking for Port Talbot Parkway train station, The site is bound to the west by a fence line which marks the limit of the site, and to the south by Harbour Way (dual carriageway). The site is bound to the east by Cramic Way, which provides	
Hydrology Drainage ditch - on site, orientated east west in the centre of the site.	Desk study summar	у	
Pond - on site, in the south-east of the site. Former harbour - off site, 50m south of the site. Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits - Secondary Undifferentiated Solid: South Wales Middle Coal Measures - Secondary A Aquifer	Topography		
Former harbour – off site, 50m south of the site. Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits – Secondary Undifferentiated Solid: South Wales Middle Coal Measures – Secondary A Aquifer	Hydrology	Drainage ditch - on site, orientated east west in the centre of the site.	
Site History The site has previously featured a gasholder, chemical storage tanks and railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits – Secondary Undifferentiated Solid: South Wales Middle Coal Measures – Secondary A Aquifer		Pond - on site, in the south-east of the site.	
railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open excavations across the site, and installation of a 600mm thick capping layer. Geology Surface Covering: Landscaped Made Ground Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits – Secondary Undifferentiated Solid: South Wales Middle Coal Measures – Secondary A Aquifer		Former harbour – off site, 50m south of the site.	
Superficial: Tidal Flat Deposits Solid: South Wales Middle Coal Measures Hydrogeology Superficial: Tidal Flat Deposits – Secondary Undifferentiated Solid: South Wales Middle Coal Measures – Secondary A Aquifer	Site History	railway sidings which formed part of Port Talbot Steelworks. WSP and Andrew Scott Ltd have undertaken historic remediation at the site, which consisted of removal of hydrocarbon impacted soils, skimming of LNAPL from open	
Solid: South Wales Middle Coal Measures – Secondary A Aquifer	Geology	Superficial: Tidal Flat Deposits	
	Hydrogeology		
	UXO risk		

Preliminary conceptual site model based on desk study

Potential contaminant sources

On site sources:

- » Made Ground, associated with historical construction activities and imported fill, possibly including elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons (SO1).
- » Hydrocarbon fuels, lubricants, and solvents from the operation of the former chemical works on the site including leakage from Underground Storage Tanks (USTs), Above Ground Storage Tanks (ASTs), the pipework between tanks and pumps, and general spillage, together with uncontrolled disposal and spillage from waste receptacles (SO2).
- » Ground gases (carbon dioxide and methane) from organic materials in the Made Ground / Tidal Flat Deposits (SO3).
- » Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks (SO4).

Off-site sources:

» PCBs and oils from transformers in the electricity sub-station off site (SO5).

Potential contaminant linkages (for receptors for which there is or will be a pathway)

- » People (neighbours, site end users) (R01).
- » Development end use (buildings, utilities and landscaping) (RO2).
- » Groundwater: Secondary A aquifer status of the South Wales Middle Coal Measures (RO3).
- » Surface water: on-site drainage ditch and harbour off site 50m to the south (RO4).

Ground model proven by investigation

Ground and groundwater conditions encountered by investigation The ground conditions as proven by the investigation undertaken at the site comprise:

- » Made Ground between 0.0m and 2.8m below ground level (bgl), comprising brownish red to brownish dark grey slightly sandy subangular to angular fine to coarse GRAVEL of limestone, sandstone, asphalt, concrete, brick and slag.; over
- » Tidal Flat Deposits between 2.1m and 3.6m bgl, firm to stiff grey slightly silty slightly silty CLAY, with fine to coarse sands (not recorded in all locations); over
- » Alluvial Fan Deposits between 2.2m and 8.50m bgl, comprising dark brownish grey slightly sandy rounded fine to coarse GRAVEL of sandstone with a low sandstone cobble content. Sands were fine to coarse.

Groundwater was encountered at depths between 0.4m bgl and 2.6m bgl during the investigation.

Water levels recorded post-fieldwork ranged from 1.76m bgl to 2.14m bgl (5.62m OD to 5.24m OD).

There is olfactory evidence of petroleum hydrocarbon contamination in soils and groundwater.

Summary of geotechnical conclusions		
Groundwork	Obstructions associated with former development, including foundations, floor slabs and services, should be anticipated. Excavation to proposed founding depth generally should be readily achievable with standard excavation plant. Heavy duty excavation plant/breaking equipment may be required. Trial pit faces were noted to remain generally stable, during excavation, with slight spalling in some locations where groundwater or the Alluvial Fan Deposits were encountered.	
Foundations	The Made Ground on site is un-suitable for shallow foundations in its current conditions. Foundations are recommended to comprise: » Piled foundations; or » Vibro Stone Column Ground improvement with pad foundations.	
Roads and pavements Sustainable drainage	For road / pavement design, a design CBR in excess of 4% is anticipated to be achievable across the whole site. Soakaway drainage has not been considered for this site due to thickness of Made Ground and contamination encountered.	
Buried concrete	Design Sulfate Class - DS-1 and ACEC Class AC-1.	
Summary of geo-en	vironmental assessment	
Human Health	Unacceptable exceedances of Hydrock's GAC were recorded in Made Ground for asbestos (chrysotile) and lead.	
Phytotoxicity	Exceedances of the GAC in Made Ground for chromium (III), copper and lead, and in Tidal Flat Deposits for zinc.	
Controlled waters	Soil leachate samples exceed EQS (other) for arsenic, copper, mercury, vanadium, zinc and PAHs. Groundwater samples exceed EQS (other) for copper, mercury, and a number of petroleum hydrocarbons.	
Radon:	The site is not in a Radon Affected Area (less than 1% of homes at or above the action level)	
Potable water supply pipes	Brownfield site with organic contamination and barrier pipe is considered to be required for this site. However, confirmation should be sought from the water supply company at the earliest opportunity.	
Ground gases or vapours:	Elevated ground gases (methane) have been recorded and CS2 conditions apply. It is also considered necessary for the membrane to be hydrocarbon vapour resistant based on the presence of hydrocarbons & BTEX within the soils.	
Enabling works		
Proposed mitigation measures	 The mitigation measures proposed to remove unacceptable risks include: Installation of ground gas protection measures to comply with CS2 conditions and to prevent organic vapour intrusion. Installation of an engineered clean cover system in soft landscaped areas, to provide a barrier between sources of contamination in soils and human receptors. 	

ı	The methodology for the remediation should be presented in a Remediation
	Strategy, which will need to be submitted to the warranty provider and the
ı	regulatory authorities for approval.

Verification reports by a competent independent geo-environmental specialist will be required following completion of any remedial works.

Waste management

Excavated soils to be disposed of as waste, are likely to be classed as hazardous.

Future considerations

Further work

Following the ground investigation works undertaken to date, the following further works will be required:

- » discussion and agreement with utility providers regarding the materials suitable for pipework;
- » discussions with regulatory bodies and the warranty provider regarding the conclusions of this report;
- » discussions with Vibro-stone Column Contractors regarding the viability of, and potential improvement by, VSCs;
- » discussions with piling Contractors regarding conclusions of this report and design of the piles;
- » provision of geotechnical design for the Category 2 structures (floor slabs / foundations);
- » production of a Remediation Strategy and Verification Plan (and agreement with the regulatory bodies and the warranty provider);
- » production of a Materials Management Plan relating to reuse of soils at the site and import of soils to the site;
- » remediation and mitigation works;
 - » installation of a clean cover system;
 - » installation of a CS2 ground gas and vapour resistant membrane;
- » verification of the earthworks, remediation and mitigation works.

This Executive Summary forms part of Hydrock Consultants Limited report number 26279-HYD-XX-XX-RP-GE-1000 and should not be used as a separate document.

1. Introduction

1.1 Terms of reference

In September 2023, Hydrock Consultants Limited (Hydrock) was commissioned by Morgan Sindall Construction & Infrastructure Ltd(the Client) (Morgan Sindall) to undertake a site investigation, comprising a Phase 1 ground conditions desk study and Phase 2 ground investigation. The nearest address for the site is Oakwood Road, Port Talbot, SA13 1DE.

The site is currently derelict scrub land, with a roadway dividing the site into north and south areas. Access down this road is presently restricted, as large boulders barrier the entrances to the road.

Hydrock understands that the proposed development is to comprise a two-storey carbon hub research building with associated car parking and soft landscaping. A sprinkler tank and substation are also included within the proposed development. A proposed development layout (Intelligence Buildings Infrastructure (IBI) 01/08/23 Site Plan SWITCH Harbourside 26CB03-ARC-30-00-D-A-100001_P02) is presented in Appendix A

The investigation works have been undertaken in accordance with Hydrock's proposal referenced (Geo Phase 1 & 2 Ground Investigation 31 July 2023) and the Client's instructions to proceed (Ref James Harding Email: 25/09/23 PO Number CE001).

1.2 Objectives

The works have been commissioned to assist with the design of the development.

The objectives of the Phase 1 Desk Study are to formulate a preliminary Ground Model and an Initial Conceptual Site Model of the site to identify and make a preliminary assessment of any potential geo-environmental and geotechnical risks to the proposed development.

The objectives of the Phase 2 Ground Investigation are:

- » to resolve any geotechnical and geo-environmental uncertainties identified in the Phase 1 Desk Study by refining and updating the preliminary Ground Model, based on the conditions met in accordance with the principles of Environment Agency (EA) 'Land Contamination: Risk Management' (LCRM) (2020);
- » to identify any geo-environmental mitigation requirements to enable development to progress;
- » to provide preliminary geotechnical recommendations for design.

1.3 Scope

The site investigation includes a Phase 1 Desk Study and a Phase 2 Ground Investigation.

The scope of the Phase 1 Desk Study comprises:

- » a field reconnaissance (walkover) to determine the nature of the site and its surroundings including current and former land uses, topography and hydrology;
- » acquisition and review of:
 - » historical Ordnance Survey maps, to identify any; former potentially contaminative uses shown at the site and immediately surrounding it, and an assessment of the associated contamination risks;
 - » a third-party environmental report to identify any; flooding warning areas, local landfills, pollution incidents, abstractions, environmental permits etc. All of which may have had the potential to have environmental impact on the site;
 - » topographical, geological and hydrogeological maps;

- » regional UXO risk maps;
- » a site-specific Coal Authority 'Consultants Coal Mining Report';
- » the Coal Authority's Interactive Viewer;
- » development of a preliminary Ground Model representing ground conditions at the site;
- » development of an initial Conceptual Site Model (iCSM), including identification of potential contaminant linkages;
- » a qualitative assessment of any geo-environmental risks identified; and
- » identification of any plausible geotechnical hazards.

The scope of the Phase 2 Ground Investigation comprises:

- » a ground investigation including trial pitting, dynamic probing, and cable percussive boring to:
 - » obtain data on the ground and groundwater conditions of the site;
 - » allow collection of samples for geotechnical and chemical laboratory analysis;
 - » allow geotechnical field tests to be undertaken;
- » geotechnical and chemical laboratory analysis;
- » updating of the preliminary Ground Model;
- » preparation of a geotechnical risk register;
- » presentation of an initial geotechnical design recommendations;
- » formulation of an updated Conceptual Site Model (CSM), including identification of any plausible contaminant linkages;
- » completion of a generic quantitative risk assessment of any identified chemical contaminants to establish 'suitability for use' under the current planning regime;
- » discussion of any potential environmental liabilities associated with land contamination (soil, water and gas); and
- » identification of outline mitigation requirements to ensure the site is 'suitable for use'.

1.4 Available information

The following drawings have been provided to Hydrock by Morgan Sindall for use in the preparation of this report:

- » Intelligence Buildings Infrastructure (IBI) August 2023. 'Site Plan SWITCH Harbourside' 26CB03-ARC-30-00-D-A-100001_P02.
- » Gwalia Surveyors, August 2023. 'Topographical Survey, SWITCH-Port Talbot' 3292-T.

The following reports and documents have been provided to Hydrock by Morgan Sindall as Information. Hydrock acknowledges that these documents are not assigned to The Client defined in Section 1.1, and has used them for information purposes only. No formal reliance can be placed upon their contents for the current works.

- » Opus, July 2017, Neath Port Talbot Harbourside Ground Investigation Phase 1 Desk Study Report, ref: V-C8602.01/OIC/00/XX/RP/01.
- » Opus, October 2017, NPT Harbourside Addendum Ground Gas Letter Report, ref: V-X8602.01-OIC-20171012-NPTCBC-L-01.
- » Opus, March 2018, Neath Port Talbot Harbourside Interpretive Geo-Environmental Ground Investigation Report, ref: V-C8602.01/OIC/00/XX/RP/02.
- » WSP, February 2020, Port Talbot Harbourside Controlled Waters Quantitative Risk Assessment, ref: 62253048-002.

- » WSP, March 2020, Port Talbot Harbourside Generic Quantitative Risk Assessment Supplementary Site Investigation Report, ref: 62253048_001.
- » WSP, March 2020, Port Talbot Harbourside Factual Report Additional Product Investigation, ref: 62253048-003.
- » WSP, May 2020, Port Talbot Harbourside Geotechnical Assessment R2 (Memorandum).
- » WSP, June 2020, Remediation Strategy Port Talbot Harbourside, ref: 622530-48-004.
- » WSP, April 2022, Port Talbot Harbourside Remediation Verification Report, ref: 70057278-RV1.

1.5 Regulatory context and guidance

The investigation work has been carried out in general compliance with recognised best practice, including (but not limited to) BS 5930:2015, BS 10175:2011+A2:2017 and the AGS (2006) 'Good Practice Guidelines for Site Investigations'.

The geo-environmental section of this report is written in broad accordance with BS 10175:2011+ A2:2017, EA LCRM), (2021) and the AGS (2006) 'Good Practice Guidelines for Site Investigations'.

The methods used follow a risk-based approach, the first stage of which is a Phase 1 desk study and field reconnaissance, with any potential geo-environmental risks assessed qualitatively. This is done using the 'source-pathway-receptor contaminant linkage' concept to assess risk as introduced in the Environmental Protection Act 1990 (EPA, 1990). Any potential geotechnical risks are also assessed from the Phase 1 desk study and site reconnaissance stage.

Phase 2 comprises intrusive ground investigation work and testing. The factual information from the desk study and the ground investigation are used to develop the Conceptual Site Model (CSM). This CSM is based on a ground model of the site physical conditions and an exposure model of the possible contaminant linkages. The CSM forms the basis for Generic Quantitative Risk Assessment (GQRA) in accordance with current guidelines. This GQRA might lead to more Detailed Quantitative Risk Assessment (DQRA).

Professional judgement is then used to evaluate the findings of the risk assessments and to provide recommendations for the development.

The geotechnical section of this report is prepared in general accordance with BS EN 1997-1+A1: 2013, BS EN 1997-2:2007 and BS 8004:2015. This report constitutes a Ground Investigation Report (GIR) as described in Part 2 of Eurocode 7 (BS EN 1997-2) (EC7). However, it is not intended to fulfil the requirements of a Geotechnical Design Report (GDR) as specified in EC7.

Where relevant the relevant requirements of the current edition of NHBC Standards have also been applied.

The geo-environmental and geotechnical aspects are discussed in separate sections. Throughout the report the term 'geotechnical' is used to describe aspects relating to the physical nature of the site (such as foundation requirements). The term 'geo-environmental' is used to describe aspects relating to ground-related environmental issues (such as potential contamination). However, it should be appreciated that this is an integrated investigation and these two main aspects are interrelated. Designers should take all aspects of the investigation into account.

2. Desk study (and field reconnaissance)

2.1 Data

A number of desk study sources have been used to assemble the following information. These are presented in Appendix C and Appendix D and include:

- » Third-party environmental report (Envirocheck report, reference 317152831_1_1);
- » Historical Ordnance Survey mapping;
- » BGS Archive Records;
- » Zetica UXB Risk Maps (https://zeticauxo.com/downloads-and-resources/risk-maps/);
- » Coal Authority 'Consultants Coal Mining Report' (Reference: 51003379055001);

As part of the desk study information, a number of previous ground investigations undertaken at the site have been reviewed (see Section 1.4). Where suitable, the data from the previously referenced reports is included within this desk study.

2.2 Site referencing

Table 2.1: Site referencing information

Item	Brief Description	
Site name	South Wales Industrial Transition from Carbon Hub (SWITCH Building)	
Site address	The nearest address is Oakwood Road, Port Talbot, SA13 1DE.	
Site location and grid	The site is located approximately 50m north of Port Talbot Harbour, and 100m south of Port Talbot Parkway train station.	
reference	The National Grid Reference of the approximate centre of the site is 276610E, 189470N. The site is approximately 2.07 Ha in area and is irregular in shape.	
Site boundaries	The site is bound to the north by a walkway and a car park for the nearby train station. The site is bound to the south by a fence line which separates the site from Harbour Way. The site bounds to the east of the site are not formally demarked, although run parallel to the rear of the Cramic Way car park. The western limit of the site is marked by a fence line, disrupted in the centre by the access road.	

Figure 2.2: Extract from the Ordnance Survey Map.

A site location plan (Hydrock Drawing 26279-HYD-XX-XX-DR-GE-1000) is presented in Appendix A

2.3 Site description and field reconnaissance survey

A field reconnaissance survey was undertaken on 20 September 2023, to visually identify and assess potential geotechnical hazards, contaminant sources for future investigation and identification of possible source-pathway-receptor linkages. The weather during the field reconnaissance survey was rainy and overcast.

A description of the site is presented in Table 2.2 and selected photographs are presented in Figure 2.3 to Figure 2.6. Additional photographs are presented in Appendix B.

Table 2.2: Site description

Item	Brief Description	
Site access	The site was accessed from the entrance to the road in the east of the site, which continues through the site to the west.	
Site area	The site is irregular in shape and has an area of approximately 2.07 ha.	
Elevation, topography and any geomorphic features	The site is generally flat, with small changes in levels of 0.5m down to the base of the drainage ditch running parallel to the south of the access road. The level of the site reduces further in the east of the site by circa 1m to accommodate a SuDs pond feature. At the time of the walkover, the depth to the water shown on the level was 0.69m from the base of the pond.	
Site boundaries and surrounding land	The site is bound to the south by Harbour Way, and to the north by a public walkway and the Port Talbot Parkway train station car park. The west of the site is bound by a fence line, which is interrupted by an access road that passes through the centre of the site (west to east orientation). The boundary to the east of the site follows the fence line between the site, and the Cramic Way car park.	
Present land use	The land is presently open derelict land, with an access road dividing the site into north and south. At the time of the walkover, the site was covered by Made Ground which appeared to comprise gravel, concrete, asphalt, slag and brick. The north and south sections of the site either side of the access road were covered by approximately 40mm of standing water.	
Vegetation	The site had patchy coverage of shrub and scrub across the site, with thicker vegetation occupying the site perimeter.	
General site sensitivity	The site is within a generally industrial area of Port Talbot.	

A site walkover plan (Hydrock Drawing 26279-HYD-XX-XX-DR-GE-1001) is presented in Appendix A.

Figure 2.3: Access from the east of the site.

Figure 2.4: SuDs pond feature in the south-east of the site.

Figure 2.5: View across the north of the site.

Figure 2.6: View across the southern portion of site.

Site history 2.4

A study of historical Ordnance Survey maps (Appendix C) has been undertaken to identify any former land uses at the site and surrounding areas which may have geotechnical or geoenvironmental implications for the proposed development. The key findings are summarised in Table 2.3.

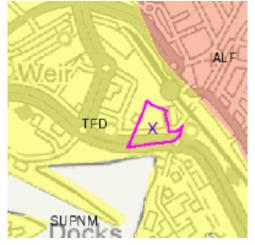
Table 2.3: Site history review

Reference	Key features on site	Key features off-site
OS Map ¹ 1876 -1877: 1:2,500	The site is open fields with areas of marshland in the south. The eastern most portion of the site intersects railway	The site is bordered to the south by docklands, connected to the various industrial works by tramways and railways. Port Talbot Station lies 140m north-west of the site, with adjacent railway lines trending north-west to south-east. A smithy is mapped 175m north-west of the site.
	sidings orientated	Remains of a chapel are cited 15m east of the site.
	north-east to south- west.	Mansel Tin Plate Works and Afon-Vale Tin Plate Works lie 400m and 525m north-west of the site respectively. Port Talbot Wharf lies 450m south-west of the site.
		425m north-west of the site is the River Afan.Cwm-Afon Tramway lies 550m north-west of the site.
		675m north-east of the site is Margam Tin Plate Works (lower forge).
		Port Talbot Chemical Works lie 760m north-west of the site. Margam Copper Works are 800m south-east of the site, with a gas works adjacent 925m south-east of the site.
		The river Ffrwd-wyllt is 775m south-east of the site, and is trending north-east to south-west, and outlets into the docklands
OS Map 1884 - 1885: 1:10,560	No significant change.	No significant change.
OS Map 1899: 1:2,500	,	Taibach Tin Plate Works constructed 125m south-east of the site.
		375m north-west of site, an iron foundry has been constructed
		Beyond Taibach Tin Plate Works are Ffrwdwyllt Tin Plate Works, 525m south-east of the site.
		Afon Tin Plate Works, and Margam Tin Plate Works are labelled as disused.
		New Dock constructed 550m south-west of the site, with new railway lines to support transport of imports/exports. The new rail lines include the Rhondda and Swansea Bay Railway 725m north-west,

¹ Ordnance Survey Historical Map Information provided by Envirocheck.

OS Map 1900: 1:10,560	No significant change.	No significant change.
OS Map 1917 - 1919: 1:2,500	A series of new rail lines pass through the south of the site. A building has been constructed in the north-west corner of the site.	A series of tanks are located circa 135m north-west of the site around a new construction. Significant residential expansion has occurred to the east of the site.
OS Map 1921: 1:10,560	No significant change.	The construction to the west of the site is labelled Port Talbot Steel Works.
OS Map 1936-1940: 1:2,500	A tank is recorded on the map in the east of the site. New rail lines have been constructed on the site, to support expansion of the Port Talbot Steel Works, with the addition of a new building crossing the south of the western boundary, and a second building added in the northwest corner of the site.	Port Talbot Steel Works have expanded to the south, with the inclusion of new tanks, and a pipeline.
OS Map 1938 - 1952: 1:10,560	No significant change.	No significant change.
OS Map 1952-1968: 1:1,250	Expansion of the steelworks has resulted in the addition of new tanks (tank farm) in the west of the site.	Taibach Tin Plate Works no longer mapped.
OS Map 1964-1969: 1:2,500	The site of the tank farm is now labelled as a Chemical Works. The gasholder is no longer recorded on site, with an education and training centre taking its place.	Port Talbot Steel Works is partially labelled as disused, with the remainder reclassified as an engineering works, Former Mansel Tin Plate Works become disused.
OS Map 1978-1991: 1:1,250	The tanks at the chemical works which intersect the site boundary are no	No significant change.

	longer detailed on maps. A new roundabout has been constructed in the south-east of the site.	
OS Map 1993: 1:1,250	No significant change.	No significant change.
OS Map 1993-1996: 1:10,000	No significant change.	No significant change.
OS Map 1999: 1:10,000	No significant change.	Former Ffrwdwyllt Tin Plate Works building no longer shown on maps.
Aerial photograph 2000	The site appears to be in use as a stockyard. The footprint of the former gasholder in the east of the site is visible.	No significant change.
OS Map 2006: 1:10,000	No significant change.	The docks to the south of the site are marked as disused.
OS Map 2013: 1:10,000	No significant change.	A new link road has been constructed 175m to the east of the site, to better connect the industrial estate to the M4.
OS Map 2016: 1:10,000	No significant change.	Three new buildings have been constructed circa 60m west of the site.
Google Earth Pro: September 2022.	Road constructed through the centre of the site in an east west orientation.	No significant change.
OS Map 2023: 1:10,000	No significant change.	No significant change.



2.5 Geology

The geology of the site area is shown on the 1:10,000 British Geological Survey (BGS) map extract reproduced as part of the Envirocheck report and is summarised below:

Table 2.4: Geology

Ref. for Figures	Location	Stratigraphic Name	Description			
Superficial Deposits (Figure 2.7)						
LSGR On site. Landscaped Ground		· ·	Significantly remodelled area where it is impossible to delineate separate zones of Made Ground or Disturbed Ground, with variable composition.			
TFD	On site	Tidal Flat Deposits	Variable clay, silt, sand and gravel.			
Solid Geolo	gy (Figure 2	2.8)				
SWMCM	On site.	South Wales Middle Coal Measures	Mudstone, siltstone and sandstone.			

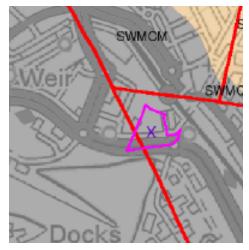


Figure 2.7: Superficial deposits.

Figure 2.8: Solid geology.

Figure 2.9 Artificial Ground

A fault crosses the south-west corner of the site, along a north-west to south-east orientation.

Previous investigation was undertaken by WSP in April 2022. Hydrock has no formal reliance on the report provided by the Client, and thus the report discussed is used for information only. The ground conditions encountered are summarised below:

- Clean cover system between ground level and 0.60m bgl;
- Made Ground up to 3.50m bgl comprising ash slag brick stone and other deleterious materials.
- Alluvial Silts recorded between 1.60m and 4.00m bgl
- Alluvial Gravel Deposits between 1.60m and >10.00m bgl

The South Wales Middle Coal Measures were only encountered in one borehole at approximately 6.90m bgl. Groundwater was recorded between 1.00m bgl and 4.00m bgl.

2.6 Hydrogeology

2.6.1 Aquifer designations

Based on the inferred geological sequence presented in Section 0 the aquifer system presented in Table 2.5 applies.

Table 2.5: Aquifer system

Stratum	Aquifer Designation	Comments							
Superficial Depos	Superficial Deposits								
Tidal Flat Deposits	Secondary Undifferentiated Aquifer	Permeability will differ between the cohesive deposits at shallow depth and granular deposits at depth. The cohesive deposits are expected to have a low porosity and low permeability where the granular deposits are expected to have a medium porosity and permeability.							
Solid Geology									
		Likely to be generally characterised by low permeability and isotropic.							
South Wales		Stratification suggests kh is likely to be greater than kv in the unmined parts of the sequence.							
Middle Coal Measures	Secondary A Aquifer	Coal workings are likely to have created a significant secondary porosity and permeability and large volumes of groundwater can be present in abandoned workings, with associated potentially high rates of flow.							

2.6.2 Groundwater abstraction

There are no active licensed groundwater abstractions within 1000m of the site.

2.6.3 Groundwater source protection zones and groundwater vulnerability

The site is not within a groundwater Source Protection Zone (SPZ).

2.6.4 Groundwater levels, recharge, and flow

Groundwater is expected to be shallow in line with the water level of the docks and sea 50m to the south of the site. Groundwater is expected to flow south towards the docks under the hydraulic gradient on a local scale, but on a regional scale, groundwater is thought to be flowing to the sea to the south-west of the site. Groundwater recharge is expected to be impeded by the Landscaped Ground as this is likely to comprise of impermeable Made Ground.

2.6.5 Groundwater quality

The groundwater body beneath the site (Swansea Carboniferous Coal Measures) is currently (2021, Cycle 3) classified under the Water Framework Directive as 'poor'.

The water body is currently given a 'poor' status due to 'chemical groundwater dependant water body' conditions. This is typical for groundwater bodies within heavily industrialised areas and the South Wales Coal Field.

2.6.6 Groundwater flooding

The environmental data report indicates potential for groundwater flooding to occur at surface.

2.7 Hydrology

2.7.1 Surface water system and drainage

The surface water features in the vicinity of the site are listed in Table 2.6.

Table 2.6: Surface water features

Feature	Location Relative to Site
Drainage ditch.	On site, orientated east west in the centre of the site.
Pond.	On site, in the south-east of the site.
Former harbour.	50m south of the site.

2.7.2 Surface water abstractions and discharges

There are no active licensed surface water abstractions or discharges within 500m of the site.

2.7.3 Surface water quality

Reference to the Natural Resource Wales web site shows the site is not located within a river catchment. The nearest catchment is circa 100m west of the site and is known as the Afan – confluence with Pelenna to tidal limit, and the nearest specific river water body being the River Avan. The current (2021, Cycle 3) overall status under the Water Framework Directive is described as 'good'.

2.7.4 Surface water flooding

The desk study information indicates the proposed development is in a low flood risk area (a chance of flooding between 1 in 1000 (0.1%) and 1 in 100 (1%)).

No further consideration of flood risk is undertaken in this report. Specialist flood risk advice should be sought with regard to drainage and flooding.

2.8 Mining and mineral extraction

Reference to the Consultants Coal Mining Report commissioned by Hydrock for the site has indicated an absence of past underground mining, shallow workings and mine entries. The Coal Authority Interactive Viewer (https://mapapps2.bgs.ac.uk/coalauthority/home.html) also does not indicate the presence of any coal seams below, or adjacent to the site. Overall, it is considered unlikely that the site will be affected by historic coal mining in the Port Talbot area.

2.9 Waste management

There are no current or historical waste management sites recorded within 250m of the site.

2.10 Regulatory Information

Information in the Envirocheck Report (Appendix D), relating to various regulatory controls has been reviewed, with a summary presented below in Table 2.7.

Table 2.7: Regulatory information within 500m of the site.

Regulatory Data	Distance from Site	Details	Potential Risk	Comment
Local Authority Pollution Prevention and Controls	N/A	No entries on pollution controls were recorded within 500m of the site.	No.	-
	22m south- east.	May 1991, sewage – septic tank effluent, Category 3 – minor incident	No.	Due to the duration of time passed, and the Category 3 classification of the incident.
	32m east.	October 1997, crude sewage, Category 3 – minor incident	No.	Due to the duration of time passed, and the Category 3 classification of the incident.
Pollution Incidents	75m north- east.	July 1997, creosote, Category 3 – minor incident.	No.	Due to the duration of time passed, and the Category 3 classification of the incident.
	106m south.	September 1994, mud/clay/soil, Category 2 - significant incident.	No.	Due to the duration of time since the event.
	107-111m south.	March 1998, oils – diesel, Category 3 – minor incident (3 entries)	No.	Due to the duration of time passed, and the Category 3 classification of the incident.
Trade Directory Entries	103m north.	Active M P G Tyres & Exhausts Ltd – tyre repairs.	No.	Due to the lack of potential contaminants.
	212m south- east.	Phina Doors door		Due to the small volumes of potential
	247m north- east.	Active Astra Park Service Centre Ltd – garage services.	No.	contaminants and its distance from the site.

251m north. Active Town Tyre Services – tyre dealers. Active Planguard – garage services. 291m northeast. Active Paul's Tyres – tyre dealers. Active Fairwood Engineering Ltd – precision engineering. Active Talbot Hydraulics – hydraulic equipment sales. 306m northwest. Active Spraytech – car body repairs. Active Spraytech – car body repairs. Active Active Spraytech Hauliers – haulage services. Active A			
280m south. Planguard – garage services. 291m northeast. Active Paul's Tyres – tyre dealers. Active Fairwood Engineering Ltd – precision engineering. Active Talbot Hydraulics – hydraulic equipment sales. 306m northwest. Active Spraytech – car body repairs. Active 327m east. Evolve Electrical Engineering. Active Active Active Active Active Active Active Whirtpool Laundrette – dry cleaners.	251m north.	Town Tyre Services – tyre	No.
Paul's Tyres – tyre dealers. Active Fairwood Engineering Ltd – precision engineering. Active Talbot Hydraulics – hydraulic equipment sales. 306m north- west. Active Spraytech – car body repairs. Active 327m east. Evolve Electrical Engineering. Active 363m south. Active Runtech Hauliers – haulage services. Active 403m south. J M Fabweld Ltd – mechanical engineers. Active 403m south. Active Auguste – Sales, servicing and repairs. Active A W D Group – recycling services. Active A W D Group – recycling services. Active Whirlpool Laundrette – dry cleaners. No.	280m south.	Planguard – garage	No.
291m southeast. Fairwood Engineering Ltd - precision engineering. Active Talbot Hydraulics - hydraulic equipment sales. 306m northwest. Active Spraytech - car body repairs. Active 327m east. Evolve Electrical Engineering. Active 363m south. Active 403m south. Active J M Fabweld Ltd - haulage services. Active 403m south. Pump Supplies - sales, servicing and repairs. Active A W D Group - recycling services. Active Whirlpool Laundrette - dry cleaners. No.			No.
304m south. Talbot Hydraulics – hydraulic equipment sales. 306m northwest. Active L B S Builders Merchants Active Spraytech – car body repairs. Active 327m east. Evolve Electrical Engineering. Active 363m south. Runtech Hauliers – haulage services. Active 403m south. J M Fabweld Ltd – mechanical engineers. Active 403m south. Active Pump Supplies – sales, servicing and repairs. Active A W D Group – recycling services. Active A W D Group – recycling services. Active A W D Group – recycling services. Active Whirlpool Laundrette – dry cleaners.		Fairwood Engineering Ltd	No.
west. L B S Builders Merchants Active 309m south. Spraytech – car body repairs. Active 327m east. Evolve Electrical Engineering. Active 363m south. Runtech Hauliers – haulage services. Active 403m south. J M Fabweld Ltd – mechanical engineers. Active 403m south. Pump Supplies – sales, servicing and repairs. Active A W D Group – recycling services. Active A W D Group – recycling services. Active Whirlpool Laundrette – dry cleaners. No.	304m south.	Talbot Hydraulics – hydraulic equipment	No.
309m south. Spraytech - car body repairs. Active 327m east. Evolve Electrical Engineering. Active Runtech Hauliers - haulage services. Active 403m south. J M Fabweld Ltd - mechanical engineers. Active 403m south. Pump Supplies - sales, servicing and repairs. Active A W D Group - recycling services. Active A W D Group - recycling services. Active Whirlpool Laundrette - dry cleaners. No.			No.
327m east. Evolve Electrical Engineering. Active Runtech Hauliers – haulage services. Active 403m south. J M Fabweld Ltd – mechanical engineers. Active Pump Supplies – sales, servicing and repairs. Active A W D Group – recycling services. Active A W D Group – recycling services. Active Whirlpool Laundrette – dry cleaners.	309m south.	Spraytech – car body	No.
363m south. Runtech Hauliers – haulage services. Active J M Fabweld Ltd – mechanical engineers. Active Pump Supplies – sales, servicing and repairs. Active Active A W D Group – recycling services. Active Whirlpool Laundrette – dry cleaners. No.	327m east.	Evolve Electrical	No.
403m south. J M Fabweld Ltd - mechanical engineers. Active Pump Supplies - sales, servicing and repairs. Active Active A W D Group - recycling services. Active Whirlpool Laundrette - dry cleaners. No.	363m south.	Runtech Hauliers –	No.
403m south. Pump Supplies – sales, servicing and repairs. Active A W D Group – recycling services. Active Whirlpool Laundrette – dry cleaners. No.	403m south.	J M Fabweld Ltd –	No.
420m northwest. A W D Group - recycling services. Active Whirlpool Laundrette - dry cleaners. No.	403m south.	Pump Supplies – sales,	No.
421m south- east. Whirlpool Laundrette – No. dry cleaners.		A W D Group – recycling	No.
427m east. Active No.		Whirlpool Laundrette –	No.
	427m east.	Active	No.

		Phil Reed Cleaning – carpet and upholstery cleaners.		
	470m south- east.	Active M R M Automotive – garage services.	No.	
Fuel Station Entries	122m east.	Open Petrol station	Yes.	As the hydrogeological gradient is likely to be flowing towards the site.
Control of major accident hazards sites (COMAH)	N/A	No entries on COMAH sites were recorded within 500m of the site.	No.	-
Registered radioactive substances	N/A	No entries on registered radioactive substances were recorded within 500m of the site.	No.	-
Notification of installations handling hazardous substances	N/A	No entries on notification of installations handling hazardous substances were recorded within 500m of the site.	No.	-

2.11 Natural soil chemistry

Information contained within the environmental report (Appendix D) gives indicative (estimated) concentration values for the natural soils at the site for a selection of Contaminants of Potential Concern (CoPC). These have been reproduced in Table 2.8.

Table 2.8: Natural soil chemistry

Element	Arsenic	Cadmium	Chromium	Lead	Nickel
Concentration (mg/kg)	25-35	<1.8	60 - 90	<100	15 - 30

The data in Table 2.8 have been compared against Hydrock's Generic Assessment Criteria (GAC), which indicated no exceedances for human health for the commercial end use scenario.

2.12 Radon

The radon risk is reported in reference to the UK Radon Interactive Map Viewer (http://www.ukradon.org/information/ukmaps])

The guidance indicates that the site is in an area where less than 1% of homes are at or above the action level, and therefore no radon protection measures are required.

2.13 Unexploded ordnance (UXO)

In general accordance with CIRIA Report C681 (Stone et al 2009) a non-specialist UXO screening exercise has been undertaken for the purposes of ground investigation and is presented in Table 2.9.

Table 2.9: Non-specialist UXO screening (for the purposes of ground investigation)

Data	Comment	Further Assessment Required
Site History	The site was part of the Port Talbot Steel prior to WW2 and post WW2. The post was mapping 1952 does not record any 'ruins' and as the site was a live steel works it is considered unlikely that any bombs would remain undetected.	No
Post War Development	No bomb damage can be viewed on historical maps and aerial photographs of the site, and therefore it is unlikely the site has previously been bombed.	No.
Geology Type	The site has undergone significant relandscaping following demolition of the Port Talbot Steel Works and now comprises a significant proportion of Landscaped Made Ground. It is unlikely UXO would have remained undetected during the reprofiling of the ground surface.	No.
Surface Cover during WWI	The surface cover during WWII comprised a significant proportion of bituminous bound pavement, concrete and buildings. It is unlikely UXO would remain undetected.	No.
Indicator of Aerial Delivered UXO	Screening against the regional bomb risk map (Appendix D) indicates the site to be in an area where the bomb risk is low.	No.

The non-specialist UXO screening exercise has indicated that no further assessment is required with regard to UXO in relation to ground investigation as no damage was noted on historic mapping to the chemical and gasworks – if the works had been impacted, it is unlikely that UXO would have remained unexploded.

3. Initial conceptual site model

3.1 Introduction

The initial Conceptual Site Model (iCSM) incorporates evidence from the site walkover, the Desk Study and previous investigations carried out at the site. The formulation of an initial Conceptual Site Model is a key component of the LCRM methodology. The iCSM incorporates a ground model of the site physical conditions and an exposure model of the possible contaminant linkages; it forms the basis for Generic Quantitative Risk Assessment (GQRA) in accordance with current guidelines.

3.2 Ground model

The preliminary ground model provides an understanding of the ground conditions and is the basis for preparing the preliminary geotechnical hazard assessment (Section 3.3) and the preliminary geo-environmental exposure model (Section 3.4).

3.3 Geotechnical hazard identification

3.3.1 Context

The preliminary geotechnical hazard identification has been undertaken in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622.

The following section sets out the identified geotechnical hazards and the development elements potentially affected (see Table J.1 in **Appendix J** for further information).

3.3.2 Plausible geotechnical hazards

Plausible geotechnical hazards identified at the site are:

- » Uncontrolled Made Ground (variable strength and compressibility).
- » Soft / loose compressible ground (low strength and high settlement potential).
- » Shrinkage / swelling of the clay fraction of soils under the influence of vegetation.
- » Variable lateral and vertical changes in ground conditions.
- » Attack of buried concrete by aggressive ground conditions.
- » Adverse chemical ground conditions, (e.g. expansive slag).
- » Obstructions.
- » Shallow groundwater.
- » Changing groundwater conditions.
- » Risk from erosion or flooding.
- » Loose Made Ground, leading to difficulty with excavation and collapse of side walls.

3.3.3 Potential development elements affected

Development elements potentially affected by geotechnical hazards are:

- » Buildings foundations.
- » Buildings floor Slabs
- » Roads and pavements.
- » Services.
- » General slopes.

» Construction staff, vehicles and plant operators.

Health and safety risks to site Contractors and maintenance workers have not been assessed during these works and will need to be considered separately during design.

The above plausible geotechnical hazards and development elements affected have been carried forward for investigation and assessment. The investigation is presented in Section 0 and the assessment is presented in Section 0.

3.4 Geo-environmental exposure model

3.4.1 Context

The preliminary exposure model is used to identify geo-environmental hazards and to establish potential contaminant linkages, based on the source-pathway-receptor (SPR) approach.

A viable contaminant linkage requires all the components of an SPR to be present. If only one or two are present, there is no linkage and no further assessment is required.

3.4.2 Potential contaminants

For the purpose of this assessment the potential contaminants have been separated according to whether they are likely to have originated from an on-site or off-site source.

3.4.2.1 Potential on-site sources of contamination

- » Made Ground, associated with historical construction activities and imported fill, possibly including elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons (SO1).
- » Hydrocarbon fuels, lubricants, and solvents from the operation of the former chemical works on the site including leakage from Underground Storage Tanks (USTs), Above Ground Storage Tanks (ASTs), the pipework between tanks and pumps, and general spillage, together with uncontrolled disposal and spillage from waste receptacles (SO2).
- » Ground gases (carbon dioxide and methane) from organic materials in the Made Ground / Tidal Flat Deposits (SO3).
- » Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks (SO4).

3.4.2.2 Potential off-site sources of contamination

» PCBs and oils from transformers in the electricity sub-station off site, immediately east of the site boundary (SO5).

3.4.3 Potential receptors

The following potential receptors in relation to the proposed land use have been identified.

- » People (neighbours, site end users) (RO1).
- » Development end use (buildings, utilities and landscaping) (RO2).
- » Groundwater: Secondary A aquifer status of the South Wales Middle Coal Measures (RO3).
- » Surface water: on-site drainage ditch and harbour off site 50m to the south (RO4).

3.4.4 Potential pathways

The following potential pathways have been identified.

- » Ingestion, skin contact, inhalation of dust and outdoor air by people (P01).
- » Methane ingress via permeable soils and/or construction gaps (PO2).

- » VOC and petroleum hydrocarbon vapour ingress via permeable soils and/or construction gaps (PO3).
- » Surface water via overland flow (PO4).
- » Surface water, via drainage discharge (PO5).
- » Surface water via base flow from groundwater (P06).
- » Root uptake (P07).

Health and safety risks to site development contractors and maintenance workers have not been assessed as part of this study and will need to be considered separately.

The above sources, pathways and receptors have been considered as part of the Preliminary Risk Assessment in accordance with LCRM (2021), are considered to be plausible in the context of this site and have been carried forward for investigation and assessment. The investigation is presented in Section 4 and the assessment is presented in Section 7 An assessment of the Source – Pathway – Receptor linkages is undertaken following the assessment (Section 7) and is presented in Appendix K (Table K.1).

A summary of the plausible linkages is presented on the Initial Conceptual Model provided in Appendix A. (Hydrock Drawing 26279-HYD-XX-XX-DR-GE-1002).

3.4.5 Potential implications of climate change

Climate change has the potential to change the risk profile for conceptual site models and associated contaminant linkages. The impact of climate change on the CSM is site-specific, and a qualitative assessment of the potential impact of climate change on the CSM for this site is summarised below. The assessment has primarily utilised the guidance in Environment Agency (2010)² and SoBRA (2022)³ which set out the UK context to climate change and land contamination. Both guidance documents advocate a "what if" scenario approach in the context of changes in ambient temperatures, an increase in the frequency of extreme rainfall/storm events and heatwaves/droughts, and long-term changes in groundwater and sea levels.

Those "what if" scenarios that are relevant to this CSM are:

- » Increased long-term rainfall leading to increased infiltration and seasonally higher groundwater and water levels in surface waters.
- » Rising sea-level leading to increased coastal erosion and/or coastal flooding.
- » Rising sea-level leading to rise in groundwater levels and/or saline intrusion.
- » Increased frequency and/or magnitude of extreme rainfall events leading to short-term surface flooding, surface water run-off, groundwater flooding, and/or land-based erosion.
- » Increased frequency and/or magnitude of storm events leading to short-term drops in barometric pressure and/or high winds.
- » Occurrence of extreme cold and hot weather events leading to changes in ground conditions such as soil temperature, evapo(trans)piration, and soil moisture (for example freeze-thaw effects and desiccation), decreased infiltration and fall in groundwater and surface water levels.
- » Long-term decrease in rainfall leading to lower infiltration and fall in groundwater and surface water levels.

² Environment Agency, 2010. Guiding Principles for Land Contamination. Part 2. FAQs, technical information, detailed advice and references, March 2010.

³ SoBRA, 2022. Guidance on Assessing Risk to Controlled Waters from UK Land Contamination Under Conditions of Future Climate Change, Society of Brownfield Risk Assessment, August 2022.

4. Ground investigations

4.1 Site works

The ground investigation works, including the rationale which was based on the findings of the preliminary risk assessment is summarised in Section 3 For the investigation rationale of the historical investigations, please refer to the historical reports in Appendix D.

The fieldwork took place between 26 September and 29 September 2023. The ground investigation locations were surveyed in using a Total Station GPS survey instrument and are shown on the Exploratory Hole Location Plan (Hydrock Drawing 26279-HYD-XX-XX-DR-GE-1003) in Appendix A.

The logs, including details of ground conditions, soil sampling, in situ testing and any installations, are also presented in Appendix E.

The weather conditions during the Hydrock fieldwork and for the previous week were windy with intermittent rain.

Table 4.1: Summary of site works

Activity	Method	No	Name	Depth (m bgl)	In situ tests	Rationale/comme nts		
Drilling, Pitting and Probing								
Boreholes	Cable percussive	2	BH01-BH02	8.50	SPT	To assess ground conditions and install groundwater and ground gas monitoring wells.		
Trial pits	Machine (JCB 13T)	10	TP01 – TP10	3.30	-	For collection of samples to characterise soils.		
Probes	TRL dynamic cone penetrometer (TRL-DCP)	2	TRL-DCP- TP04/TP06	-	California Bearing Ratio (CBR)	To correlate CBR for road and pavement design. Refused in Made Ground no further TRLs were attempted due to high cobble content.		

Wells for monitoring groundwater levels and ground gas concentrations, and to facilitate the sampling of groundwater, were installed in both cable percussion boreholes. A summary of the monitoring well installations is presented in Table 4.2.

Table 4.2: Summary of monitoring installations

Location	Ground level (m OD)	Standpipe / piezometer diameter	Screen top and base depth (m bgl)	Strata targeted
BH01	7.38	50	1.00 to 2.00 3.50 to 5.50	Made Ground Alluvial Fan Deposits
BH02	7.41	50	1.00 to 2.00 3.60 to 6.00	Made Ground Alluvial Fan Deposits

4.2 Geo-environmental testing

4.2.1 Sampling strategy and protocols

Exploratory hole positions were determined by reference to the site conditions and uncertainties identified in the Initial Conceptual Model.

No specific features were identified during the desk study as requiring targeted investigation and a reasonably even spacing was used. No specific sampling statistics or grid were utilised in this instance.

Samples were taken, stored and transported in general accordance with BS 10175:2011+A2:2017.

4.2.2 Geo-environmental monitoring

Gas monitoring boreholes have been monitored on 3 occasions. The results are presented in Appendix G.

4.2.3 Geo-environmental laboratory analyses

The chemical test certificates for testing undertaken as part of Hydrock's investigation are provided in Appendix H and summarised in the table below. Wherever possible, UKAS and MCERTS accredited procedures have been used.

The geo-environmental analyses undertaken on soils are summarised in Table 4.3.

Table 4.3: Geo-environmental analyses of soils

Determinand Suite	Made Ground	Tidal Flat Deposits	Alluvial Fan Deposits
Hydrock minimum suite of determinands for solids*	24	5	6
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	19	5	6
Benzene, toluene, ethylbenzene and xylene (BTEX) by HS-GC/MS	19	5	6
MTBE (Methyl Tertiary Butyl Ether) by HS-GC/MS	19	5	6
Volatile organic compounds (VOC target list plus TIC) by HS-GC/MS	13	5	2
Semi-volatile organic compounds (SVOC target list plus TIC) by GC-MS	13	5	2
Asbestos quantification	2	-	1
BRE full suite	23	-	4

*Hydrock minimum soil suite comprises: As, B (water soluble), Be, Cd, Cr (total), Cr (VI), Cu, Hg, Ni, Pb, S (elemental), Se, V, Zn, cyanide (total), sulfide, pH, asbestos fibres, speciated polynuclear aromatic hydrocarbons (PAH, by GC-FID), total phenols and fraction of organic carbon

The soils chemical test data are interpreted and assessed in Sections 7.3 and 7.4.

The geo-environmental analyses undertaken as part of Hydrock's investigation on leachates are summarised in Table 4.4

Table 4.4: Geo-environmental analyses of leachate

Determinand Suite	Soil leachates
Hydrock minimum suite of determinands for leachates	6
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	3
Volatile organic compounds (VOC target list plus TIC) by HS-GC/MS	6
Semi-volatile organic compounds (SVOC target list plus TIC) by GC-MS	3

The geo-environmental analyses undertaken as part of Hydrock's investigation on waters are summarised in Table 4.5. Note that at the time of issue, one round of water samples is still outstanding.

Table 4.5: Geo-environmental analyses of waters

Determinand Suite	Groundwater
Hydrock minimum suite of determinands for waters	6
Speciated aliphatic and aromatic banding Total petroleum hydrocarbons by HS-GC/MS and GC/FID (Hydrock Tier 2 TPH Suite)	6
Volatile organic compounds (VOC target list plus TIC) by HS-GC/MS	6
Semi-volatile organic compounds (SVOC target list plus TIC) by GC-MS	6

4.3 Geotechnical laboratory testing

The geotechnical laboratory tests instructed by Hydrock are summarised in Table 4.6 and the test certificates are provided in Appendix F. Wherever possible, UKAS accredited procedures have been used.

The geotechnical tests undertaken as part of historical investigations are provided in the relevant reports in Appendix F.

Table 4.6: Summary of sample numbers for geotechnical tests

Test	MG	TFD	AFD
Natural moisture content	-	2	-
Atterberg limits	-	2	-
Particle size distribution (wet sieve)	20	-	-
John Emery rapid slag expansion	8	-	-

The geotechnical test data are summarised in Section 5.5 and interpreted in Section 0.

5. Ground investigation records and data

5.1 Physical ground conditions

5.1.1 Summary of strata encountered

The following presents a summary of the properties of the ground and groundwater conditions encountered, based on field observations, interpretation of the field data and laboratory test results, taking into account drilling, excavation and sampling methods, transport, handling and specimen preparation.

All relevant data from the Hydrock investigation discussed in Section 4 are used from this point forward.

Details of the Hydrock ground investigation works are provided in the logs in Appendix E, previous data are provided in Appendix D, a summary of the ground model is presented in Table 5.1 and the individual strata are described in the sections below.

Table 5.1: Strata encountered

Stratum	Depth to top (m bgl)	Depth to base (m bgl)	Thickness (m) (range)	Thickness (m) (average)
'Landscaped' Made Ground	0.0	2.1 -2.8	2.1-2.80	2.53
Tidal Flat Deposits	2.1 - 2.8	2.7 - 3.6	0.10-1.00	0.34
Alluvial Fan Deposits	2.2 - 3.6	2.5 - > 8.50*	0.10-5.10	1.33

^{*}base not proven.

5.1.2 Landscaped Made Ground

Made Ground was recorded across the entire site as shown on Hydrock Drawing 26279-HYD-XX-XX-DR-GE-1002 in Appendix A. Made Ground was recorded to a maximum depth/thickness of 2.8m bgl. The Made Ground generally comprised brownish red to brownish dark grey slightly sandy subangular to angular fine to coarse GRAVEL of limestone, sandstone, asphalt, concrete, brick and slag.

5.1.3 Tidal Flat Deposits

Tidal Flat Deposits were encountered underlying the Made Ground all but the south-east and north-west corner of the site. The Tidal Flat Deposits are between 0.10m and 1.00m thick, with an average thickness of 0.34m.

The strata generally consisted of firm to stiff grey slightly silty slightly silty CLAY, with fine to coarse sands.

5.1.4 Alluvial Fan Deposits

Alluvial Fan Deposits were encountered underlying the Tidal Flat Deposits, and where these were not recorded, the Alluvial Fan Deposits undelay Made Ground. The Alluvial Fan Deposits were between 0.10m and 5.10m thick, with an average thickness of 1.33m. The Alluvial Fan Deposits were typically comprised of dense dark brownish grey slightly sandy rounded fine to coarse GRAVEL of sandstone with a low sandstone cobble content. Sands were fine to coarse. SPTs ranged between 45 and 50 (refusal) which translates the Alluvial Fan Deposits being categorised as dense.

5.2 Visual and olfactory evidence of contamination (soil)

In addition to the more common man-made constituents (ash, clinker, brick, etc), described above, visual and olfactory evidence of contamination was noted in a number of locations, summarised in Table 5.2.

Table 5.2: Visual and olfactory evidence of contamination - soils

Stratum	Location	Depth (m bgl)	Description
MG	TPO1	0.75 – 2.40	Slight hydrocarbon odour
MG	TPO2	0.30 – 2.50	Slight hydrocarbon odour
MG	TP03	1.00 – 2.00	Slight fish odour (amine hydrocarbon)
MG	TPO4	1.60 – 2.10	Moderate hydrocarbon odour
TFD	TPO4	2.10 – 2.20	Slight hydrocarbon odour
AFD	TPO4	2.20 – 2.70	Slight hydrocarbon odour with oily sheen
MG	TP06	0.75 – 1.20	Strong hydrocarbon odour
MG	TP06	1.20 – 2.20	Mild organic odour
MG	TP06	2.20 – 2.70	Strong hydrocarbon odour and oily sheen
AFD	TPO7	2.90 – 3.30	Strong hydrocarbon odour and bright oily sheen
AFD	TPO8	2.30 – 3.00	Slight hydrocarbon odour
MG	BH01	2.00 – 2.50	Strong hydrocarbon odour
AFD	BH01	2.50	Slight hydrocarbon odour

5.3 Groundwater

5.3.1 Groundwater observations and levels

Groundwater encountered during the investigation is listed in Table 5.3. A groundwater observation represents the depth at which groundwater was first observed and is likely to be deeper than the actual water table level at that location.

Table 5.3: Groundwater occurrence

Stratum	Date	Location	Fieldw	ork ork	Comment
			Groundwater Rose to observation after 20 mins (m bgl)		
A ED	00 (00 (00	TD 04	0.40	(m bgt/	
AFD	26/09/23	TP01	2.40	-	Groundwater inflow.
MG	26/09/23	TP02	2.40	-	Groundwater inflow.
MG	26/09/23	TP03	2.20	-	Groundwater inflow.
MG	27/09/23	TPO4	0.40	-	Slow water seepage.
AFD	27/09/23	TPO4	2.60	2.40	Groundwater strike.
MG	27/09/23	TP05	2.20	-	Groundwater strike.
MG	27/09/23	TP06	2.30	-	Groundwater strike.
MG	28/09/23	TP07	2.30	-	Groundwater strike.

MG	29/09/23	TP08	1.00	-	Seepage.
MG/AFD	29/09/23	TP08	2.30	-	Groundwater strike.
MG	29/09/23	TPO9	0.60	-	Rapid water ingress.
MG	29/09/23	TPO9	2.60	-	Groundwater strike.
MG	29/09/23	TP10	0.44	-	Slight seepage.
MG	29/09/23	TP10	2.20	-	Groundwater strike.
MG	27/09/23 / 28/09/23	BH01	2.50	1.90	Groundwater strike.
MG	28/09/23 / 29/09/23	ВНО2	2.60	2.10	Groundwater strike.

Groundwater levels recorded during post-fieldwork monitoring are summarised in Table 5.4.

Table 5.4: Groundwater level and PID data summary

			Po	ost-fieldwork monitor	k monitoring		
Stratum	Date range	Location	Depth to groundwater (range) (m bgl)	Groundwater elevation (range) (m OD)	Interface probe (free phase product) (mm)		
Made Ground	05/10/23 - 03/11/23	BH01A	1.84 - 2.14	5.54 – 5.24	0.0		
Made Ground	05/10/23 - 03/11/23	BH01B	1.76	5.62	0.0		
Made Ground	05/10/23 - 03/11/23	ВНО2А	1.85 - 2.14	1.85 - 2.14 5.56 - 5.27			
Made Ground	05/10/23 - 03/11/23	вно2в	1.84	5.57	0.0		

5.3.2 Visual / olfactory evidence of contamination (water)

Visual and olfactory evidence of contamination in water was noted in a number of trial pits and boreholes and is summarised in Table 5.5.

Table 5.5: Visual and olfactory evidence of contamination - waters

Stratum	Location	Depth (m bgl)	Description
AFD	TP07	3.0	Oily sheen on water surface.
MG	TPO9	2.6	Oily sheen on groundwater.

5.3.3 Groundwater summary

In general, shallow groundwater was encountered within the Made Ground towards the base of the stratum The groundwater flows north to south across the site towards the harbour/former docks.

Free phase petroleum hydrocarbon was not encountered during the monitoring visits undertaken by CJ Associates.

5.4 Ground gases (carbon dioxide and methane)

Records from the gas monitoring boreholes are presented in Appendix G and summarised in Table 5.6.

3 monitoring visits have been undertaken and the monitoring programme is complete.

Table 5.6: Range of ground gas data

Stratum	Methane (%)	Carbon dioxide (%)	Hydrogen sulphide (%)	Oxygen (%)	Carbon monoxide (%)	Steady flow rate (l/hr)
Made Ground	0.8 – 4.4	0.0 - 0.1	0.0-0.0	0.3 – 2.2	0.0 – 3.0	0.20 - 0.60
Alluvial Fan Deposits	0.0 - 0.4	0.1 – 0.2	0.0-0.0	15.1 – 20.8	2.0 – 19.0	0.40 – 1.10

PID testing was also carried out at the site, on three occasions, and is summarised below.

Stratum	PID reading (ppm) (range)
Made Ground	0.0- 2.4
Alluvial Fan Deposits	0.0 – 2.4

5.5 Geotechnical data

5.5.1 Introduction

Laboratory test results are contained in Appendix F with *in situ* test results shown on the relevant exploratory hole log or datasheet in Appendix E. The following sections summarise the main findings and provide interpretation where appropriate.

5.5.2 Plasticity

The volume change potentials in terms of BRE Digest 298 have been determined from the results of plasticity index tests on samples of soil. These are summarised in Table 5.7.

Table 5.7: Volume change potential

Stratum	No. Plasticity Index of		dex	Modified Plasticity Index			Plasticity designation	Volume Change	
	tests	Min.	Max.	Av.	Min.	Max.	Av.	designation	Potential
Tidal Flat Deposits	2	20	20	20	13.6	14.2	13.9	Low	Low

5.5.3 Particle size distribution

Particle Size Distribution test (PSDs) results are summarised in Table 5.8 and summary descriptions and PSD plots of the material analysed are presented in **Appendix F**.

Table 5.8: PSD results summary

Stratum	No. of tests	Silt/Clay %	Sand %	Gravel %	Cobbles %	General description
Made Ground	20	2-12	7-35	53-84	0-33	Brownish red to brownish dark grey slightly sandy subangular to angular fine to coarse GRAVEL of limestone, sandstone, asphalt, concrete, brick and slag.

5.5.4 Relative density

Table 5.9 summarises information pertaining to the relative density of the granular soils according to geological stratum. Factual results are summarised for laboratory tests, field tests (e.g. SPT, CPT, dynamic probe correlation). A SPT 'N' value versus depth profile is summarised in Table 5.9 Plots are presented in Appendix F.

Table 5.9: Relative density results and derived values

Stratum	No. of tests	Method	SPT (N-value) (Range)	phi' (°)
Made Ground	4	SPT – cable percussion (Peck et. al. (1967).	41-50	40
Alluvial Fan Deposits	10		45-54	41

5.5.5 Sulfate content

In accordance with BRE (Special Digest 1), the Design Sulfate (DS) classification and the Aggressive Chemical Environment for Concrete (ACEC) classification are presented in Table 5.10. The assessment summary sheet is presented in Appendix F.

Table 5.10: Aggressive chemical environment concrete classification

Stratum	No. tests	DS	ACEC
Made Ground	23	DS-1	AC-1
Tidal Flat Deposits	-	-	-
Alluvial Fan Deposits	4	DS-1	AC-1

5.5.6 Expansive slag testing

Rapid slag expansion testing was conducted on 8 samples from across the development area. The results are summarised in Table 5.11 below, and the testing certificates are presented in Appendix D.

Table 5.11: Rapid slag expansion test results

Stratum No. of	No. of tests	Bulk density (Mg/m³)		Expansion (%)			Potential heave (mm)		
		Min.	Max.	Av.	Min.	Max.	Av.	Min.	Max.
Made Ground	8	2.11	2.17	2.15	0.16	0.22	0.19	0.24	0.28

6. Geotechnical assessment

6.1 Geotechnical categorization of the proposed development

Eurocode 7, Section 2 advocates the use of geotechnical categorization of the proposed structures to establish the design requirements.

The proposed development is shown on Intelligence Buildings Infrastructure (IBI) drawing 01/08/23 Site Plan SWITCH Harbourside 26CB03-ARC-30-00-D-A-100001_P02 in Appendix A. This comprises a two storey carbon hub research building with associated car parking and soft landscaping. A sprinkler tank and substation are also included within the proposed development.

Based on the above, for the purposes of this investigation, the proposed structures have been classed as Geotechnical Category 2.

For Category 2 structures, the Geotechnical Category should be re-assessed at the design stage and specific geotechnical design (in addition to this investigation), is required.

Following ground investigation and as part of the assessment provided in the following section, the preliminary geotechnical hazard identification undertaken in Section 3.3 has been updated.

Assessment has been undertaken in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622. The preliminary Geotechnical Risk Register following investigation is provided in Appendix J (Table J.3) and will need to be updated during future design works.

6.2 Characteristic design values

In accordance with BS EN ISO 1997-1 (EC 7), Hydrock consider the proposed structures would be classified as Category 2 structures. As part of the separate geotechnical design, the designer should determine the geotechnical design values. Table 6.1 provides characteristic geotechnical values to assist the designer. These are based on laboratory testing, *in situ* testing and by professional judgement using published data together with knowledge and experience of the ground conditions. Care should be exercised in using these assumed soil strength parameters for any purpose beyond the scope of this report because it may be that additional sampling and testing are required for certain purposes. The reader should refer to the original test results provided in Appendix E and Appendix F.

Table 6.1: Characteristic geotechnical values

Parameter	Bulk unit weight kN/m³	Effective angle of internal friction •	Effective cohesion kN/m²	Undrained shear strength kN/m²	Coefficient of compressibility m²/MN
Stratum	γa	φ′ ^{b c}	c' ^d	C _u ^e	m _v ^f
Made Ground	20	35	-	-	-
Tidal Flat Deposits	18	27	0	65	0.30
Alluvial Fan Deposits	22	40	-	-	-

Parameter	Bulk unit weight kN/m³	Effective angle of internal friction •	Effective cohesion kN/m²	Undrained shear strength kN/m²	Coefficient of compressibility m²/MN
Stratum	γа	φ' ^{b c}	c' ^d	Cu ^e	m _v f

- a. Measured as part of the triaxial strength test and estimated based on the recommendations of BS 8004-2015.
- b. Internal friction (ϕ ') values for the granular in situ material derived from SPT data following the recommendations of Peck et al., (1967).
- c. Internal friction (φ') values for the cohesive in-situ material derived from BS 8004-2015, where φcv' is derived from plasticity index. The use of φcv' in the analysis is considered to provide a conservative estimate of φ'.
- d. BS 8002:1994 Code of practice for Earth retaining structures, British Standards institution.
- e. Site measurements and laboratory data.
- f. Laboratory data. Based upon the equilibrium long term CBR from DMRB IAN 73/06 Rev 1 Table 5.1.

6.3 Groundwork

6.3.1 Site preparation

One buried steel obstruction was encountered in TPO6 (1.2m bgl) by this investigation, and the possibility of further buried obstructions being encountered remains. Therefore, it is recommended that an allowance be made for breaking out obstructions, for example provision of pneumatic breakers for site plant. If underground structures cannot be removed, they will need to be surveyed in three dimensions and the new structures will need to be designed to accommodate them.

6.3.2 Groundworks

Excavation of shallow soils should be readily undertaken by conventional plant and equipment. However, excavation through any buried construction or fused slag may require heavy-duty excavation plant/ripping plant.

Trial pit faces were noted to remain generally stable, during excavation, with slight spalling in some locations where groundwater or the Alluvial Fan Deposits were encountered.

Temporary trench support, or battering of excavation sides, is recommended for all excavations that are to be left open for any length of time and will definitely be required where man entry is required.

A risk assessment of the stability of any open excavation should be undertaken by a competent person and appropriate measures adopted to ensure safe working practise in and around open excavations. Further guidance on responsibilities and requirements for working near, and in, excavations can be obtained from the Construction Design and Management Regulations (2015); Construction Information Sheet 47: Inspections and Reports (2005) and HSG47: Avoiding Danger from Underground Services.

To ensure no loads are imposed on the sides of the excavation, spoil should not be placed immediately adjacent to the excavation. Spoil should be placed a suitable distance from the side of the excavation (as assessed by a competent person).

Based on site observations, the rate of water ingress to the proposed excavations is likely to be significant through the Alluvial Fan Deposits or at depths below 2.3m. In these circumstances, groundwater control by sump pumping is unlikely to be sufficient to deal with anticipated flows and alternative methods of dewatering, such as well points, or use of impermeable cut-offs should be allowed for.

However, it should be recognised that groundwater levels may vary from those at the time of the investigation, for example in response to seasonal fluctuations and the timing of construction may dictate the extent of groundwater control required.

Any water pumped from excavations may need to be passed via settlement tanks (to reduce suspended solids) before being discharged to the sewer. Discharge consents may also be required.

6.3.3 Earthworks/reuse of site-won materials

At this stage, Hydrock is not aware of proposals for earthworks at the site.

Should earthworks be required, supplementary earthworks testing and an earthworks Specification will be necessary to ensure the appropriate management and reuse of the existing soils.

If significant earthworks are required, the works may be Category 2 in accordance with BS EN ISO 1997-1 (EC 7) and further geotechnical design may be necessary. Once site proposals have been further defined more specific consideration will need to be given to the reuse of materials and reference should be made back to this office.

6.4 Ground improvement

6.4.1 Vibro Stone Columns (VSC)

Treatment by vibro-replacement at suitable spacing (to be determined by a specialist contractor) should lead to significant improvement of the soils by both the creation of stone columns and the densification of the existing granular made ground horizon. Full depth treatment of the Made Ground will be required and pre-boring may be required locally at least to ensure penetration through the occasional boulders present within the Made Ground. The columns should penetrate through the Made Ground and cohesive Tidal Flat deposits and found into the granular Alluvial Fan Deposits. Where penetration to the design depth is not possible, the obstructions should be removed, or if this is not practicable, the column layout redesigned to allow foundations to span/cantilever over the untreated area.

Different contractors use different methods of emplacing the stone columns and it would be prudent to ensure that the method deployed ensures that the soils surrounding the columns are given a high level of compaction from horizontal vibrations by the vibrating poker.

Hydrock have undertaken preliminary discussion with Gemech Foundations Ltd about the viability of VSC on site. When considering the allowable bearing capacity following treatment of the ground, this will be determined by the density of treatment and degree of improvement achieved. As such it will be a function of the approach adopted by the specialist contractor during detailed design, which will be heavily influenced by the loading requirements of the development. Following treatment, an allowable net bearing pressure of between 150kN/m² may be anticipated. Higher loading may be achievable subject to discussions with a specialist installer. This allowable net bearing pressure should be confirmed by in-situ maintained load testing.

6.5 Piled foundations

Should ground improvement not be viable then consideration should be given to a piled solution. Given the nature of the soils, bored piles with the use of casing should be suitable for the site along with Continuous Flight Auger may also be viable although additional casing may be required for CFA to prevent collapse or necking of the pile.

6.6 Piling systems / Pile design

The choice of piling system and detailed design of piles are beyond the scope of this report, and should be undertaken by the specialist piling contractor. Considerations for piling should include the following:

- » Boring of piles in coarse soils us likely to result in loosening of the soils, with resultant reduced shaft friction.
- » Shallow groundwater (circa 2.3m) is present at the site, and therefore temporary casing is likely to be required for bored piles, unless CFA piles with concrete placement as the pile is withdrawn are used.
- » Care should be taken for bored piles taken through the Made Ground, Tidal Flat Deposits and Alluvial Fan Deposits where collapse of the pile shaft could lead to 'necking' of the pile.

As an example, a pile diameter of 450mm and pile length of 7m is likely to be the most economical providing an allowable working load of 500kN. Due to the issues surround loosening of soils in granular deposits this has been based of end bearing only, and high capacities may be viable. A specialist piling contractor should be consulted to carry out a detailed design of the final solution.

6.7 Ground Floor Slabs

As Made Ground greater than 600mm thick is present at the site, it is generally recommended that suspended floor slabs should be adopted.

However, should a ground improvement approach to foundations be utilised this ground improvement should also be able to support a ground bearing floor slab. Gemech have indicated that the ground improvement would be able to offer 50kn/m² for a ground bearing floor slab. This should be confirmed through the detail design of the proposed ground improvement.

Prior to the placement of the founding materials and the construction of the ground bearing floor slab, the sub-formation and formation will need to be inspected and checked by a geotechnical engineer to ensure the ground conditions are as expected. In accordance with The Concrete Society Technical Report 34 (The Concrete Society 2013), this shall include the measurement of modulus of sub-grade reaction (k) determined by static plate load testing to confirm the ground conditions at time of construction are consistent with the design parameters derived from this ground investigation.

Following excavation and testing, suitable imported granular material should be placed and compacted in accordance with a suitable specification such as the Specification for Highway Works (Highways Agency 2014). Incorporation of triaxial geogrid reinforcement at sub-formation level, directly below the compacted granular material, will minimise required excavation depths and help provide a suitable foundation for the ground bearing slab.

The floor slab should be of sufficient thickness and sufficiently reinforced to accept the likely loading from commercial vehicles parked on it and any other applied loads, without unacceptable total or differential movement.

Ground floor slabs should be designed to incorporate the gas mitigation measures recommended in Section 7.9.

6.8 Roads and pavements

Based on the visual inspection of the on-site soils and subject to *in situ* testing during construction, it is considered likely an equilibrium CBR of 4% will be achievable over the majority of the site. Proof rolling of the formation level will be required and any loose or soft spots should be removed and replaced with an engineered fill, in accordance with a suitable Specification. The formation level will also need to be protected during inclement weather from deterioration; all slopes should be trimmed to falls to shed rain water and the surface sealed to limit infiltration.

Prior to the placement of the founding materials and the construction of the road pavement, the sub-formation and formation will need to be inspected and checked in accordance with a suitable specification to ensure the ground conditions are as expected. All testing should be carried out in

accordance with DMRB IAN 73/06 to confirm that the ground conditions at time of construction are consistent with the previous design parameters.

Where the CBR is found to be less than 2.5%, the sub-grade may be unsuitable for both the trafficking of site plant and as support for a permanent foundation, without improvement works being undertaken. Improvement works should be carried out in accordance with DMRB IAN 73/06 Rev 1 Chapter 5.

6.9 Buried concrete

Based on guidelines provided in BRE Special Digest 1 (BRE 2005) and the information presented in Section 5.5.5;

» The shallow soils (Made Ground) can be classified as Design Sulfate Class DS-1 and ACEC Class AC-1.

The deeper soils:

- » Tidal Flat Deposits were not assessed.
- » Alluvial Fan Deposits can be classified as Sulfate Class DS-1 and ACEC Class AC-1.

The designer should check and confirm the classification of concrete using the information presented in Section 5.5.5 and Appendix D during the design.

7. Geo-environmental assessment

7.1 Updated conceptual model

7.1.1 Updated ground model

The initial conceptual site model developed from the desk study and field reconnaissance survey Section 3 has been updated using the findings of the ground investigation and is presented in Section 5. This CSM is the basis for the geo-environmental assessment presented in this section.

7.1.2 Updated exposure model

Following the ground investigation, the plausible contaminant sources, receptors and pathways identified in the preliminary geo-environmental exposure model (Section 3) have been updated or confirmed as follows.

7.1.2.1 Sources

The following sources have been removed from the conceptual model;

PCBs and oils from transformers in the electricity sub-station off site, immediately east of the site boundary (SO5). No PCBs were recorded to be present on site following laboratory testing.

7.1.2.2 Receptors

No potential receptors have been removed from, or added to, the exposure model.

7.1.2.3 Pathways

No potential pathways has been removed from or added to, the exposure model.

7.2 Risk assessment approach

Using the updated CSM, a Tier 2 generic quantitative risk assessment (GQRA) for identified receptors based on all media sampled has been undertaken in accordance with the principles of LCRM.

Firstly, the risks associated with the identified potential contaminant linkages have been estimated using standardised methods (typically involving comparison of site data with published 'screening values'). Secondly, where screening values are exceeded, the result has been evaluated in an authoritative review of the findings with other pertinent information to determine whether or not the exceedance is or is not acceptable in the site-specific circumstances.

The data sets used in the assessment comprise the analytical results obtained by Hydrock as listed in Section 5.

In cases where potentially unacceptable risks are indicated and/or the land is potentially unsuitable for its intended use, actions such as more advanced stages of risk assessment (Tier 3, detailed quantitative risk assessment (DQRA)) or remediation are proposed in Section 7.3.

7.3 Human health risk assessment

7.3.1 Soils Assessment

7.3.1.1 Generic Assessment Criteria

The soil screening values used are generic assessment criteria (GAC) (i.e. derived in accordance with EA CLEA guidance (2009) using the updated exposure model detailed in Defra SP1010 (2014), with the exception of published C4SLs. The term 'GAC' used in this report is inclusive of all generic soil screening values.

Based on the proposed development, generic assessment criteria (GAC) based on a commercial / industrial CLEA land use scenarios have been adopted.

GAC are selected based on the following hierarchy:

- » Category 4 Screening Levels (C4SL), where available.
- » SoBRA Acute GAC for free cyanide, as acute dose toxicity is the primary risk driver.
- » Hydrock GAC, derived by Hydrock as detailed in **Appendix H**.

The results of the assessment are presented in Appendix H.

7.3.1.2 Data sets

The data set(s) used in this report is based on the conceptual site model and the proposed development, and is taken to be the entire area of the site.

GAC based on a soil organic matter (SOM) of 6%, and 'commercial' end use scenario have been adopted for all soils based on laboratory results, as it is anticipated that the development will include some areas of soft landscaping. Assessment sheets are presented in Appendix H

7.3.1.3 Assessment Results

Based on individual test results that exceed the GAC, the chemicals of potential concern (CoPC) which require further assessment are summarised in Table 7.1.

Table 7.1: CoPC in soils which require further assessment (human health)

CoPC	GAC (mg/kg)	GAC Source	No. samples	Min. (mg/kg)	Max. (mg/kg)	No. samples >GAC			
Made Ground									
Lead	1300	C4SL	24	21	48000	1			
			Tidal Flat	Deposits					

No Exceedances

Alluvial Fan Deposits

No Exceedances

These exceedances require further consideration. The phrase 'further assessment required' is used to denote soil concentrations that exceed a GAC. This does not necessarily mean that the soil is 'contaminated' or not otherwise suitable for use. The assessment and any mitigation required are to ensure the site does not pose an 'unacceptable risk' as defined under Planning and Part 2A of EPA 1990.

7.3.2 Asbestos

Asbestos fibres have been identified by laboratory testing of soil samples as provided in Table 7.2.

Table 7.2: Asbestos in soil samples (laboratory testing)

Location	Depth (m bgl)	% Asbestos (w/w)	Comment
TP01	0.30	0.005	Chrysotile.
TP01	1.20	0.002	Chrysotile.
TPO9	3.00	0.001	Chrysotile.

The presence of asbestos fibres in soil requires further consideration.

7.3.3 Risk evaluation

The screening exercise has identified lead and asbestos in Made Ground, and asbestos in Alluvial Fan Deposits at concentrations above the GAC. These are considered further here to assess if the exceedance may be acceptable with respect to the proposed development. The phrase 'further assessment' does not necessarily mean that the soil is 'contaminated' or not fit for use.

7.3.3.1 Lead in Made Ground

Lead is present in the Made Ground with one exceedance of the GAC in TP03 at 2.4m bgl. The GAC indicates the maximum safe levels for human health for lead in soils (commercial 6% SOM) is 2300mg/kg. The exceedance recorded was 48,000mg/kg, which is a significant exceedance of the GAC. This significant exceedance is considered to be an unacceptable risk, which could be found elsewhere on-site as the made ground was not particularly different in this area than elsewhere, and therefore requires mitigation for the proposed end use.

7.3.3.2 Asbestos

Asbestos fibres (between <0.001%v/v and 0.005%v/v of chrysotile have been detected in Made Ground, and Alluvial Fan Deposits.

Hydrock consider it plausible for asbestos to be present in any of the Made Ground soils and asbestos, (even at low concentrations), represents an unacceptable risk and mitigation measures will be required in this area of the site.

Guidance on the assessment of risk associated with asbestos in soils was published by CIRIA (C733) in 2014 and by SoBRA (2021) and whilst there is no published UK-specific GAC for asbestos in soil, further consideration of the potential risk from asbestos in soil is recommended.

7.4 Phytotoxicity risk assessment

7.4.1 Risk estimation

Priority phytotoxic chemical concentrations have been screened against published values to determine the likely risk to plant growth (phytotoxic GAC). Phytotoxic GAC based on a pH of >7% have been adopted for all soils based on laboratory results.

As with human health, individual sample test results are compared directly with the phytotoxic GAC.

Based on individual test results that exceed the phytotoxic GAC, CoPC which require further assessment are summarised in Table 7.3.

Table 7.3: CoPC which require further assessment (phytotoxic)

CoPC	GAC (mg/kg)	Basis for GAC	No. samples	Min. (mg/kg)	Max. (mg/kg)	No. samples >GAC				
Made Ground										
Chromium (III)	400	MAFF 1998	24	24	715	3				
Copper	200	BS3882:2015	24	15	503	1				
Zinc	300	BS3882:2015	24	68	537	4				

CoPC	GAC (mg/kg)	Basis for GAC	No. samples	Min. (mg/kg)	Max. (mg/kg)	No. samples >GAC				
Tidal Flat Deposits										
Zinc	300	BS3882:2015	5	45	366	1				
	Alluvial Fan Deposits									

No exceedances.

7.4.2 Risk evaluation

Detriment to plant life is difficult to quantify and many of the GAC are based on agricultural crop yields rather than harm to particular plant species.

Within the Made Ground, concentrations of chromium (III), copper and zinc are significantly elevated when compared to the GAC. Whilst detriment to plant life is difficult to quantify as many of the GAC are based on agricultural crop yields rather than harm to particular plant species, the significant exceedance of the GAC indicates the probability of an unacceptable risk to plant life and mitigation may be required.

Within the Tidal Flat deposits, one recorded concentration of zinc (366mg/kg) was slightly elevated when compared to the GAC (300mg/kg).

7.5 Pollution of controlled waters risk assessment

7.5.1 Risk estimation

The risks to groundwater and surface water from contaminants on site have been assessed in accordance with the Environment Agency (2006) Remedial Targets Methodology (RTM).

Site contaminant loadings are compared with relevant screening values (Water Quality Targets (WQTs), which are linked to the CSM.

Acceptable WQT are defined for protection of human health (based on Drinking Water Standards (DWS)) and for protection of aquatic ecosystems (Environmental Quality Standards (EQS)).

As related specifically to this site, the data are compared with criteria selected in accordance with the methodology presented in **Appendix H**. This methodology involves selecting which of several alternative risk scenarios apply in this case. The assessment is presented in Table 7.4 below, with the justification for the scenarios selected explained in the following text:

The Tidal Flat Deposits secondary undifferentiated aquifer underlying the site was not encountered in all exploratory hole positions, however where present, featured shallow groundwater. The shallow groundwater levels encountered are likely to be in continuity with the water levels in the disused harbour 50m to the south of the site. A deeper groundwater body is anticipated to be present in the South Wales Middle Coal Measures, although this stratum was not encountered during the investigation. The groundwater below the site is thought to be flowing south towards the harbour waters, and unlikely to further contaminate land to the south. Transmission of contaminants is likely to occur laterally between the strata, however it is also anticipated that contaminants may be able to migrate onto site from the north, due to the industrial setting of the site area.

Table 7.4: Summary of water quality risk assessment protocol

Hydrock	Water body receptors	Secondary receptors	Example contaminant linkages	RTM level and data used	Water quality targets
C	Groundwater Surface water	Aquatic ecosystem	Contaminants from site leach or seep into a groundwater body that feeds coastal/transitional surface water by base flow. The surface water may be an aquatic ecosystem.	RTM Level 1 - Soil leachate/pore water/calculati on. AND RTM Level 2 - Groundwater. Direct comparison of surface water samples	EQS inland AND EQS (other)

Notes:

Inland waters EQS applicable to freshwater, 'other' waters EQS applicable to coastal or transitional waters

This table and the results of the assessment are considered as a first screening for potential risks of pollution of Controlled Waters. More specific requirements may be stipulated by the relevant Agency.

The results of the screening assessment are presented in **Appendix H** and are summarised in Table 7.5 and Table 7.6.

There are no WQT for petroleum hydrocarbons in water. Consequently, Hydrock has calculated risk-based guidelines for drinking water based on a methodology proposed by the WHO and using the tolerable daily intakes for the various TPH fractions as used in the derivation of the soil GAC. The results are included in Table 7.5.

In some instances, the reporting limit (or detection limit) quoted by the laboratory may be greater than the WQT that it is being assessed against. As the current exercise is an initial screening assessment, further assessment of these elements has not been undertaken.

Table 7.5: CoPC which require further assessment (controlled waters) EQS inland.

CoPC	WQT (µg/l)	Basis for WQT	No. samples	No. samples above LoD	Min. (µg∕l)	Max. (µg/l)	No. samples exceeding WQT and above LoD		
Soil Leachate Da	Soil Leachate Data – Made Ground								
Silver	0.05	EQS inland	6	1	<0.13	0.2	1		
Copper	1	Bioavailable EQS inland	6	4	< 5	29	4		

Hydrock

CoPC	WQT (µg/l)	Basis for WQT	No. samples	No. samples above LoD	Min. (µg/l)	Max. (μg/l)	No. samples exceeding WQT and above LoD		
Mercury	0.07	EQS inland	6	5	0.18	0.61	3		
Vanadium	20	EQS dependant on receiving surface water hardness.	6	5	<5	594	5		
Zinc	12.3	Bioavailable EQS inland	6	6	4	23	1		
Anthracene	0.1	EQS inland	6	2	<0.01	0.2	1		
Benzo(a)pyrene	0.00017	EQS inland	6	3	<0.01	0.04	3		
Fluoranthene	0.0063	EQS inland	6	3	<0.05	0.39	3		
Naphthalene	2	EQS inland	6	4	<0.1	2.49	1		
Benzene	10	EQS inland	6	1	<1	17	1		
Shallow groundwater – Alluvial Fan Deposits									
Copper	1	Bioavailable EQS inland	4	3	0.6	34.2	2		
Mercury	0.07	EQS inland	4	2	<0.04	0.25	2		
Manganese	123	Bioavailable EQS inland	4	3	<5	2530	3		
Nickel	4	Bioavailable EQS inland	4	3	1.4	5.9	1		
Naphthalene	2	EQS inland	4	2	<0.01	82.45	1		
Aro EC5-EC7	10	EQS inland (benzene)	4	1	<10	11	1		
Aro >EC8-EC10	10	EQS inland (mostly ethylbenzene/ xylene fraction)	4	1	<10	187	1		
Aro >EC10- EC12	10	EQS inland (mostly naphthalene fraction)	4	1	<10	168	1		
Benzene	10	EQS inland	4	1	<1	11	1		
Ethylbenzene	20	EQS inland	4	1	<5	55	1		

CoPC	WQT (µg/l)	Basis for WQT	No. samples	No. samples above LoD	Min. (µg/l)	Max. (µg/l)	No. samples exceeding WQT and above LoD
M,p-Xylene	30	EQS inland for total xylene	4	1	<10	64	1

Note: the maximum recorded value is compared with the water quality target.

Table 7.6: CoPC which require further assessment (controlled waters) EQS other.

CoPC	WQT (µg/l)	Basis for WQT	No. samples	No. samples above LoD	Min. (µg/l)	Max. (μg/l)	No. samples exceeding WQT and above LoD		
Soil Leachate Data – Made Ground									
Arsenic	25	EQS other	6	5	6	28	1		
Copper	3.76	EQS other	6	4	<5	29	4		
Mercury	0.07	EQS other	6	5	0.18	0.61	5		
Vanadium	100	EQS other	6	5	<5	594	5		
Zinc	7.9	EQS other	6	6	4	23	5		
Anthracene	0.1	EQS other	6	2	<0.01	0.2	1		
Benzo(a)pyrene	0.00017	EQS other	6	3	<0.01	0.04	3		
Fluoranthene	0.0063	EQS other	6	3	<0.05	0.39	3		
Naphthalene	2	EQS other	6	4	<0.1	2.49	1		
Benzene	8	EQS other	6	1	<1	17	1		
Shallow groundy	vater – Allu	vial Fan Deposits							
Copper	3.76	EQS other	4	3	0.6	34.2	1		
Mercury	0.07	EQS other	4	2	<0.04	0.25	2		
Naphthalene	2	EQS other	4	2	<0.01	82.45	1		
Aro EC5-EC7	10	EQS other (benzene)	4	1	<10	11	1		
Aro >EC8-EC10	10	EQS other (mostly	4	1	<10	187	1		

 $^{^{\}star\star}$ Hydrock calculated DWS for petroleum hydrocarbon fractions based on WHO methodology.

CoPC	WQT (µg/l)	Basis for WQT	No. samples	No. samples above LoD	Min. (µg/l)	Max. (µg/l)	No. samples exceeding WQT and above LoD
		ethylbenzene/ xylene fraction)					
Aro >EC10- EC12	10	EQS other (mostly naphthalene fraction)	4	1	<10	168	1
Benzene	8	EQS other	4	1	<1	11	1
Ethylbenzene	20	EQS other	4	1	<5	55	1
M,p-Xylene	30	EQS other for total xylene	4	1	<10	64	1

Note: the maximum recorded value is compared with the water quality target.

7.5.2 Risk evaluation

The EQS inland for silver, copper, mercury, vanadium and zinc have been exceeded, and in addition PAHs have been identified in groundwater which exceed EQS. All of these exceedances, except for vanadium are minor, and likely reflect the natural background concentrations for the site as it lies within a heavily industrial area. Although vanadium is harmful to human health in high concentrations, there are no potable abstraction wells within 500m of the site, which means the likelihood of contaminated water being ingested by humans very low. As there are no abstraction wells in proximity to the site, contaminants have also been screened against the EQS 'other' scenario, which has outlined marginally more exceedances of the EQS. However, although silver and nickel can be disregarded from the risk evaluation when using the EQS other criteria, arsenic now exceeds this EQS criteria.

The groundwater gradient is north to south and the groundwater in the Made Ground provides base flow to the harbour located 50m to the south.

In general, it can be concluded that the shallow groundwater within the Made Ground is contaminated with metals, PAH and petroleum hydrocarbons. This water is in hydraulic connection with the underlying groundwater bodies and as the water moves to the underlying strata and then laterally away from the site (southerly), dilution and degradation of the leachate is occurring. In addition no free phase product was recorded during the 3 groundwater monitoring visits.

Betterment for controlled waters below the site may be prudent, due to petroleum hydrocarbons being present in groundwater. It is likely that the concentrations of petroleum hydrocarbons present on site are likely to be in keeping with the background concentrations of this industrial area of Port Talbot.

Whilst there are concentrations of Chemicals of Potential Concern elevated above the water quality criteria, based on the investigation works undertaken to date and subject to agreement with Natural Resources Wales, Hydrock does not believe the site poses a significant risk to Controlled Waters.

^{**} Hydrock calculated DWS for petroleum hydrocarbon fractions based on WHO methodology.

7.6 Ground gases risk assessment

7.6.1 Data

It is judged from the available evidence that the gas generation potential at the site is very low as no organic material noted in the soils on site and that the sensitivity of the development is low (due to the commercial end use criteria). Consequently, an appropriate minimum monitoring regime is 3 readings over 6 weeks, provided other monitoring requirements are also met, such as prevailing atmospheric pressure conditions (for example, BS 8485:2015 +A1:2019 suggests monitoring should include a period of falling atmospheric pressure), this is largely in accordance with CIRIA C665 (Table 5.5a and 5.5b),

3 readings have been undertaken by CJ Associates on behalf of Hydrock as a starting point as no real source of ground gas is present, including during periods of low atmospheric pressure, but not during periods of falling pressure.

7.6.2 Assessment

The risks associated with the ground gases methane (CH_4) and carbon dioxide (CO_2) have been assessed using BS 8485:2015 +A1:2019, which cites the guidelines published by CIRIA (C655, 2007) (known as Situation A).

The assessment guidelines set out in Table 2 of BS 8485 are based on interpretation of the gas concentrations and the gas flow rates. The quantitative assessment has been carried out by comparing the individual gas concentrations and gas screening values (GSV^4) in Appendix D with the published CS thresholds (BS 8485 Table 2), in addition to a worst-case GSV assessment in accordance with section 6.3.7 of BS 8485. The assessment is summarised in Table 7.7 and the full assessment is presented in Appendix G.

Table 7.7: Ground gas risk assessment

	Min	Max	Typical ⁽ⁱ⁾	Comment
Carbon Dioxide (%v/v)	0.0	0.2	0.2	CS1
Carbon Dioxide GSV (l/hr)	0.0	0.0022	0.001	CS1
Methane (%v/v)	0.0	4.4	4.2	CS2
Methane GSV (l/hr)	0.0	0.0484	0.025	CS1
Oxygen (%v/v)	0.3	20.8	18.2	Oxygen was significantly depleted in the shallow installs in BH01 and BH02, with the percentage values recorded less than 2%.

⁽¹⁾ Hydrock assume that values are considered to be atypical if 95% or more of the remaining data are less than the value under consideration

For the purposes of the calculation, where the recorded gas flow rate is below the manufacturer's limit of detection for the instrument used, the detection limit has been adopted for the gas flow rate.

As indicated in Table 7.14 the carbon dioxide indicates CS1 conditions in all wells as there is low flow and the concentrations is typically below 5%. The GSV for methane would indicate CS1 conditions, however there are multiple occasions where the methane is recorded above 1% which would constitute CS2 Conditions.

⁴ Note: GSV is synonymous with 'site characteristic hazardous gas flow rate' (Q_{hg}s) of BS 8485:2015 +A1:2019 Table.

The shallow installations in BHO1 and BHO2 recorded significantly depleted oxygen as well as a slight increase in methane. However, the balance of gases within the borehole is not correct. This indicates that potentially the hydrocarbon vapours are creating issues with the PID and methane modules incorrectly recording the gas concentrations. It is therefore considered that the vapour/methane concentrations could be higher than actually recorded. Therefore, due to the depleted oxygen and vapours recorded the site should be classified as Characteristic Situation 2. Any ground gas mitigation measures should incorporate a suitable VOC vapour resistant barrier membrane.

Based on the data, mitigation measures are required. These are described in Section 7.9.

7.7 Construction materials risk assessment

7.7.1 Water pipelines

A formal water pipe investigation and risk assessment is beyond the scope of this report. However, the findings of this investigation have been compared to the threshold values in Water UK HBF (2014), Table 1 as far as is practicable.

The site is brownfield and organic contamination (PAH, VOC, SVOC and BTEX) has been identified in exceedance of the threshold values and Hydrock believes barrier pipe is required. However, confirmation should be sought from the water supply company at the earliest opportunity.

7.7.2 Other construction materials

Plastic pipes for drains and sewers are manufactured from unplasticized poly(vinyl chloride) (PVC-U), polypropylene (PP) or polyethylene (PE). These materials may be affected by the presence of organic compounds in the soil.

In accordance with the British Plastics Federation Guidance (August, 2018), as the concentrations of petroleum hydrocarbons (TPH) are above 200 mg/kg, the pipework manufacturer should be consulted with regard the suitability of the pipework.

7.8 Findings of the generic contamination risk assessments

The potential sources, pathways and receptors identified in the desk study and assessed A Source-Pathway-Receptor linkage assessment has been undertaken and is presented in Appendix K (Table K.2).

The final CSM is illustrated on Hydrock Drawing 26279-HYD-XX-XX-DR-GE-1004 in Appendix A.

A summary of the Source-Pathway-Receptor (SPR) contaminant linkages for which the risks may be unacceptable and require mitigation (those that are moderate or higher) are discussed in Table 7.8.

Table 7.8 assumes the following SPR linkages which have been discounted (subject to agreement) at the risk evaluation stage are confirmed by the regulators and the warranty provider as not requiring further consideration (mitigation). If these assumptions are not agreed during regulatory discussions, the conclusions as noted in Table 7.8 will need to be updated:

- » Elevated concentration of lead in Made Ground which significantly exceeds the GAC.
- » Copper, mercury and petroleum hydrocarbons in groundwater in exceedance of the EQS water targets.
- » Detection of asbestos (chrysotile) fibres in the Made Ground in two exploratory locations (3 different depths) across the site.
- » Reduced oxygen, increased methane recorded and low levels of vapour recorded within the Made Ground on site.

Table 7.8: Residual risks following risk evaluation

Contaminant Linkage				Comments		
Pollutant Linkage	Sources	Pathways	Receptors	General	Mitigation	
PL 1.	Pervasive lead in the Made Ground.	Ingestion, inhalation or direct contact.	Human health.	Significant exceedance of the GAC in one location.	Mitigation required in the form of an engineered cover system.	
PL 2.	Pervasive copper, mercury and petroleum hydrocarbons in groundwater.	Surface water via base flow.	Surface water and groundwater.	Exceedances of the EQS (other) water targets.	Betterment may be appropriate in the form of disposal of contaminated soils during construction works.	
PL 3.	Asbestos fibres in soil in Made Ground and Alluvial Fan Deposits.	Inhalation of fugitive dust.	Human health.	Asbestos (chrysotile) fibres measured in soil samples.	Mitigation required in the form of an engineered cover system.	
PL 4.	Ground gas and vapours in the Made Ground.	Inhalation.	Human health.	The ground gas records for the site following monitoring indicated CS2 conditions.	Mitigation required in the form of ground gas protection measures and hydrocarbon vapour resistant membrane.	

7.9 Mitigation measures

The outline remediation strategy presented below is provided for guidance only, and does not represent a 'Remediation Options Appraisal', or a 'Remediation Strategy', prepared in accordance with LCRM (2021).

As shown in Table 7.9 (and subject to regulatory (and NHBC) agreement), Hydrock consider the following mitigation is required to ensure the site is suitable for use for the proposed end use. The mitigation measures include:

- » The installation of a clean cover system in soft scaped areas of the site;
- » Installation of ground gas protection measures to comply with CS2 conditions and a hydrocarbon vapour resistant membrane.

The methodology for the remediation should be set out in a Remediation Strategy (which will include the 'Implementation Plan', the 'Verification Plan' and the 'Long Term Monitoring and Maintenance Plan'), which will need to be submitted to the warranty provider and the regulatory authorities for approval.

Verification reports by a competent independent geo-environmental specialist will be required following completion of any remedial works.

7.9.1 Gas protection measures

Mitigation of the risk from ground gases needs to be undertaken in accordance with BRE 414, CIRIA 665, BS 8485:2015 +A1:2019, and CIRIA C735. In accordance with BS 8485:2015 +A1:2019, the design of gas protection measures needs to be undertaken in accordance with the Characteristic Situation and the building type:

- » The site is provisionally classified as Characteristic Situation 2.
- » The SWITCH facility is categorised as a type C building.

As such, the faculty requires 2.5 points of protection; this is illustrated in Table 7.10.

Table 7.9: Gas protection score by CS and type of building (after BS 8485:2015 +A1:2019)

	Minimum gas protection score (points)					
Characteristic	High	ı risk	Medium risk	Low risk		
Situation	Type A building	Type B building	Type C building	Type D building		
1	0	0	0	0		
2	3.5	3.5	2.5	1.5		
3	4.5	4	3	2.5		
4	6.5 ^(A)	5.5 ^(A)	4.5	3.5		
5	- ^(B)	6.0 ^(A)	5.5	4.5		
6	(B) -	_ (B)	_ (B)	6.0		

A) Residential buildings should not be built on CS4 or higher sites unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system, e.g. in institutional and/or fully serviced contractual situations.

B) The gas hazard is too high for this empirical method to be used to define the gas protection measures.

The final design of ground gas protection measures is subject to a detailed design in accordance with section 7.4 and 8.3 of BS 8485:2015 + A1:2019 and is to be specified by the designer (in accordance with CIRIA 665, and BS 8485:2015 + A1:2019). The protection will need to be achieved by a combination of two or more of the following three types of protection measures:

- » the structural barrier of the floor slab;
- » ventilation measures; and
- » gas/vapour resistant membrane (created from a virgin polymer).

Where design elements are required to meet certain standards to qualify for the protection points (e.g. cast *in situ* monolithic reinforced floor slab), it is up to the designer to ensure the minimum requirements of the standards are met.

Where used, gas resistant membranes should be:

- » sufficiently impervious to methane and carbon dioxide;
- » capable, after installation, of providing a complete barrier to the entry of the relevant gas;
- » sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions;
- » sufficiently strong to withstand in service stresses (e.g. due to ground settlement if placed below a floor slab);

- » sufficiently strong to withstand the installation process and following construction activities until covered (e.g. penetration from steel fibres in fibre reinforced concrete, penetration of reinforcement ties, tearing due to working above it, and dropping tools); and
- » chemically resistant to degradation by other contaminants that might be present.

As preliminary guidance, Hydrock would suggest the following:

Either:

- » Beam and block or pre-cast concrete floor slab (O points);
- » passive sub floor ventilation e.g. void (good performance 1.5 points); and
- » 2000g gas resistant and vapour resistant membrane (created from virgin polymer) (2.0 points).

Or:

- » Cast in situ ground-bearing floor slab (with only nominal mesh reinforcement) (0.5 points);
- » 2000g gas resistant and vapour resistant membrane (created from virgin polymer) (2.0 points).

Other variations are possible. It is up to the designer to design and specify ground gas protection measures.

Where a gas resistant membrane is required as part of the design, all joints and penetrations are to be sealed and the installation is to be verified in accordance with CIRIA C735 (Mallet et al 2014) or it will score zero points and will not be deemed to afford any protection. This verification will involve verification by the Contractor and independent verification on a selected number of plots by Hydrock or alternative qualified independent third-party.

Whilst tape can be utilised to seal the seams Hydrock would recommend the membranes are sealed using welded seams and the use of specialist seals around penetrations (top hats etc.). The installer is to present an installation methodology and a QA/QC plan for installation to Hydrock for comment, with particular attention given to sealing the membrane.

In order to achieve the points specified for ventilation, the architect is to design passive ventilation to meet at least 'good performance', as described in Annex B of BS 8485:2015 +A1:2019.

8. Waste and materials management

8.1 Introduction

The Waste Framework Directive (WFD) (2009/98/EC) defines waste as 'any substance which the holder discards or intends to discard.' In a geo-environmental context, the waste is most often 'soil' and the two main scenarios are offsite disposal of the material as a waste and/or reuse of the material on site. For cost and sustainability reasons, reuse is preferred to off-site disposal.

Section 8.2 below describes the key issues relating to off-site disposal to landfill and Section 8.3 considers requirements relating to reuse of soils and materials management.

8.2 Waste disposal

8.2.1 Principles

Based on the WFD, any material excavated on site may be classified as waste and it is the responsibility of the producer of a material to determine whether or not it is waste. Where off-site disposal is undertaken, the following guidance applies.

Classification is a staged process:

- » A hazardous waste is defined under the WFD as one which possesses one or more of fifteen defined hazardous properties. If a waste is not defined as hazardous, then it is non-hazardous.
- » Where the materials are soil, it is then be assigned using the 'List of Waste Codes', which classifies the material as either:
 - » hazardous (17-05-03), which is defined as "soil and stones containing hazardous substances"; or
 - » non-hazardous (17-05-04), which is defined as "soil and stones other than those mentioned in 17-05-03".
 - » Hydrock utilise the proprietary assessment tool, HazWasteOnline™ to undertake this assessment.
- » Waste Acceptance Criteria (WAC) testing is then undertaken if required, and are only applicable following classification of the waste, and only where the waste is destined for disposal to landfill. The WAC are both qualitative and quantitative. The WAC and the associated laboratory analyses (leaching tests) are not suitable for use in the determination of whether a waste is hazardous or non-hazardous.

It should be noted that some non-hazardous wastes may be suitable for disposal at an inert landfill as non-hazardous waste, subject to meeting the appropriate waste acceptance criteria.

It should be noted that classification must be undertaken on the waste produced, by the waste producer. Necessary sampling frequency to adequately characterise a soil population is defined within WM3.

Further discussion with regards to the characterisation process for different scenarios and waste types is provided below.

Topsoil and Peat

Topsoil and peat are biodegradable, therefore if they are surplus to requirements and cannot be reused in accordance with a Materials Management Plan, they cannot be classified as inert. As such, topsoil and peat need to be classified by a staged assessment and sampling process and would either be classified as hazardous or non-hazardous, depending upon the results of the assessment.

Contaminated or potentially contaminated sites

If the site is brownfield, contaminated or potentially contaminated, the waste must undergo an initial waste classification exercise using background information on the source and origin of the waste and assessment of chemical test data in accordance with Environment Agency Technical Guidance WM3.

If following the initial waste classification exercise, the soils are acceptable for disposal to a non-hazardous landfill, further qualitative Waste Acceptance Criteria (WAC) testing is not required.

However, if soils are potentially able to be disposed to an inert landfill as non-hazardous waste, or require testing to determine if they can be disposed of to a stable non-reactive hazardous or hazardous class of landfill, the next stage of assessment is to undertake qualitative WAC testing. This will determine the Basic Characterisation and the landfill category at which the soils can be accepted.

Hazardous material must be subjected to WAC testing to determine whether it requires treatment before it can be accepted at the hazardous landfill, while non-hazardous material can be tested to determine whether it may be suitable for placement in an inert landfill.

8.2.2 HazWasteOnline™ assessment.

As the site is brownfield, in order to inform the preliminary waste characterisation process, Hydrock has undertaken an exercise using the proprietary web-based tool HazWasteOnline $^{\text{TM}}$. The output of the HazWasteOnline $^{\text{TM}}$ assessment is provided in Appendix I and a summary of the preliminary waste classification is provided below in Section 8.2.4.

8.2.3 WAC testing

The site is brownfield. However, WAC testing has not been undertaken to date but will be required on the excavated soils that are to be disposed of, to assist with waste disposal options prior to disposal. A summary of the preliminary waste disposal options is provided below in Section 9.2.4.

8.2.4 Preliminary waste disposal options

The site is brownfield and based on the site history and the HazWasteOnline™ assessment, if suitable segregation of different types of waste is put in place, for soils to be disposed of, it is considered that:

- » The 'General' Made Ground is likely to be classified as hazardous.
- » The natural uncontaminated subsoils are likely to be classified as non-hazardous waste, however there are hazardous areas of contamination at depth (circa 3m bgl) in the Tidal Flat and Alluvial Fan Deposits in TPO2, TPO7, TPO9 and TP10.
- » The elevated areas of contamination within TPO2, TPO7, TPO9 and TP10 are classed as hazardous waste due to elevated concentrations of petroleum hydrocarbons.
- » Any soils containing > 0.1% asbestos or visible asbestos containing materials would be considered as hazardous. The asbestos fibres detected during the soil screening exercise does not exceed the HazWasteOnline™ criteria, however if Asbestos Containing Materials were encountered, these would be classified as hazardous wastes.

8.2.5 General waste comments

It should be noted that:

- » It is the waste producer's responsibility to segregate the waste at source and waste producers must not mix waste materials/streams or dilute hazardous components, for example by mixing with less or non-hazardous waste on site to meet WAC limit values.
- » The above preliminary assessment has been made on the basis of the soils tested as part of the ground investigation, using the HazWasteOnline™ assessment. However, the formal classification of waste can only be undertaken on the material to be disposed of, and by the waste producer and the receiving landfill as license conditions vary from landfill to landfill.
- » Basic Characterisation should be undertaken in accordance with Environment Agency guidance by the waste producer. Hydrock can assist if required and this report will assist the characterisation. However, Basic Characterisation does not form part of the current commission and would require further assessment and testing on the wastes actually to be disposed.
- » Once the waste producer has undertaken an initial Basic Characterisation on each waste stream, they can manage the soils as part of the on-site processing programme (for example, stockpiling, treatment, screening and separation). The waste producer and landfill operator will then need to agree the suite of compliance testing for regularly generated waste to demonstrate compliance with the initial Basic Characterisation prior to disposal.
- » At the time of disposal, additional testing on the excavated soils to be disposed of, will likely be necessary.
- » Non-hazardous and hazardous soils require pre-treatment (separation, sorting and screening) prior to disposal.

- » The costs for disposal of non-hazardous and hazardous soils are significant compared to disposal of inert material.
- » In addition to disposal costs, landfill tax will be applicable. Non-hazardous and hazardous waste will generally be subject to the Standard Rate Landfill Tax. Inert or inactive waste will generally be subject to the Lower Rate Landfill Tax. The landfill tax value changes each April and can be found at https://www.gov.uk/government/publications/rates-and-allowances-landfill-tax/landfill-tax-rates-from-1-april-2013.
- » Before a waste producer can move waste to a landfill site for disposal, they need to check the landfill site has the appropriate permit and must have completed the following⁵:
 - » Duty of care transfer note / Hazardous Waste consignment note, including comment as to if pre-treatment has been undertaken; and
 - Basic Characterisation of the waste, to include: description of the waste; waste code (using list of wastes); composition of the waste (by testing, if necessary) and; WAC testing (if required).

8.3 Materials management

8.3.1 Introduction

Soils that are to remain on site, should be managed and reused in accordance with a Materials Management Plan (MMP), prepared in accordance with 'The Definition of Waste: Development Industry Code of Practice', Version 2 (CL:AIRE), known as the DoWCoP. Where all aspects of the DoWCoP are followed the soils are considered not to be waste, because they were never discarded in the first place.

Version 2 of the DoWCoP clearly sets out the principles and an outline of the requirements of a MMP. The following compliance criteria must be seen to apply to the MMP for the site:

- Factor 1: Protection of human health and protection of the environment.
- Factor 2: Suitability for use, without further treatment.
- Factor 3: Certainty of Use.
- Factor 4: Fixed Quantity of Material.

The reuse of soils at sites should be considered during the planning and development design process so that compliance with issues such as fixed quantity and certainty of use clearly relate to agreed site levels. Suitability of Use is normally evident from the remediation strategy or the design statement, which form an integral part of a MMP. However, some soils may need to be tested post-excavation to prove they are suitable for use.

Once the MMP is finalised, it must be declared by a Qualified Person (QP). The Declaration is an online submission as part of which the QP is required to confirm that the declaration is being made before the relevant works have commenced (i.e. it is not a retrospective application).

Once all material movements have been completed in accordance with the MMP a verification report must be produced, kept for 2 years and provided to the EA on request.

It should be noted that failure to comply with the requirements of the DoWCoP when re-using materials has potentially significant consequences for the waste holder. The risk is that the reused materials are still regarded as a waste that has been illegally deposited. From 1 April 2018, the scope of Landfill Tax has been extended to sites operating without the appropriate environmental

⁵ ENVIRONMENT AGENCY. November 2010. Guidance on waste acceptance procedures and criteria. Waste acceptance at landfills. The Environment Agency.

disposal permit, and operators of illegal waste sites will now be liable for Landfill Tax. Further information is available at: https://www.gov.uk/government/publications/landfill-tax-disposals-not-made-at-landfill-sites.

If soils are excavated and reused on sites (or moved to another site) without a MMP, exemption, or appropriate Permit in place, anyone who knowingly facilitates the disposal may be 'jointly and severally liable' to any assessment of tax, fines or prosecution.

8.3.2 Materials management scenarios

The materials management scenarios present on site are discussed below.

It should be noted that more than one scenario may apply, dependent upon where the soils are proposed for reuse.

8.3.2.1 Made Ground and other contaminated soils

On sites where Made Ground or contaminated soils are present, any soils excavated will be a waste as soon as they are excavated (even if they are clean, naturally occurring materials), unless they are subject to reuse in accordance with the DoWCoP. As such, for any brownfield site or a site where Made Ground is present and soils are being moved and reused, the materials could be deemed a waste, subject to either:

- a Materials Management Plan (MMP), to prevent the material being classified as a waste following reuse; or
- an exemption (for limited volumes); or
- an environmental permit, dependant on its status.

8.3.2.2 Geotechnical improvement requirements

Construction activities carried out on uncontaminated soils solely for the purpose of improving geotechnical properties e.g. lime / cement modification, are not generally regarded as waste treatment operations and do not require a permit.

However, should processing be needed (such as screening, treatment or improvement), that would constitute a waste activity and require a mobile treatment permit. This may be as simple as removing oversize material with an excavator bucket, to using a riddle bucket to remove hardcore to full mechanical screening.

9. Uncertainties and limitations

9.1 Site-specific comments

The environmental laboratory testing undertaken by DETS on Hydrock's instruction was completed in two instalments. For leachates, the limits of detection (LODs) for the samples have been updated between the issue of the two reports to Hydrock. Therefore, two leachate assessment sheets have been included in this report, with varying limits of detection, as it would not be appropriate to present this data in the same worksheet. This is also the case for the groundwater sampling undertaken after the completion of the site works, and therefore the data has been processed separately.

All three rounds of monitoring have been completed with respect to gas and groundwater, however only two of the three batches of water samples have been screened due to delays in laboratory reporting.

9.2 General comments

Hydrock Consultants Limited (Hydrock) has prepared this report in accordance with the instructions of Morgan Sindall Construction & Infrastructure Ltd (the Client), by e-mail from James Harding, dated 25 September 2023, PO number CEO01 under the terms of appointment for Hydrock, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock's appointment.

This report details the findings of work carried out in September-November 2023. The report has been prepared by Hydrock on the basis of available information obtained during the study period. Although every reasonable effort has been made to gather all relevant information, not all potential environmental constraints or liabilities associated with the site may have been revealed.

Hydrock has used reasonable skill, care and diligence in the design of the investigation of the site and in its interpretation of the information obtained. The inherent variation of ground conditions allows only definition of the actual conditions at the locations and depths of trial pits and boreholes at the time of the investigation. At intermediate locations, conditions can only be inferred.

Groundwater data are only representative of the dates on which they were obtained and both levels and quality may vary.

Unless otherwise stated, the recommendations in this report assume that ground levels will remain as existing. If there is to be any re-profiling (e.g. to create development platforms or for flood alleviation) then the recommendations may not apply.

Information provided by third parties has been used in good faith and is taken at face value; however, Hydrock cannot guarantee its accuracy or completeness.

Where the existing report(s) prepared by others have been provided by the Client, it is assumed that these have been either commissioned by the Client, or can be assigned to the Client, and can be relied upon by Hydrock. Should this not be the case Hydrock should be informed immediately as additional work may be required. Hydrock is not responsible for any factual errors or omissions in the supplied data, or for the opinions and recommendations of others. It is possible that the conditions described may have since changed through natural processes or later activities.

The work has been carried out in general accordance with recognised best practice. Unless otherwise stated, no assessment has been made for the presence of radioactive substances or unexploded ordnance. Where the phrase 'suitable for use' is used in this report, it is in keeping with

the terminology used in planning control and does not imply any specific warranty or guarantee offered by Hydrock.

The chemical analyses reported were scheduled for the purposes of risk assessment with respect to human health, plant life and controlled waters as discussed in the report. Whilst the results may be useful in applying the Hazardous Waste Assessment Methodology given in Environment Agency Technical Guidance WM3, they are not primarily intended for that purpose and additional analysis will be required at the time of disposal to fully classify waste. Discussion and comment with regards to waste classification are preliminary and do not form the requirements of 'Basic Characterisation' as required.

Assessment and testing for the presence of coal tar has only been completed at the locations of exploratory holes undertaken for risk assessment purposes. This investigation is not designed to provide a definitive assessment of the risk from coal tar, nor the waste classification for bituminous bound pavement arisings at the site.

Unless otherwise stated, at the time of this investigation the future routes of water supply pipes had not been established. This investigation and sampling strategy may not be fully compliant with UKWIR recommendations. Consequently, a targeted investigation and specific sampling and chemical testing may be required at a later date once the routes of the supply pipes are known. In addition, it is recommended that the relevant water supply company be contacted at an early stage to confirm its requirements for assessment, which may not necessarily be the same as those recommended by UKWIR.

Whilst the preliminary risk assessment process has identified potential risks to construction workers, consideration of occupational health and safety issues is beyond the scope of this report.

The non-specialist UXO screening has been undertaken for the purposes of ground investigation only (i.e. low risk activity in accordance with CIRIA Report C681). Further assessment should be undertaken with regards to other higher risk activities e.g. construction.

Please note that notwithstanding any site observations concerning the presence or otherwise of archaeological sites, asbestos-containing materials or invasive weeds, this report does not constitute a formal survey of these potential constraints and specialist advice should be sought.

Any site boundary line depicted on plans does not imply legal ownership of land.

10. Recommendations for further work

Following the ground investigation works undertaken to date, the following further works will be required:

- » discussion and agreement with utility providers regarding the materials suitable for pipework;
- » discussions with regulatory bodies and the warranty provider regarding the conclusions of this report;
- » discussions with Vibro-stone Column Contractors regarding the viability of, and potential improvement by, VSCs;
- » discussions with piling Contractors regarding conclusions of this report and design of the piles;
- » provision of geotechnical design for the Category 2 structures (floor slabs / foundations);
- » production of a Remediation Strategy and Verification Plan (and agreement with the regulatory bodies and the warranty provider);
- » production of a Materials Management Plan relating to reuse of soils at the site and import of soils to the site;
- » remediation and mitigation works;
 - » installation of a clean cover system;
 - » installation of a gas vapour membrane;
 - » in situ soil stabilisation or treatment of contaminants: and
- » verification of the earthworks, remediation and mitigation works.

11. References

ALLEN, D. L., BREWERTON, L. J., COLEBY, L. M., GIBBS, B. R., LEWIS, M. A., MACDONALD, A. M., WAGSTAFF, S. J. and WILLIAMS, A.T. 1997. The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report WD/97/34. 312pp. Environment Agency R and D Publication 8.

ASSOCIATION OF GROUND INVESTIGATION SPECIALISTS. 2006. Guidelines for Good Practice in Site Investigation. Issue 2. AGS, Beckenham.

BRE. 2016. Soakaway design. BRE DG 365. BRE, Garston.

BRE. 2000. Specifying Vibro Stone Columns. BR391. BRE, Garston.

BRE. 2004. Working platforms for tracked plant: good practice guide to the design, installation, maintenance and repair of ground-supported working platforms. BR470. BRE, Garston.

BRE. 2005. Concrete in aggressive ground. BRE Special Digest 1, 3rd Edition. BRE, Garston.

BRITISH PLASTIC FEDERATION. August 2018. 'Designing Drains and Sewers for Brownfield Sites. Guidance Notes'. BPF Pipes Group (https://www.bpfpipesgroup.com/media/29155/Designing-drains-and-sewers-for-brownfield-sites.pdf)

BRITISH STANDARDS INSTITUTION. 2015. Code of Practice for Foundations. BS 8004. BSI, London.

BRITISH STANDARDS INSTITUTION. 2003. Geotechnical investigation and testing - Identification and classification of rock - Part 1: Identification and description. BS EN ISO 14689-1 Incorporating Corrigendum No.1. BSI, London

BRITISH STANDARDS INSTITUTION. 2015+A2 2019. Concrete – complementary British Standard to BS EN 206-1 – Part 1: Method of specifying and guidance to the specifier. BS 8500-1+A2 2019. BSI, London.

BRITISH STANDARDS INSTITUTION. 2007. Eurocode 7 – Geotechnical design - Part 2: Geotechnical investigation and testing. BS EN 1997-2. BSI, London.

BRITISH STANDARDS INSTITUTION. 2009. Code of practice for earthworks. BS 6031 Incorporating Corrigendum No.1:2010. BSI, London.

BRITISH STANDARDS INSTITUTION. 2011. Code of Practice for Investigation of Potentially Contaminated sites. BS 10175 Incorporating Amendment No. 2:2017. BSI, London.

BRITISH STANDARDS INSTITUTION. 2012. Trees in relation to design, demolition and construction – Recommendations. BS 5837. BSI, London.

BRITISH STANDARDS INSTITUTION. 2004+A1 2013. Eurocode 7 – Geotechnical design - Part 1: General rules. BS EN 1997-1+A1. Incorporating Corrigendum February 2009. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Specification for topsoil. BS 3882. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Code of practice for ground investigations. BS 5930. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015+A1 2019. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. BS 8485:2015 +A1:2019. BSI, London.

CARD, G., WILSON, S. and MORTIMER, S. 2012. A pragmatic approach to ground gas risk assessment. CL:AIRE Research Bulletin RB17. CL:AIRE, London.

CARD, G., LUCAS, J., WILSON, S., 2019. Risk and reliability in gas protection design - 20 years on. Ground Engineering, August/September 2019.

CL:AIRE, 2017. A Pragmatic Approach to Ground Gas Risk Assessment. Research Bulletin 17, CL:AIRE, Buckinghamshire. ISSN 2047-6450.

CL:AIRE, 2020. Professional Guidance: Comparing Soil Contamination Data with a Critical Concentration. CL:AIRE, Buckinghamshire. ISBN 978-1-905046-35-5.

CL:AIRE, 2018. Ground gas monitoring and 'worst-case' conditions. Technical Bulletin 17, CL:AIRE, Buckinghamshire, August 2018.

CL:AIRE, 2021. Good practice for risk assessment for coal mine gas emissions. CL:AIRE, Buckinghamshire. ISBN 978-1-905046-39-3

CLAYTON, C. R. I. 2001. Managing Geotechnical Risk. Improving productivity in UK building and construction. Thomas Telford, London.

CL:AIRE. March 2011. The Definition of Waste: Development Industry Code of Practice, Version 2. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CL:AIRE. March 2016. CAR-SOIL™ Control of Asbestos Regulations 2012 - Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials: Industry guidance. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CONCRETE SOCIETY, THE. 2013. Concrete industrial ground floors. A guide to design and construction. Technical Report 34 (4th Ed.). The Concrete Society, Camberley.

DEPARTMENT FOR ENVIRONMENT FOOD AND RURAL AFFAIRS (DEFRA). 2005. 'Landfill (England and Wales) (Amendment) Regulations', (with reference to previous iterations of the regulations).

DEFRA. March 2014. SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. Defra, London.

ENVIRONMENT AGENCY. June 2001. National Groundwater and Contaminated Land Centre Report NC/99/73: Piling and Penetrative Ground Improvement Methods on Land Affected by Contamination: Guidance on Pollution Prevention. The Environment Agency, Bristol.

ENVIRONMENT AGENCY. 2006. Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination. The Environment Agency, Bristol.

ENVIRONMENT AGENCY. November 2010. Guidance on waste acceptance procedures and criteria. Waste acceptance at landfills. The Environment Agency.

ENVIRONMENT AGENCY. November 2011. Treatment of waste for landfill. Report – GEHO1111BVDF-E-E 913_11, Version 2 The Environment Agency. http://publications.environment-agency.gov.uk/pdf/GEHO1111BVDF-E-E.pdf

ENVIRONMENT AGENCY. 2021. Waste classification. Guidance on the classification and assessment of waste (1st Edition v1.2.GB) Technical Guidance WM3. The Environment Agency.

ENVIRONMENT AGENCY. 2021. Land Contamination: Risk Management (LCRM). The Environment Agency.

HATANAKA, M, UCHIDA, A, KAKURAI, M, and AOKI, M. 1980. A consideration on the relationship between SPT N-value and internal friction angle of sandy soils. Journal of Structural and Construction Engineering (Transactions of AIJ). 63. 125-129. 10.3130/aijs.63.125_2.

HEALTH and SAFETY EXECUTIVE. December 2005. Construction Information Sheet 47: Inspections and Reports (CIS 47 (Rev 1)). HSE.

HEALTH and SAFETY EXECUTIVE. January 2020. EH40/2005 Workplace Exposure Limits (4th edition 2020,). HSE.

HEALTH and SAFETY EXECUTIVE. 2014. HSG47 - Avoiding danger from underground services (Third edition). HSE.

HIGHWAYS AGENCY. 2009. Design Guidance for Road Pavement Foundations (Draft HD25). Interim Advice Note 73/06. Rev 1. Highway Agency, London.

HIGHWAYS AGENCY. 2014. Manual of Contract Documents for Highway Works, Specification for Highway Works: Volume 1, Amendment August 2014. Highway Agency, London.

THE HIGHWAYS AGENCY. 2015. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 3, HD 41/15, Maintenance of highway geotechnical assets. HD 41/15.

THE HIGHWAYS AGENCY. 2019. Design Manual for Roads and Bridges. Managing Geotechnical Risk. CD 622 Rev O. Highway Agency, London.

JOHNSON, R. 2001. Protective measures for housing on gas contaminated land. Building Research Establishment Report BR 414. BRE, Garston.

MALLETT, H., COX, L., WILSON, S., and CORBAN, M. 2014. Good practice on the testing and verification of protection systems for buildings against hazardous ground gases. CIRIA Report C735. Contaminated Land: Applications in Real Environments, London.

MILES, J. C. H., APPLETON, J. D., REES, D. M., GREEN, B. M. R., ADLAM. K. A. M. and MYRES. A. H. 2007. Indicative Atlas of Radon in England and Wales. Health Protection Agency and British Geological Survey. Report HPA-RPD-033.

MINISTRY OF HOUSING, COMMUNITIES and LOCAL GOVERNMENT. 22nd July 2019. Land affected by contamination. Planning Policy Guidance Reference ID: 33-001-20190722.

MINISTRY OF HOUSING, COMMUNITIES and LOCAL GOVERNMENT (MHCLG). Internet published Planning practice guidance https://www.gov.uk/government/collections/planning-practice-guidance. MHCLG. London

NATHANAIL P., JONES A., OGDEN, R., AND ROBERTSON A. 2014. Asbestos in soil and made ground: a guide to understanding and managing risks. CIRIA Report C733 Contaminated Land: Applications in Real Environments, London.

NHBC and RSK. 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Report Edition No. 04. National House Building Council, Buckinghamshire. March 2007.

NHBC and ENVIRONMENT AGENCY. 2008. Guidance for the safe development of housing on land affected by contamination. R&D Publication 66, 2 Volumes.

PECK, R.B., HANSON, W.E., AND THORNBURN, T.H., Foundation Engineering, 2nd Edn, John Wiley, New York, 1967, p.310.

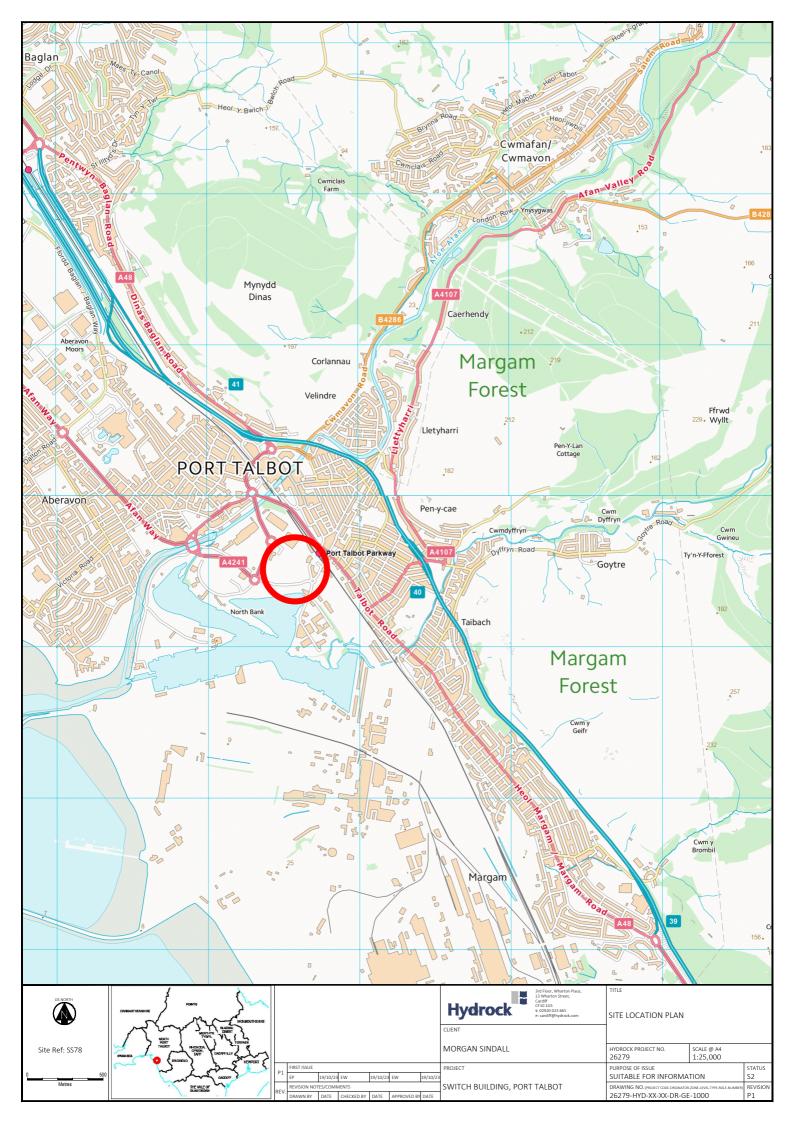
RAWLINS, B. G., McGRATH, S. P., SCHEIB, A. J., CAVE, N., LISTER, T. R., INGHAM, M., GOWING, C. and CARTER, S. 2012 .The advanced geochemical atlas of England and Wales. British Geological Survey, Keyworth.

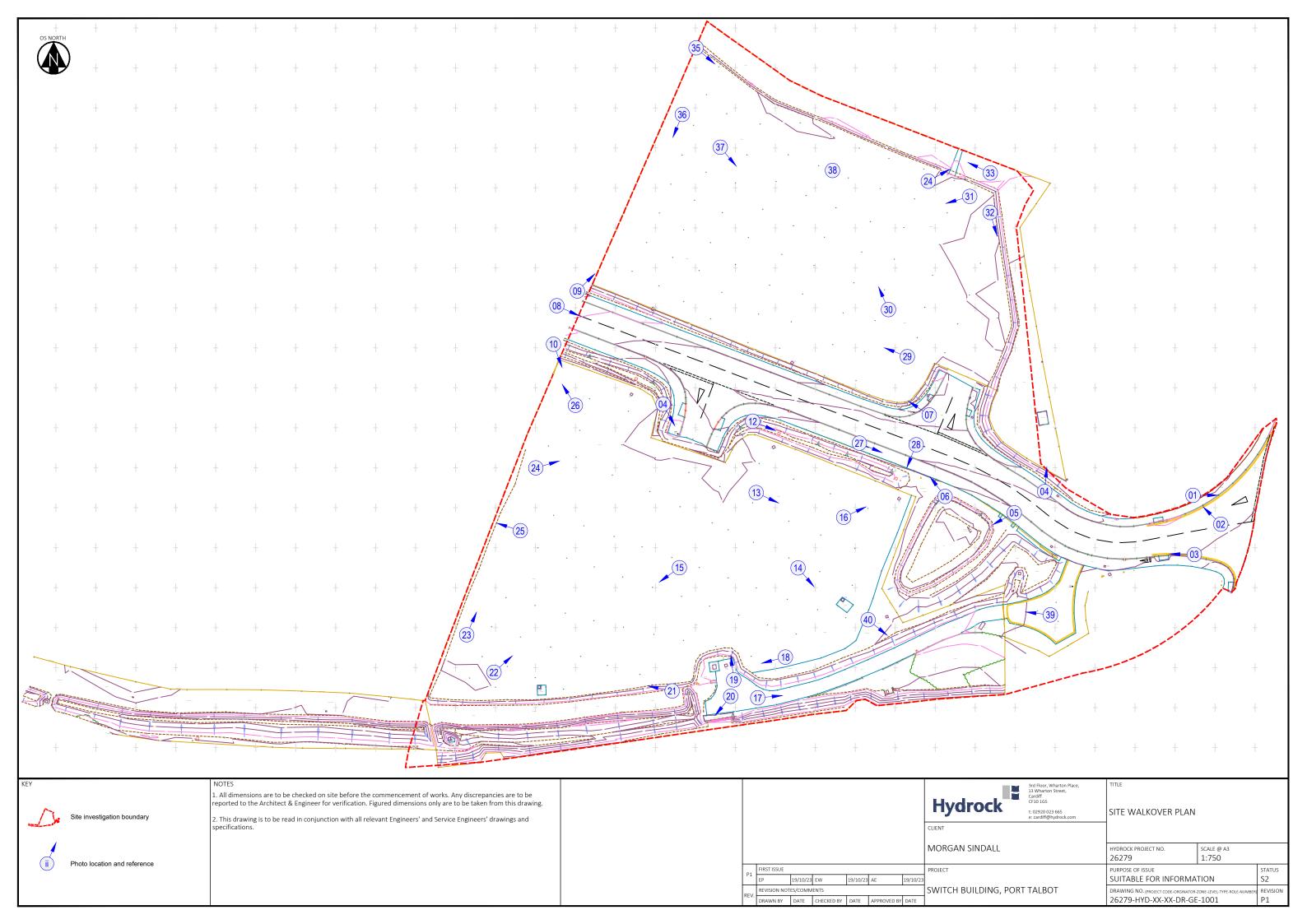
SCIVYER, C. 2015. Radon: Guidance on protective measures for new buildings. Building Research Establishment Report BR 211. BRE, Garston.

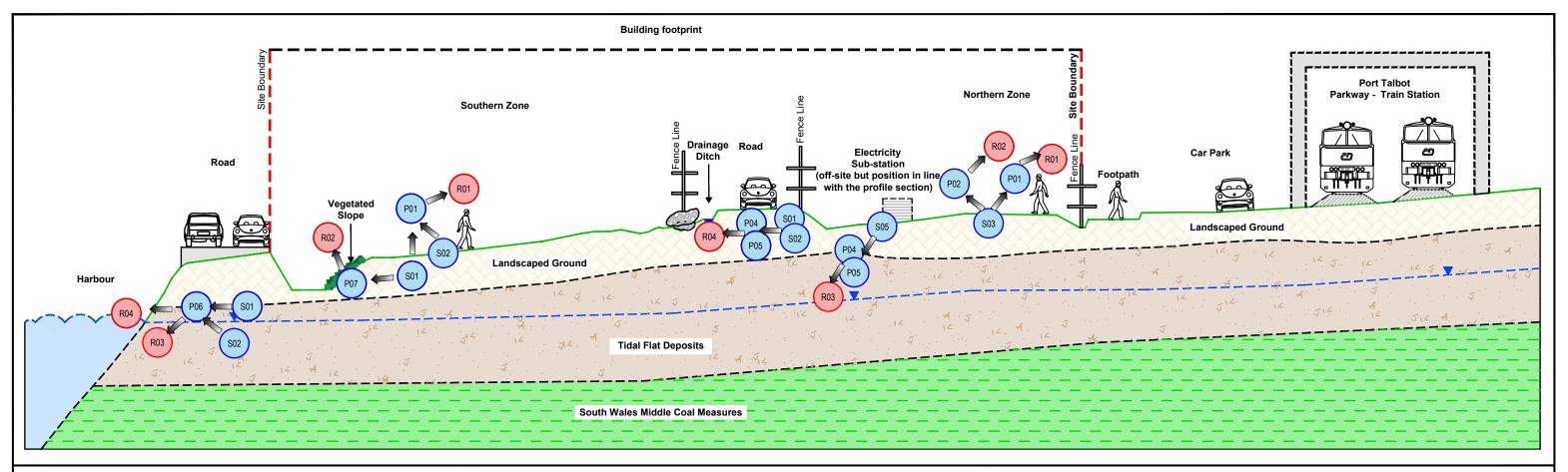
SoBRA, 2017. Development of Generic Assessment Criteria for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater. 90pp. Version 1.0.

STONE, K., MURRAY, A., COOKE, S., FORAN, J. and GOODERHAM, L. 2009. Unexploded ordnance (UXO), a guide to the construction industry. CIRIA Report C681. Contaminated Land: Applications in Real Environments, London.

STROUD, M. A. 1975. The standard penetration test in insensitive clays and soft rocks. Proceedings of the European Symposium on penetration testing, 2, 367-375.


TOMLINSON. M.J. 2001. Foundation Design and Construction (6th Edition and 7th Edition). Prentice Hall Press


WASTE AND RESOURCES ACTION PROGRAMME (WRAP). October 2013. Quality Protocol. Aggregates from inert waste. End of waste criteria for the production of aggregates from inert waste.


WATER UK HBF. January 2014. Contaminated Land Assessment Guidance. Water UK and the Home Builders Federation.

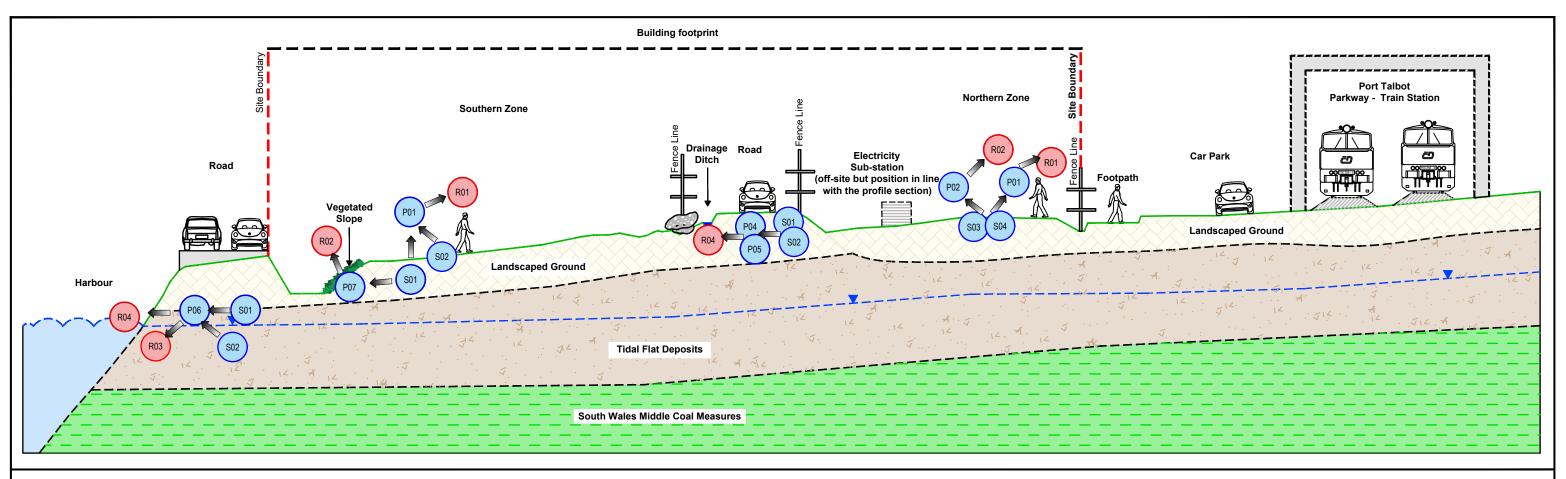
Appendix A Drawings

Potential on-site sources of contamination

- S01. Made Ground, associated with historical construction activities and imported fill, possibly including elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons.
- S02. Hydrocarbon fuels, lubricants, and solvents from the operation of the former chemical works on the site including leakage from Underground Storage Tanks (USTs), Above Ground Storage Tanks (ASTs), the pipework between tanks and pumps, and general spillage, together with uncontrolled disposal and spillage from waste receptacles.
- S03. Ground gases (carbon dioxide and methane) from organic materials in the Made Ground / Tidal Flat Deposits.
- S04. Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks.

Potential off-site sources of contamination

S05. PCBs and oils from transformers in the electricity sub-station off site.


Potential receptors

- R01. People (neighbours, site end users).
- R02. Development end use (buildings, utilities and landscaping).
- R03. Groundwater: Secondary A aquifer status of the South Wales Middle Coal Measures.
- R04. Surface water: on-site drainage ditch and harbour off-site 50m to the south.

Potential pathways

- P01. Ingestion, skin contact, inhalation of dust and outdoor air by people.
- P02. Methane ingress via permeable soils and/or construction gaps.
- P03. VOC and petroleum hydrocarbon vapour ingress via permeable soils and/or construction gaps.
- P04. Surface water via overland flow.
- P05. Surface water via drainage discharge.
- P06. Surface water via base flow from groundwater.
- P07. Root uptake.

	Existing ground profile Conjectural geological boundary Groundwater elevation	NOTES 1. All dimensions are to be checked on site before the commencement of works. Any discrepancies are to be reported to the Architect & Engineer for verification. Figured dimensions only are to be taken from this drawing. 2. This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications.		Hydrock 3rd Floor, Wharton Place, 13 Wharton Street, Cardiff CF10 1SS t: 0.992 00.23 665 e: cardiff@hydrock.com	OUTLINE CONCEPTUAL SITE MODEL
	Landscaped Ground			MORGAN SINDALL	HYDROCK PROJECT NO. SCALE @ A3 26279 NTS
4	Tidal Flat Deposits		P1 FIRST ISSUE EP 19/10/23 EW 19/10/23 AE 19/10/23	PROJECT	PURPOSE OF ISSUE STATUS SUITABLE FOR INFORMATION S2
	South Wales Middle Coal Measures		REV. REVISION NOTES/COMMENTS DRAWN BY DATE CHECKED BY DATE APPROVED BY DATE OF THE PROVED BY DATE OF THE PRO	SWITCH BUILDING, PORT TALBOT	DRAWING NO. (PROJECT CODE-ORGINATOR-ZONE-LEVEL-TYPE-ROLE-NUMBER) REVISION 26279-HYD-XX-XX-DR-GE-1002 P1

Potential on-site sources of contamination

- S01. Made Ground, associated with historical construction activities and imported fill, possibly including elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons.
- S02. Hydrocarbon fuels, lubricants, and solvents from the operation of the former chemical works on the site including leakage from Underground Storage Tanks (USTs), Above Ground Storage Tanks (ASTs), the pipework between tanks and pumps, and general spillage, together with uncontrolled disposal and spillage from waste receptacles.
- S03. Ground gases (carbon dioxide and methane) from organic materials in the Made Ground / Tidal Flat Deposits.
- S04. Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks.

Potential off-site sources of contamination

S05. PCBs and oils from transformers in the electricity sub-station off site.

Potential receptors

- R01. People (neighbours, site end users).
- R02. Development end use (buildings, utilities and landscaping).
- R03. Groundwater: Secondary A aquifer status of the South Wales Middle Coal Measures.
- R04. Surface water: on-site drainage ditch and harbour off-site 50m to the south.

Potential pathways

- P01. Ingestion, skin contact, inhalation of dust and outdoor air by people.
- P02. Methane ingress via permeable soils and/or construction gaps.
- P03. VOC and petroleum hydrocarbon vapour ingress via permeable soils and/or construction gaps.
- P04. Surface water via overland flow.
- P05. Surface water via drainage discharge.
- P06. Surface water via base flow from groundwater.
- P07. Root uptake.

	Existing ground profile Conjectural geological boundary Groundwater elevation	NOTES 1. All dimensions are to be checked on site before the commencement of works. Any discrepancies are to be reported to the Architect & Engineer for verification. Figured dimensions only are to be taken from this drawing. 2. This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications.		Hydrock 3rd Floor, Wharton Place, 13 Wharton Street, Cardiff CF10 1cS 1: 02920 023 665 e: cardiff@hydrock.com	FINAL CONCEPTUAL SITE MODEL	
	Landscaped Ground			MORGAN SINDALL	HYDROCK PROJECT NO. SCALE @ A3 NTS	
4 4	Tidal Flat Deposits		P1 FIRST ISSUE EP 19/10/23 EW 19/10/23 AE 19/10/23	PROJECT	PURPOSE OF ISSUE SUITABLE FOR INFORMATION	STATUS S2
	South Wales Middle Coal Measures		REVISION NOTES/COMMENTS DRAWN BY DATE CHECKED BY DATE APPROVED BY DATE	SWITCH BUILDING, PORT TALBOT	DRAWING NO. (PROJECT CODE-ORGINATOR-ZONE-LEVEL-TYPE-ROLE-N 26279-HYD-XX-XX-DR-GE-1004	

Appendix B Field reconnaissance photographs

Date: 20/09/23

Direction
Photograph Taken:

East.

Description:

Boulders at eastern access point to the

site.

Desk Study Photograph 2

Date: 20/09/23

Direction
Photograph Taken:

North-west.

Description: Eastern site access point.

Date: 20/09/23

Direction
Photograph Taken:

West.

Description: Road passing through the centre of the site.

Desk Study Photograph 4

Date: 20/09/23

Direction

Photograph Taken:

North.

Description:

Electricity substation off-site to the east of the site boundary.

Date: 20/09/23

Direction

Photograph Taken:

South-west.

Description: SuDS attenuation pond to the south of the road passing through site.

Desk Study Photograph 6

Date: 20/09/23

Direction

Photograph Taken:

North-west.

Description: Looking towards the northern area of the site.

Date: 20/09/23

Direction
Photograph Taken:

West.

Description: View to the west across the northern half of the site. Note the standing water.

Desk Study Photograph 8

Date: 20/09/23

Direction
Photograph Taken:

East.

Description:

Boulders preventing through access onto the site from the west.

Date: 20/09/23

Direction
Photograph Taken:

North-east.

Description: Looking along the western site boundary in the northern area of the site.

Desk Study Photograph 10

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description: View along the western site boundary in the southern area of the site.

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description: Access point into the southern zone of the site.

Desk Study Photograph 12

Date: 20/09/23

Direction
Photograph Taken:

East.

Description:

Drainage ditch concealed by vegetation running parallel to the south of the road.

Date: 20/09/23

Direction
Photograph Taken:

East.

Description: View across waterlogged southern zone of the site.

Desk Study Photograph 14

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description: View across southern zone of site, with Harbour Road in the background to the southern site boundary.

Date: 20/09/23

Direction
Photograph Taken:

South-west.

Description:

Standing water at the surface in the southern area of the site.

Desk Study Photograph 16

Date: 20/09/23

Direction
Photograph Taken:

North-east.

Description: Fence line running between the north of the southern zone of the site, and the through road.

Date: 20/09/23

Direction
Photograph Taken:

East.

Description: View along maintenance access road in the south of the site.

Desk Study Photograph 18

Date: 20/09/23

Direction
Photograph Taken:

West.

Description: View along southern site boundary line.

Date: 20/09/23

Direction
Photograph Taken:

North-west.

Description:

Electricity substation and view across the south of the site looking north-west.

Desk Study Photograph 20

Date: 20/09/23

Direction
Photograph Taken:

South-west.

Description:

Pollution control valve running below Harbour Way.

Date: 20/09/23

Direction
Photograph Taken:

West.

Description:

Vegetated slope in the south of the site.

Desk Study Photograph 22

Date: 20/09/23

Direction
Photograph Taken:

North-east.

Description: View across the southern site area.

Date: 20/09/23

Direction

Photograph Taken:

North-east.

Description: View along western site boundary.

Desk Study Photograph 24

Date: 20/09/23

Direction
Photograph Taken:

East.

Description:

Standing water in the southern site area.

Date: 20/09/23

Direction

Photograph Taken:

West.

Description: View over the western site boundary.

Desk Study Photograph 26

Date: 20/09/23

Direction
Photograph Taken:

North-west.

Description: Looking over the western site boundary.

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description:

Drainage ditch south of the road approximately 0.5m below the level of the site.

Desk Study Photograph 28

Date: 20/09/23

Direction
Photograph Taken:

South.

Description:

Drainage outfall.

Date: 20/09/23

Direction
Photograph Taken:

West.

Description: View across the northern area of the site to the west.

Desk Study Photograph 30

Date: 20/09/23

Direction Photograph Taken:North-west.

Description:

Standing water visible across the northern zone of the site.

Date: 20/09/23

Direction
Photograph Taken:

South-west.

Description: Looking across the site from the north-east.

Desk Study Photograph 32

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description: Slight decrease in levels between the northeast of the site, and the land beyond to the east.

Date: 20/09/23

Direction
Photograph Taken:

West.

Description: View along northern site boundary.

Desk Study Photograph 34

Date: 20/09/23

Direction
Photograph Taken:

North.

Description: Linear strip of gravel adjacent to the northern site boundary, which possibly is associated with buried utilities.

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description: Looking south-east from the north-west corner of the site.

Desk Study Photograph 36

Date: 20/09/23

Direction
Photograph Taken:

South-west.

Description: Looking along the western site boundary into the south of the site.

Date: 20/09/23

Direction

Photograph Taken:

South-east.

Description: View of northern site with patchy scrub and shrubs.

Desk Study Photograph 38

Date: 20/09/23

Direction
Photograph Taken:

N/A.

Description:

Composition of the surface covering in the north and south areas of the site, containing possible slag fragments.

Date: 20/09/23

Direction
Photograph Taken:

West.

Description: Access to maintenance road that runs through the south of the site.

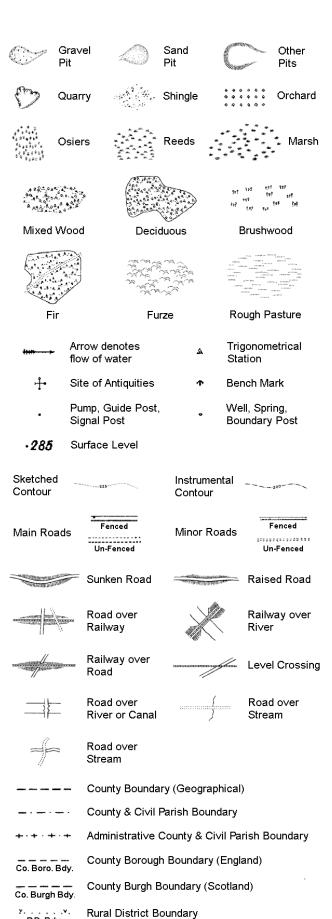
Desk Study Photograph 40

Date: 20/09/23

Direction
Photograph Taken:

South-east.

Description: Change in levels from the main site area down to the maintenance road in the south of the site.



Appendix C Historical ordnance survey maps

Historical Mapping Legends

Ordnance Survey County Series 1:10,560

RD. Bdy.

····· Civil Parish Boundary

Ordnance Survey Plan 1:10,000

	-	alk Pit, Clay Pit Quarry	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[⊵] Gra∨e	l Pit		
	Sa	nd Pit	(、 Disuse ✓ or Qua			
Ì	1101	fuse or ag Heap		Lake, or Por			
	Du	nes		_p Boulde	ers		
	W 1. \(\bar{V} \)		44	Non-C Trees	oniferous		
	⇔ ⇔ Orcha	Dunes Coniferous Trees Coniferous Trees Coniferous Trees Coppice Bracken Heath Grassland Marsh Direction of Flow of Water Building Direction of Flow of Water Sloping Masonry Pole Embankment Findankment Findankment					
	ជា Brack	ken willing	Heath '	1111,			
	— <u> </u>	h	Reeds	<u> </u>	Saltings		
	Building						
	∰ Glass	house	<i>3</i> //		<u>∵</u> Sand		
	Slopin	————— Electricity Transmission					
		Bracken Marsh Direction of Flow of Water Building Building Pylon Sand Pylon Foot Pole Cutting Embankment Cutting Embankment Crossing Road Crossing Road Crossing Road Crossing Foot Under Cutting County Road Crossing Foot Crossing Foot Crossing Bridge Standard Gauge Multiple Track Standard Gauge Single Track Siding, Tramway or Mineral Line Narrow Gauge Narrow Gauge					
	Siding, Tramv or Mineral Lin						
Geographical County							
	Burgh or District Council Borough, Burgh or County Constituency						
	Shown only when not coincident with other boundaries Civil Parish Shown alternately when coincidence of boundaries occurs						
	Ch Church CH Club Ho F E Sta Fire En FB Foot Br	ouse gine Station idge	PO PC PH SB	Police Statio Post Office Public Conv Public Hous Signal Box	enience		
	Fn Fountai		Spr	Spring			

TCB

TCP

Guide Post

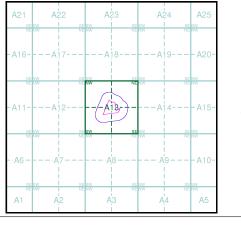
Mile Post

Telephone Call Box

Telephone Call Post

1:10,000 Raster Mapping

	Gravel Pit		Refuse tip or slag heap
	Rock		Rock (scattered)
	Boulders		Boulders (scattered)
	Shingle	Mud	Mud
Sand	Sand		Sand Pit
***************************************	Slopes		Top of cliff
	General detail		Underground detail
	- O∨erhead detail		Narrow gauge railway
	Multi-track railway		Single track railway
	County boundary (England only)	• • • • •	Civil, parish or community boundary
	District, Unitary, Metropolitan, London Borough boundary		Constituency boundary
۵ ^۵	Area of wooded ∨egetation	۵ ^۵ ۵	Non-coniferous trees
\Diamond	Non-coniferous trees (scattered)	**	Coniferous trees
		** **	
۵ *	trees (scattered) Coniferous	**	trees Positioned
* *	trees (scattered) Coniferous trees (scattered)		trees Positioned tree Coppice
\$ \$\phi \ \phi \phi	trees (scattered) Coniferous trees (scattered) Orchard Rough	£ € £	trees Positioned tree Coppice or Osiers
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	trees (scattered) Coniferous trees (scattered) Orchard Rough Grassland	£ € € € € € € € € € € € € € € € € € € €	trees Positioned tree Coppice or Osiers Heath Marsh, Salt
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	trees (scattered) Coniferous trees (scattered) Orchard Rough Grassland Scrub	£ € € € € € € € € € € € € € € € € € € €	trees Positioned tree Coppice or Osiers Heath Marsh, Salt Marsh or Reeds
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	trees (scattered) Coniferous trees (scattered) Orchard Rough Grassland Scrub Water feature Mean high		trees Positioned tree Coppice or Osiers Heath Marsh, Salt Marsh or Reeds Flow arrows Mean low
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	trees (scattered) Coniferous trees (scattered) Orchard Rough Grassland Scrub Water feature Mean high water (springs) Telephone line		trees Positioned tree Coppice or Osiers Heath Marsh, Salt Marsh or Reeds Flow arrows Mean low water (springs) Electricity transmission line
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	trees (scattered) Coniferous trees (scattered) Orchard Rough Grassland Scrub Water feature Mean high water (springs) Telephone line (where shown) Bench mark	A A A A A A A A A A A A A A A A A A A	trees Positioned tree Coppice or Osiers Heath Marsh, Salt Marsh or Reeds Flow arrows Mean low water (springs) Electricity transmission line (with poles) Triangulation
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	trees (scattered) Coniferous trees (scattered) Orchard Rough Grassland Scrub Water feature Mean high water (springs) Telephone line (where shown) Bench mark (where shown) Point feature (e.g. Guide Post		trees Positioned tree Coppice or Osiers Heath Marsh, Salt Marsh or Reeds Flow arrows Mean low water (springs) Electricity transmission line (with poles) Triangulation station Pylon, flare stack


Building

Hydrock

Historical Mapping & Photography included:

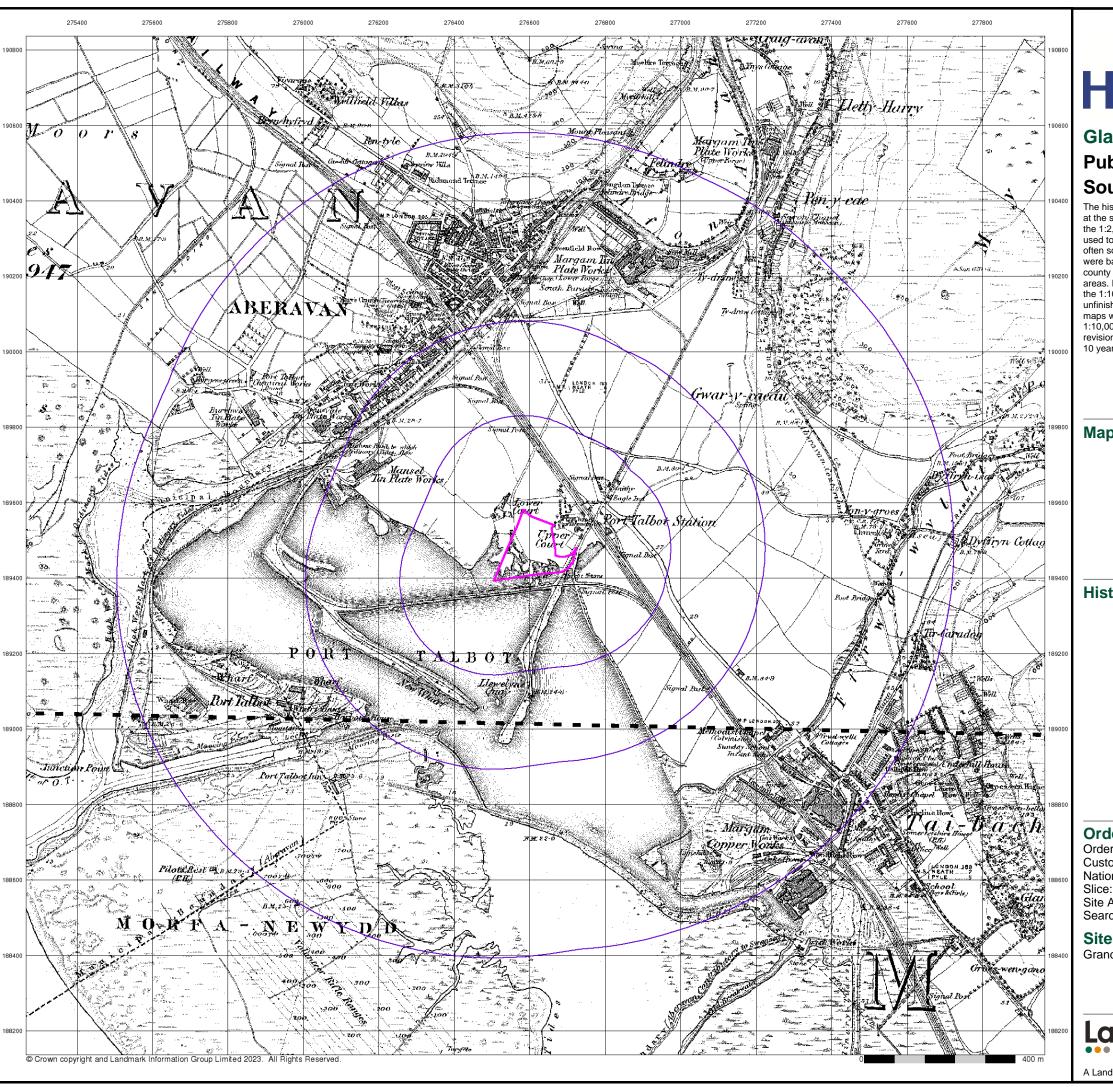
Mapping Type	Scale	Date	Pg
Glamorganshire	1:10,560	1884 - 1885	2
Glamorganshire	1:10,560	1900	3
Glamorganshire	1:10,560	1921	4
Glamorganshire	1:10,560	1938 - 1952	5
Historical Aerial Photography	1:10,560	1949	6
Glamorganshire	1:10,560	1951	7
Ordnance Survey Plan	1:10,000	1964 - 1965	8
Ordnance Survey Plan	1:10,000	1974	9
Ordnance Survey Plan	1:10,000	1980 - 1982	10
Ordnance Survey Plan	1:10,000	1993 - 1996	11
10K Raster Mapping	1:10,000	1999	12
10K Raster Mapping	1:10,000	2006	13
VectorMap Local	1:10,000	2023	14

Historical Map - Slice A

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Slice: 4

Slice:

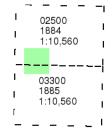
Site Area (Ha): 2.07 Search Buffer (m): 1000


Site Details

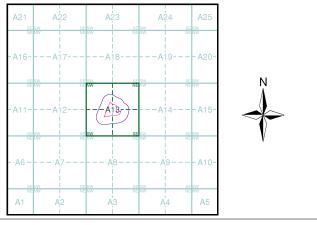
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

el: 0844 844 9952 tx: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 1 of 14



Glamorganshire


Published 1884 - 1885 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

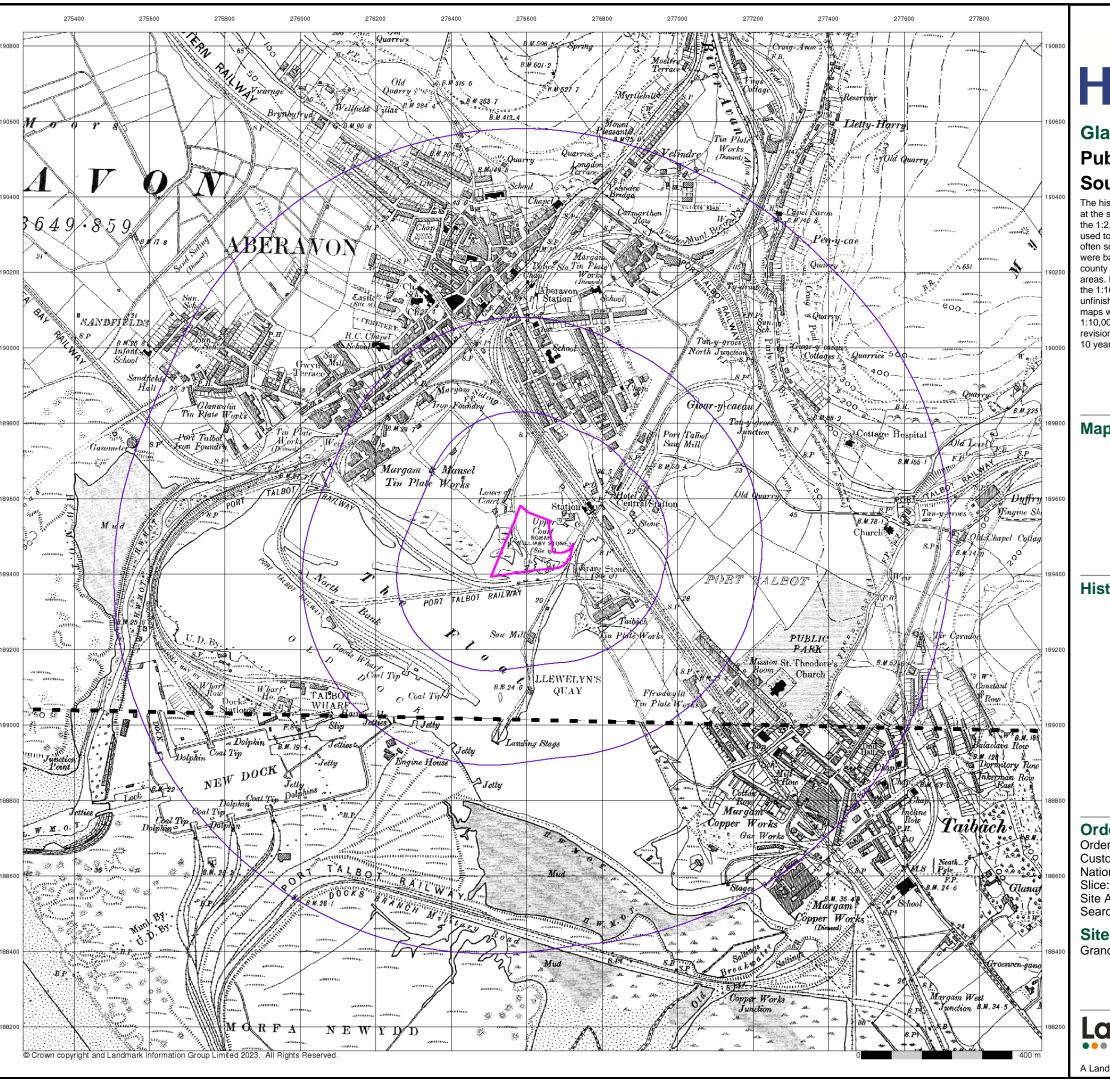
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 317152831_1_1 Customer Ref: National Grid Reference: 276610, 189470

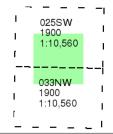
Site Area (Ha): Search Buffer (m): 2.07 1000


Site Details

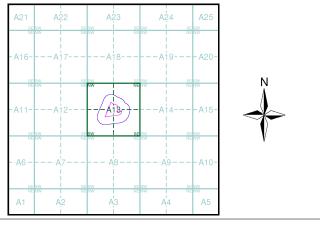
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 2 of 14



Glamorganshire


Published 1900 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

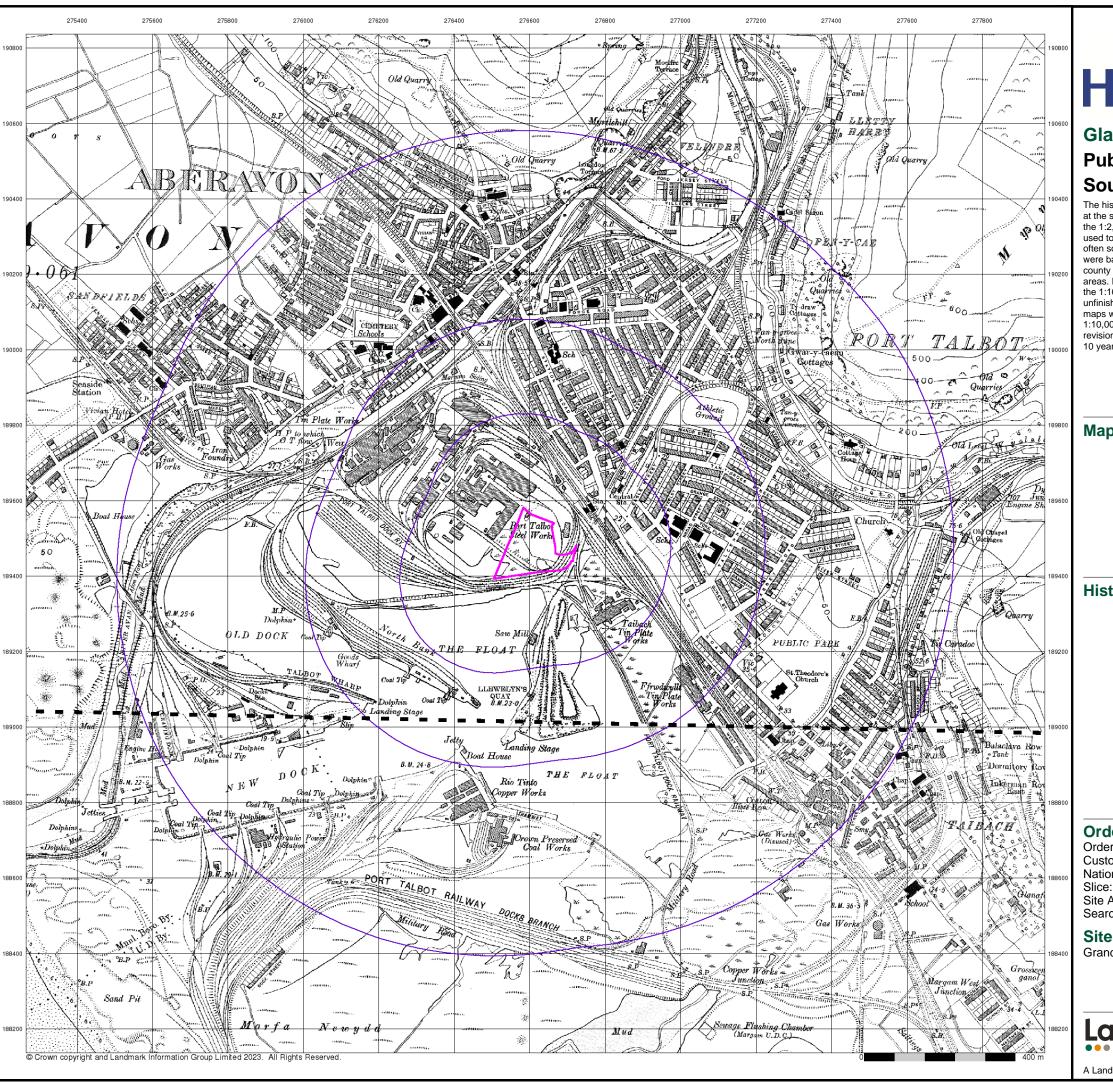
Historical Map - Slice A

Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470

ice:

Site Area (Ha): 2.07 Search Buffer (m): 1000

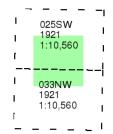

Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

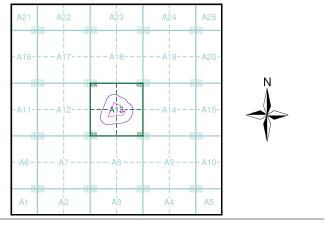
Landmark®

el: 0844 844 9952 ax: 0844 844 9951 'eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 3 of 14



Glamorganshire Published 1921


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

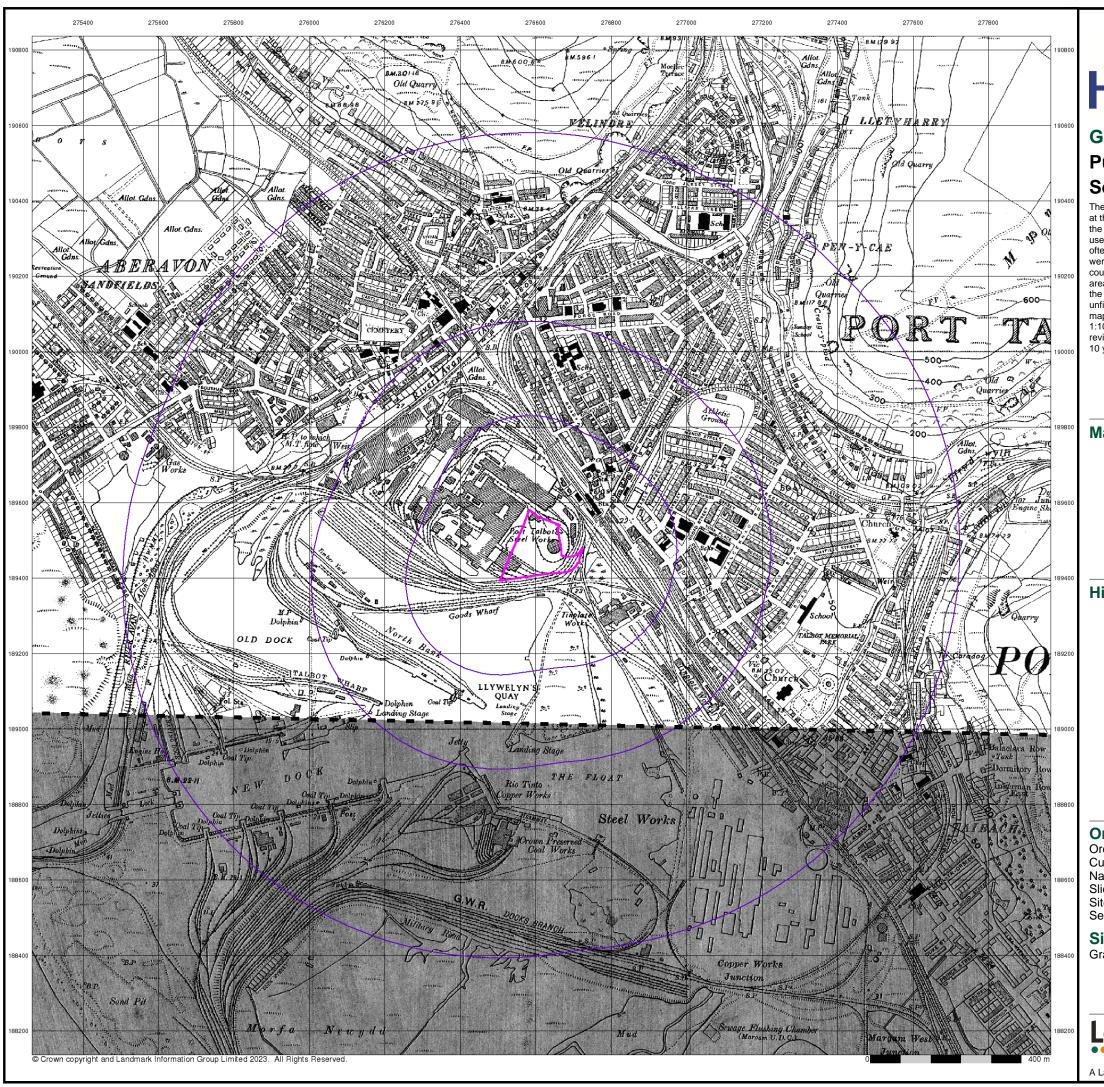
Historical Map - Slice A

Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470

Area (He):

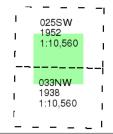
Site Area (Ha): 2.07 Search Buffer (m): 1000


Site Details

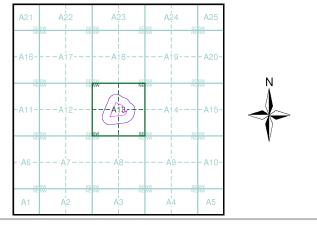
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

el: 0844 844 9952 ax: 0844 844 9951 /eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 4 of 14



Glamorganshire


Published 1938 - 1952 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

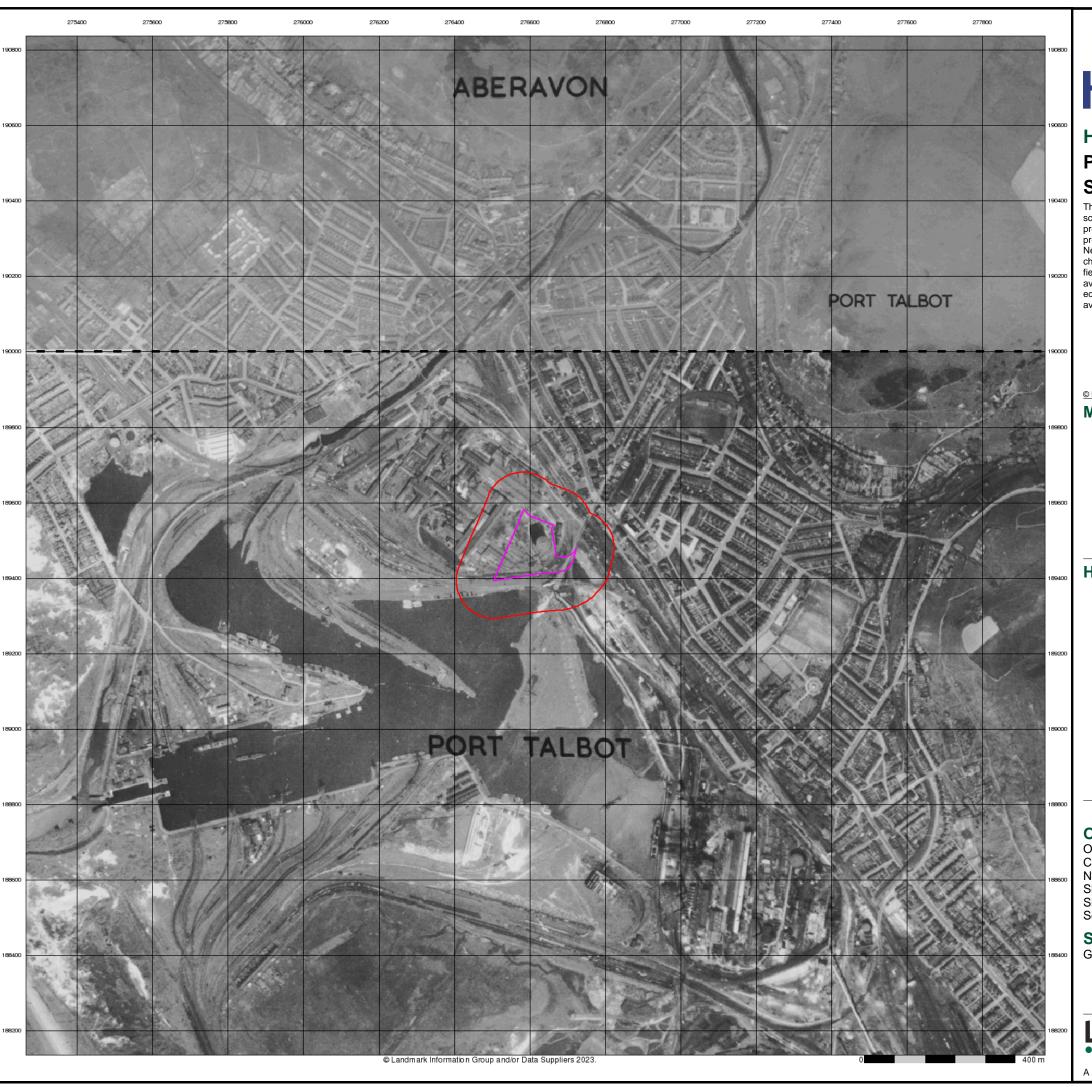
Historical Map - Slice A

Order Details

Order Number: 317152831_1_1 Customer Ref: National Grid Reference: 276610, 189470

2.07

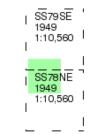
Site Area (Ha): Search Buffer (m): 1000


Site Details

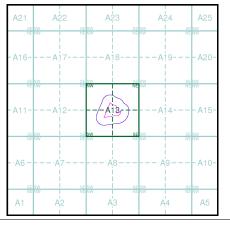
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 5 of 14



Historical Aerial Photography Published 1949 Source map scale - 1:10,560


The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was rechecked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

© Landmark Information Group and/or Data Suppliers 201

Map Name(s) and Date(s)

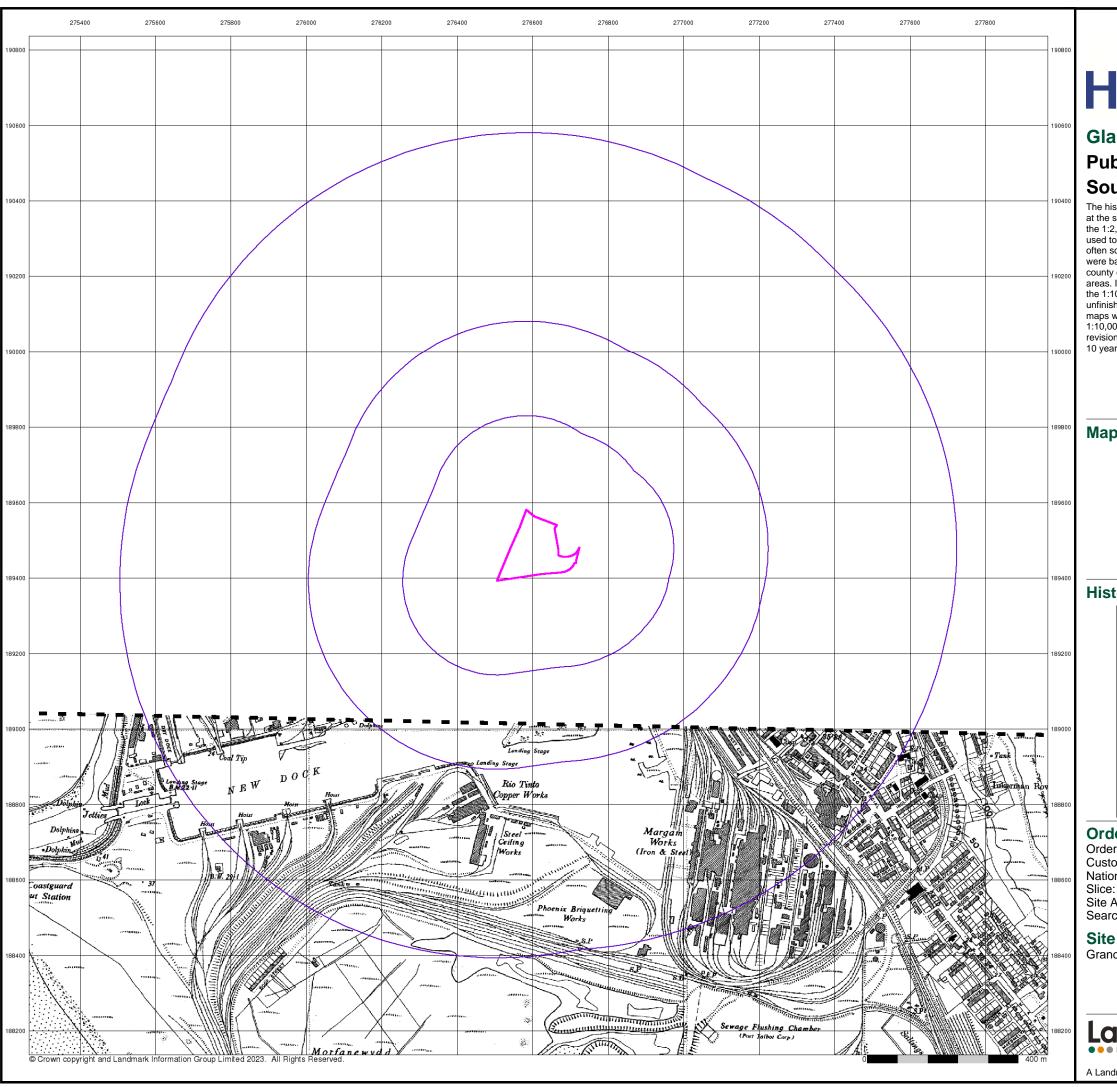
Historical Aerial Photography - Slice A

Order Details

Order Number: 317152831_1_1 Customer Ref: National Grid Reference: 276610, 189470 Slice:

2.07

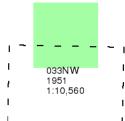
Site Area (Ha): Search Buffer (m): 1000


Site Details

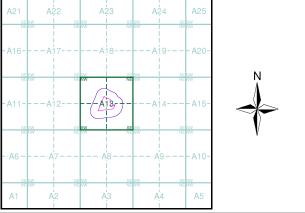
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 6 of 14


Glamorganshire

Published 1951


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

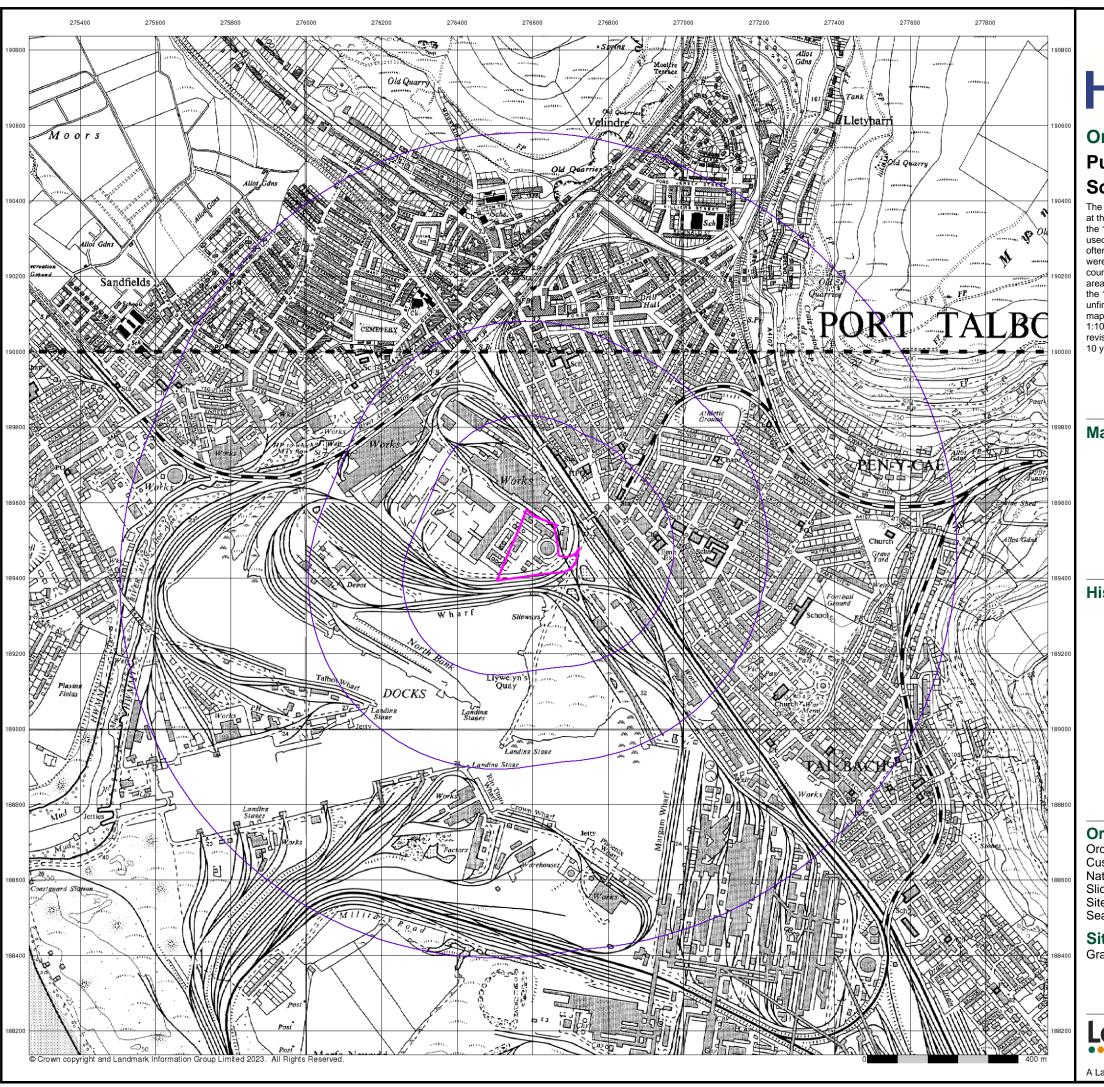
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 317152831_1_1 Customer Ref: National Grid Reference: 276610, 189470

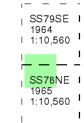
Site Area (Ha): Search Buffer (m): 2.07 1000


Site Details

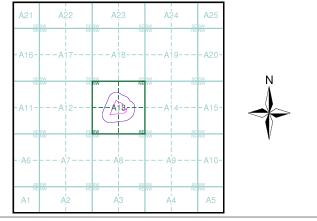
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 7 of 14



Ordnance Survey Plan Published 1964 - 1965


Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

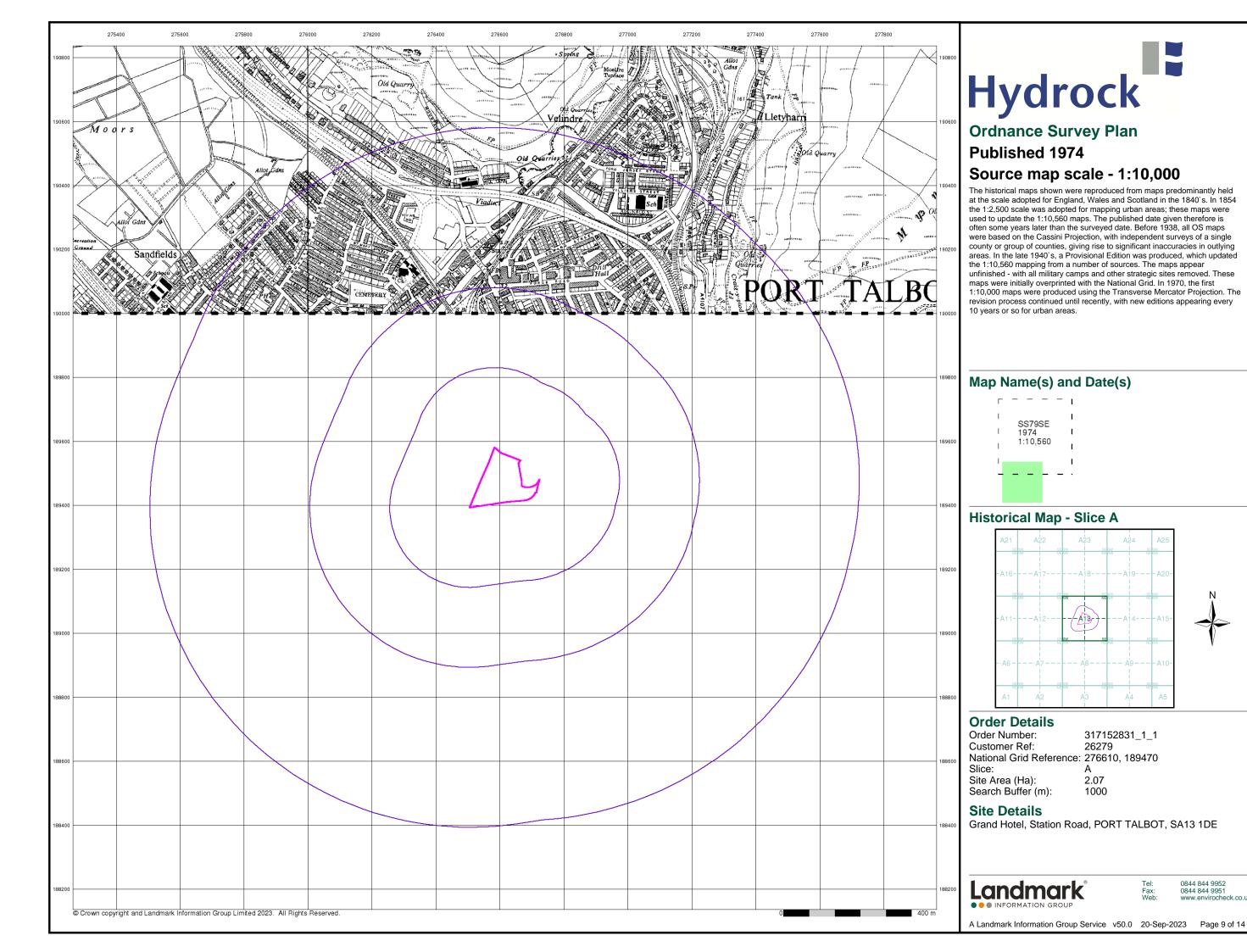
Map Name(s) and Date(s)

Historical Map - Slice A

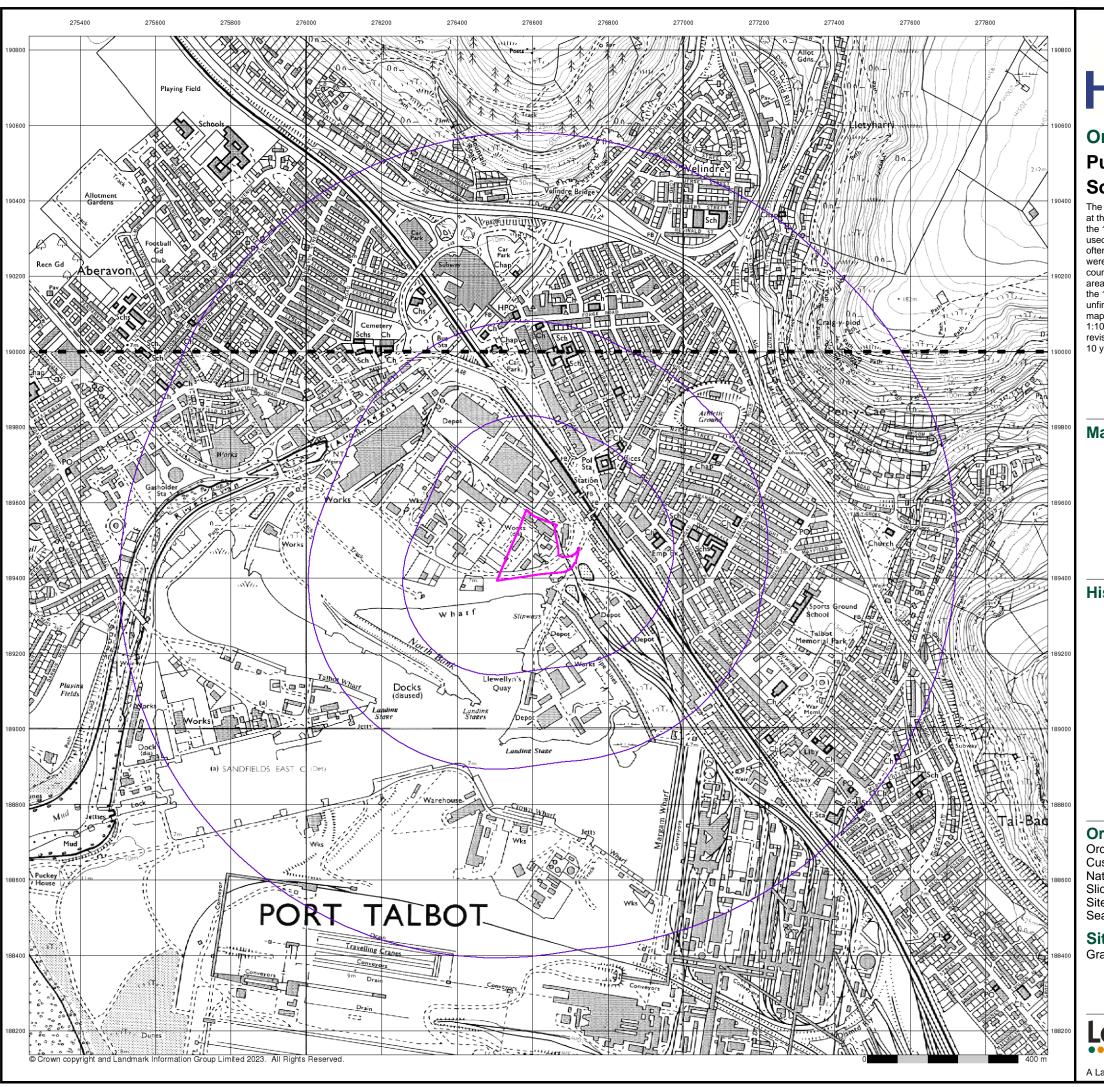
Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Slice: A

Site Area (Ha): 2.07 Search Buffer (m): 1000


Site Details

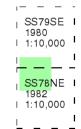
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE



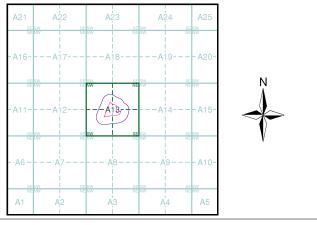
Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 8 of 14

0844 844 9951 www.envirocheck.co.uk



Ordnance Survey Plan Published 1980 - 1982


Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

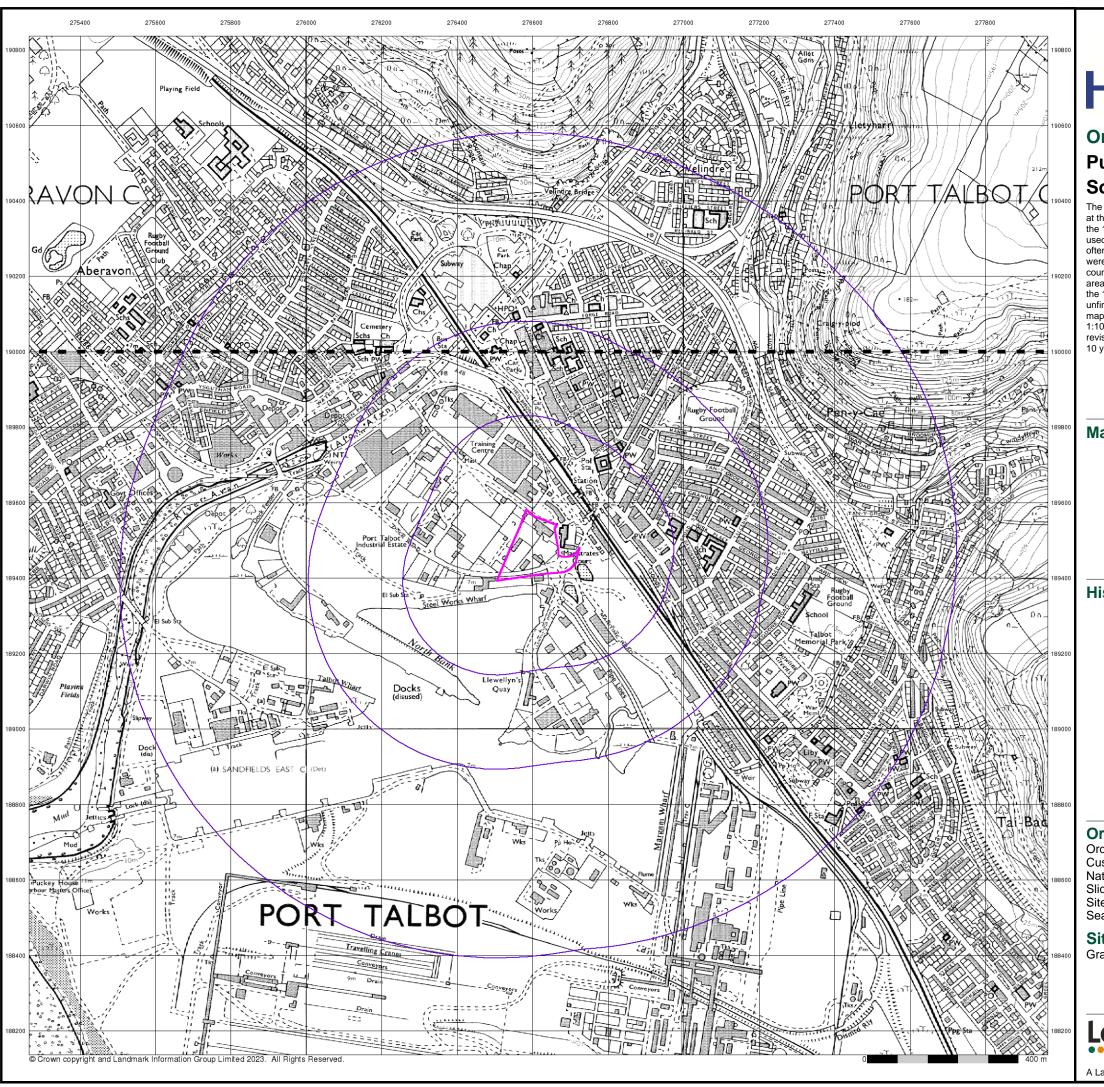
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

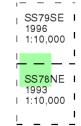
Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Slice: A

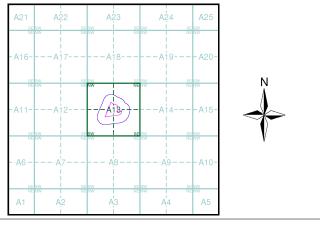
Site Area (Ha): 2.07 Search Buffer (m): 1000


Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk


A Landmark Information Group Service v50.0 20-Sep-2023 Page 10 of 14


Ordnance Survey Plan Published 1993 - 1996 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

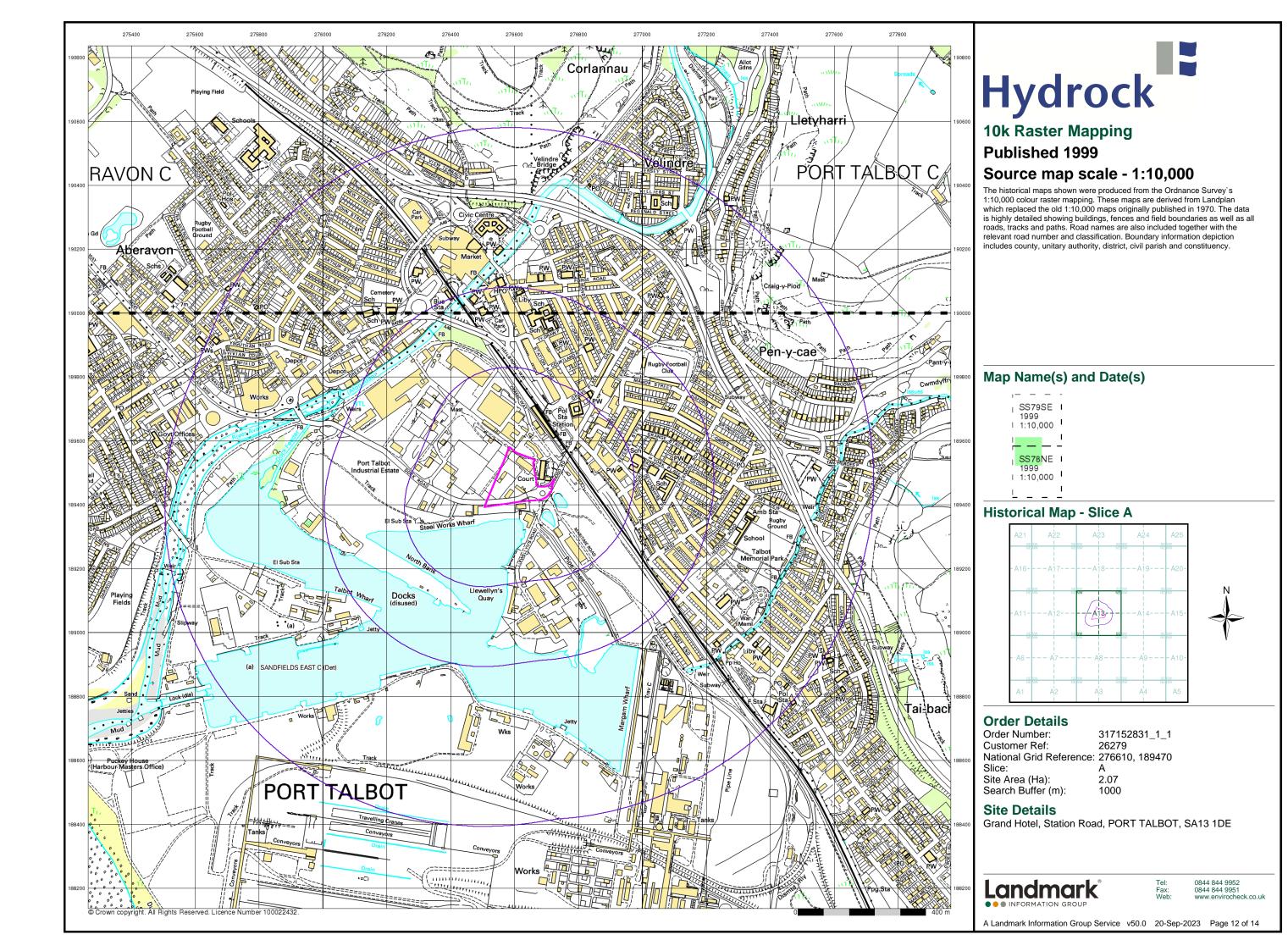
Map Name(s) and Date(s)

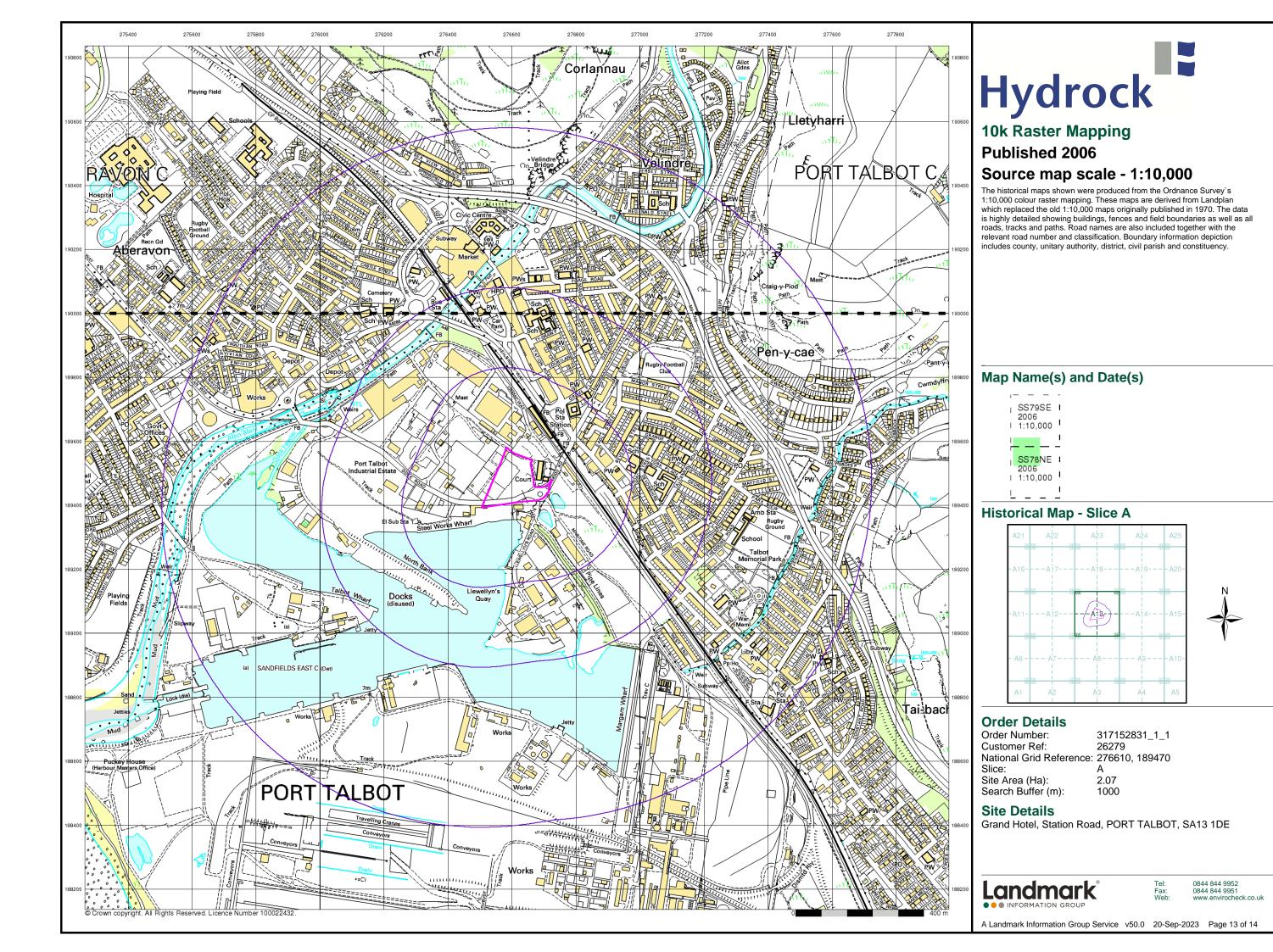
Historical Map - Slice A

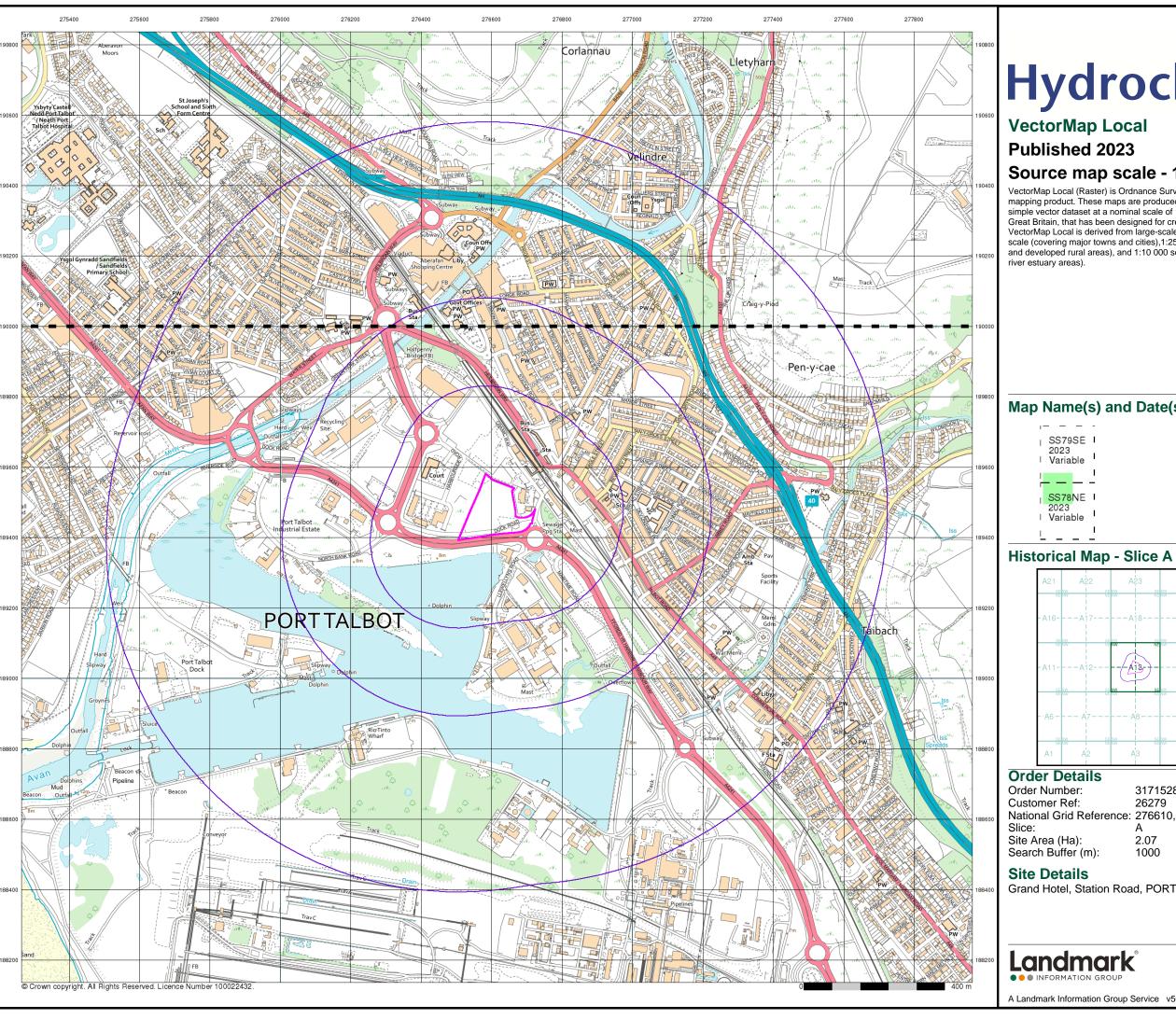
Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Slice: A

Site Area (Ha): 2.07 Search Buffer (m): 1000

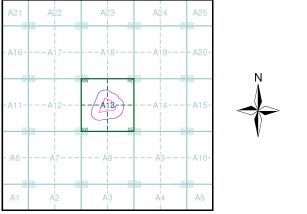

Site Details


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE



el: 0844 844 9952 ax: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 11 of 14



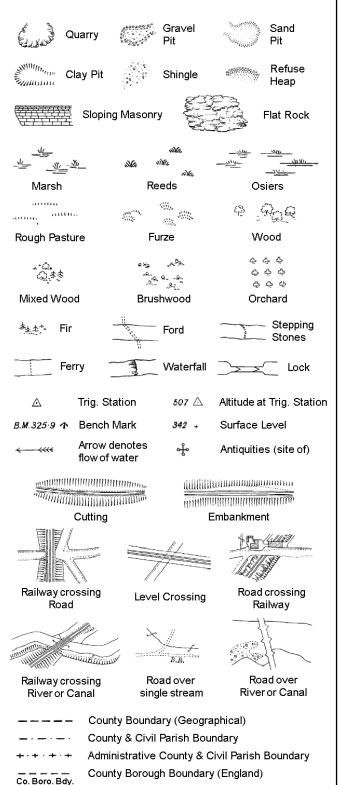
Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and

Map Name(s) and Date(s)

317152831_1_1 National Grid Reference: 276610, 189470

2.07 1000


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 14 of 14

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

County Burgh Boundary (Scotland)

S.P

T.C.B

Sl.

Tr

Police Call Box

Telephone Call Box

Signal Post

Pump

Sluice

Spring

Trough Well

Co. Burgh Bdy.

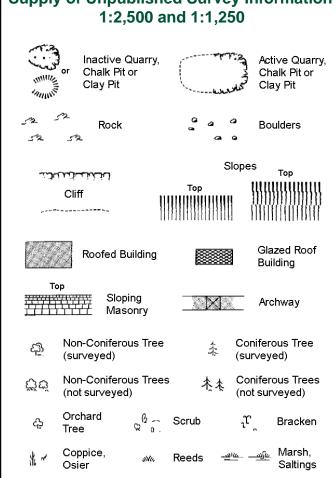
Bridle Road

Foot Bridge

Mile Stone

M.P.M.R. Mooring Post or Ring

Electricity Pylor


B.R.

E.P

F.B.

M.S

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information** 1:2,500 and 1:1,250

Rough Culvert யார் Heath Grassland Direction Bench Antiquity of water flow (site of) Electricity Cave Triangulation ÷

Electricity Transmission Line County Boundary (Geographical) County & Civil Parish Boundary Civil Parish Boundary Admin. County or County Bor. Boundary L B Bdy London Borough Boundary Symbol marking point where boundary mereing changes

вн	Beer House	Р	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	PO	Post Office
Cn, C	Capstan, Crane	PC	Public Convenience
Chy	Chimney	PH	Public House
D Fn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	SB, S Br	Signal Box or Bridge
FAP	Fire Alarm Pillar	SP, SL	Signal Post or Light
FB	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank or Track
Н	Hydrant or Hydraulic	TCB	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
MH	Manhole	Tr	Trough
MP	Mile Post or Mooring Post	WrPt,WrT	Water Point, Water Tap
MS	Mile Stone	W	Well
NTL	Normal Tidal Limit	Wd Pp	Wind Pump

1:1,250

رابعاريت	لخمان	Slopes _{Top}
	Cliff	Top [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
,,,,,,,		
B	Rock	sa Rock (scattered)
\Box	Boulders	□ Boulders (scattered)
	Positioned Boulder	Scree
ද <u>ව</u>	Non-Coniferous Tree (surveyed)	Coniferous Tree (surveyed)
స్తోలే	Non-Coniferous Trees (not surveyed)	大久 Coniferous Trees (not surveyed)
දා	Orchard $\ensuremath{\mathcal{G}} \ensuremath{\widehat{\mathfrak{g}}} \e$	crub _ໃ ້ Bracken
* ~	Coppice, Ma Re	leeds <u>அம்</u> Marsh, Saltings
acting.	Rough annum, He	leath Culvert
>>> →		riangulation Antiquity station (site of)
ETL_	Electricity Transmission	on Line 🔀 Electricity Pylon
\ 	ı 231.60m Bench Mark	Buildings with Building Seed
	Roofed Building	Glazed Roof Building
	• • • Civil parish/co	ommunity boundary
	— District bound	dary
_ •	· County bound	dary
٥	B d	
£	Boundary me	ereing symbol (note: these ar in opposed pairs or groups
Bks	Barracks	P Pillar, Pole or Post
Bty	Battery	PO Post Office
Cemy	Cemetery	PC Public Convenience
Chy	Chimney	Pp Pump
Cis	Cistern	Ppg Sta Pumping Station
Dismtd F		PW Place of Worship
El Gen S	•	Sewage Ppg Sta Sewage Pumping Station
EIP	Electricity Pole, Pillar	SB, S Br Signal Box or Bridge

SP, SL

Spr

Tr

Wd Pp

Wks

Signal Post or Light

Works (building or area)

Spring

Trough

Wind Pump

Wr Pt. Wr T Water Point, Water Tap

Tank or Track

El Sub Sta Electricity Sub Station

Filter Bed

Gas Governer

Guide Post

Manhole

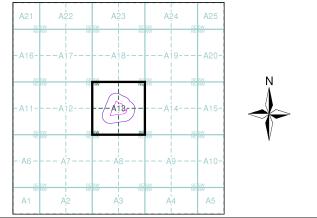
Fountain / Drinking Ftn.

Gas Valve Compound

Mile Post or Mile Stone

FΒ

GVC


Fn/DFn

Hydrock

Historical Mapping & Photography included:

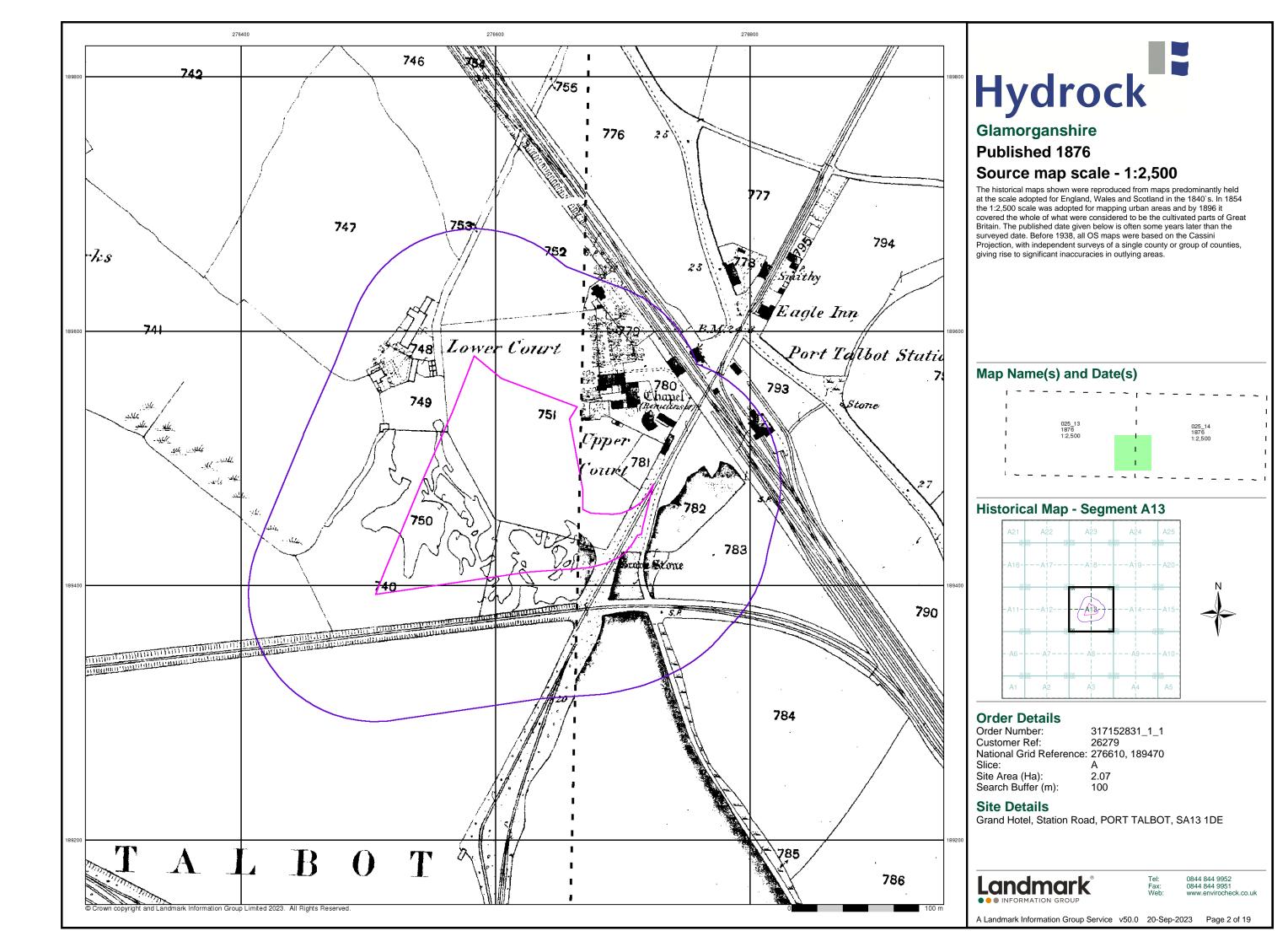
Mapping Type	Scale	Date	Pg
Glamorganshire	1:2,500	1876	2
Glamorganshire	1:2,500	1899	3
Glamorganshire	1:2,500	1917	4
Glamorganshire	1:2,500	1939	5
Ordnance Survey Plan	1:1,250	1952	6
Ordnance Survey Plan	1:2,500	1953	7
Ordnance Survey Plan	1:1,250	1958 - 1962	8
Ordnance Survey Plan	1:1,250	1964 - 1968	9
Ordnance Survey Plan	1:1,250	1967 - 1974	10
Ordnance Survey Plan	1:2,500	1969	11
Ordnance Survey Plan	1:1,250	1971	12
Additional SIMs	1:1,250	1978 - 1991	13
Additional SIMs	1:1,250	1988 - 1991	14
Additional SIMs	1:1,250	1991	15
Large-Scale National Grid Data	1:1,250	1993	16
Large-Scale National Grid Data	1:1,250	1995	17
Large-Scale National Grid Data	1:1,250	1996	18
Historical Aerial Photography	1:2,500	2001	19

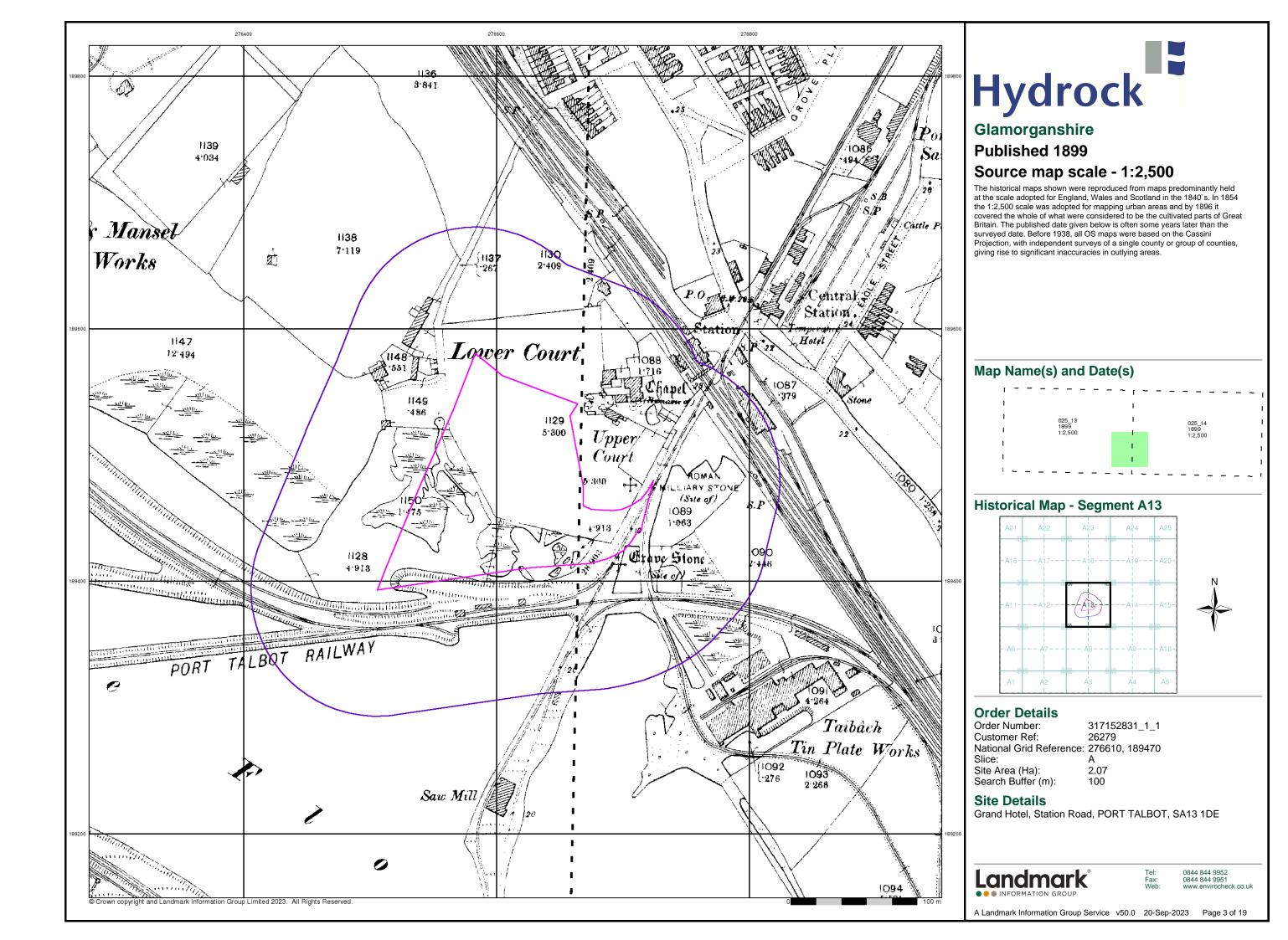
Historical Map - Segment A13

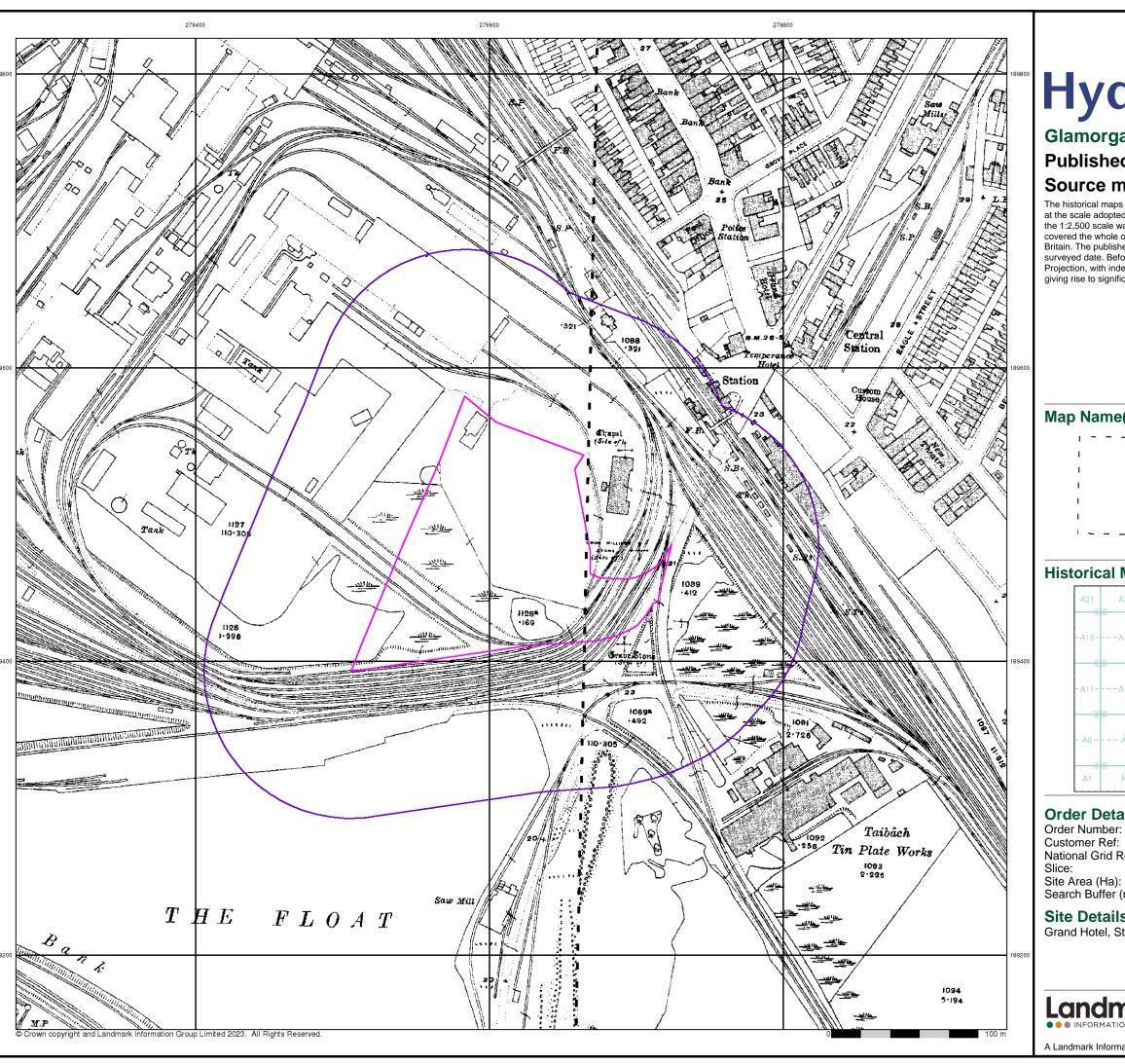
Order Details

Order Number: 317152831_1_1 26279 Customer Ref: National Grid Reference: 276610, 189470 Slice:

2.07 Site Area (Ha): Search Buffer (m): 100

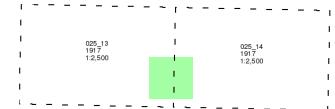

Site Details


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

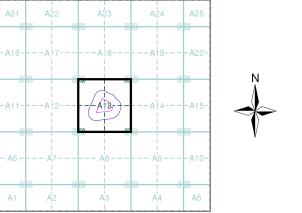


0844 844 9952 0844 844 9951

A Landmark Information Group Service v50.0 20-Sep-2023 Page 1 of 19


Glamorganshire

Published 1917


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

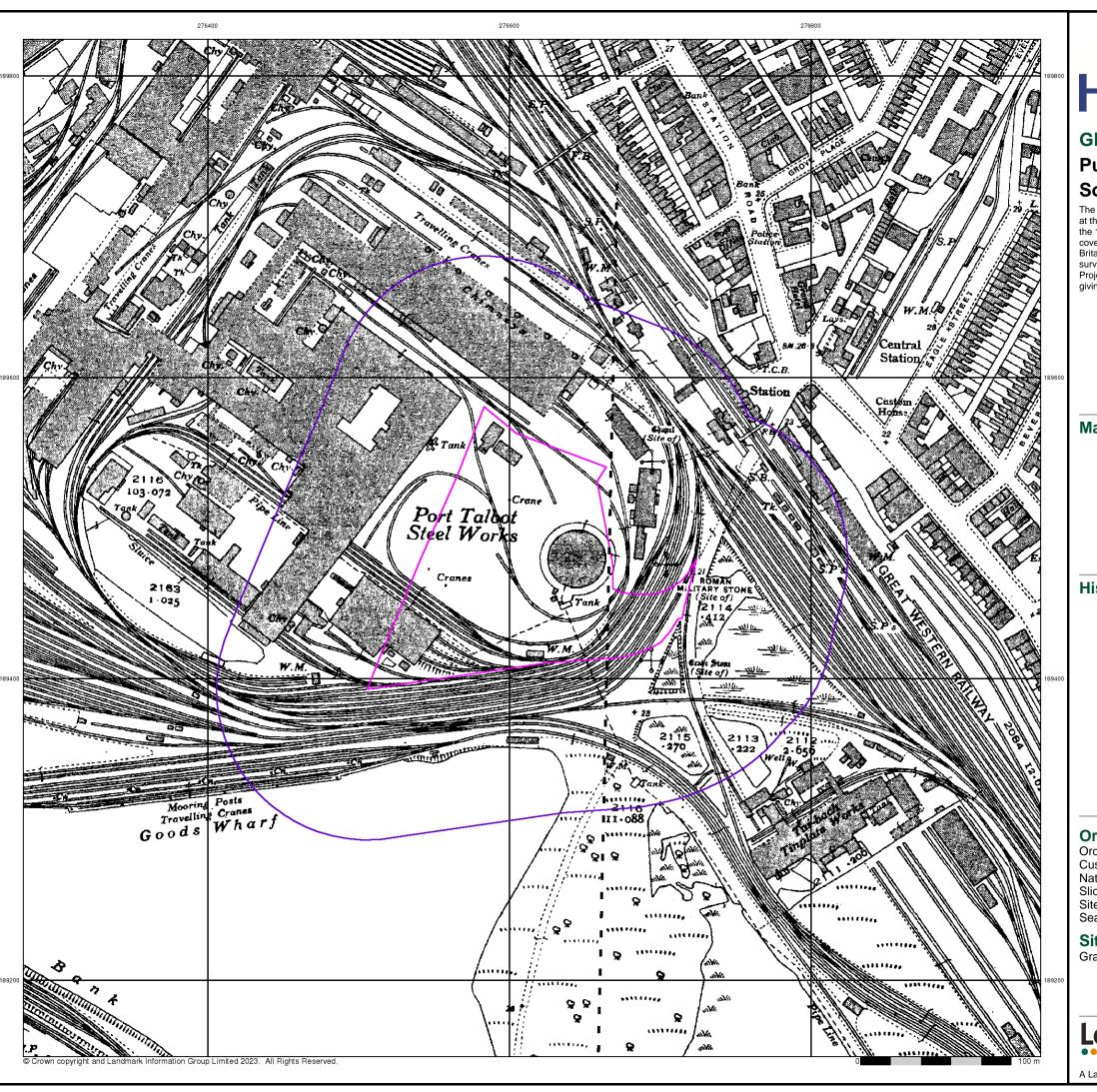
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

317152831_1_1 Customer Ref: National Grid Reference: 276610, 189470

Site Area (Ha): Search Buffer (m): 2.07 100

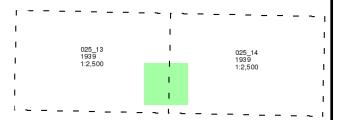

Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

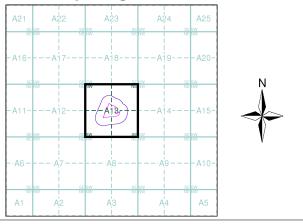
Landmark

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 4 of 19


Glamorganshire

Published 1939


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

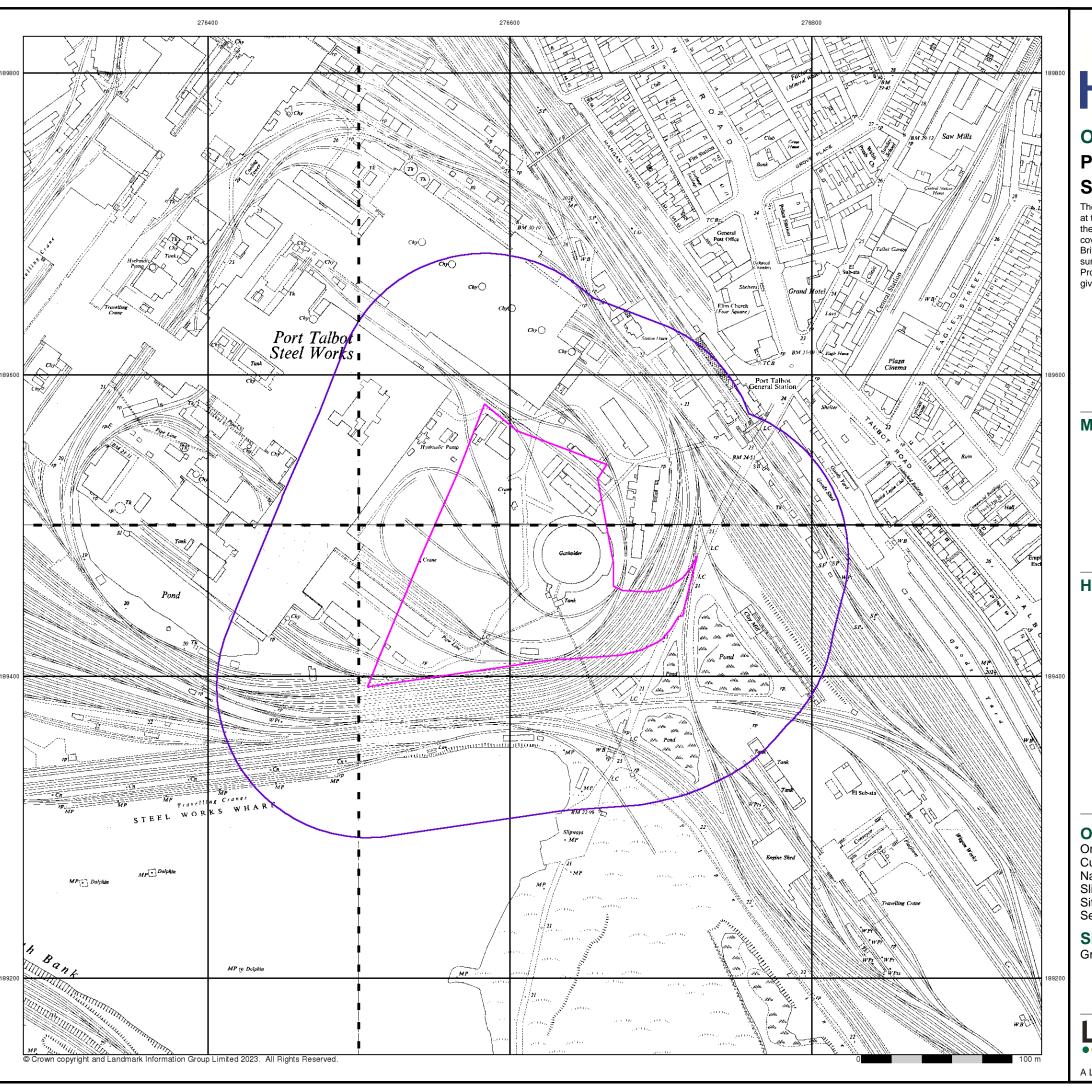
Historical Map - Segment A13

Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470

: A

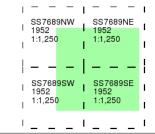
Site Area (Ha): 2.07 Search Buffer (m): 100

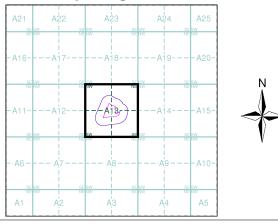

Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Landmark®
INFORMATION GROUP

l: 0844 844 9952 x: 0844 844 9951 eb: www.envirocheck.co.uk


A Landmark Information Group Service v50.0 20-Sep-2023 Page 5 of 19


Ordnance Survey Plan Published 1952 Source map scale - 1:1,250

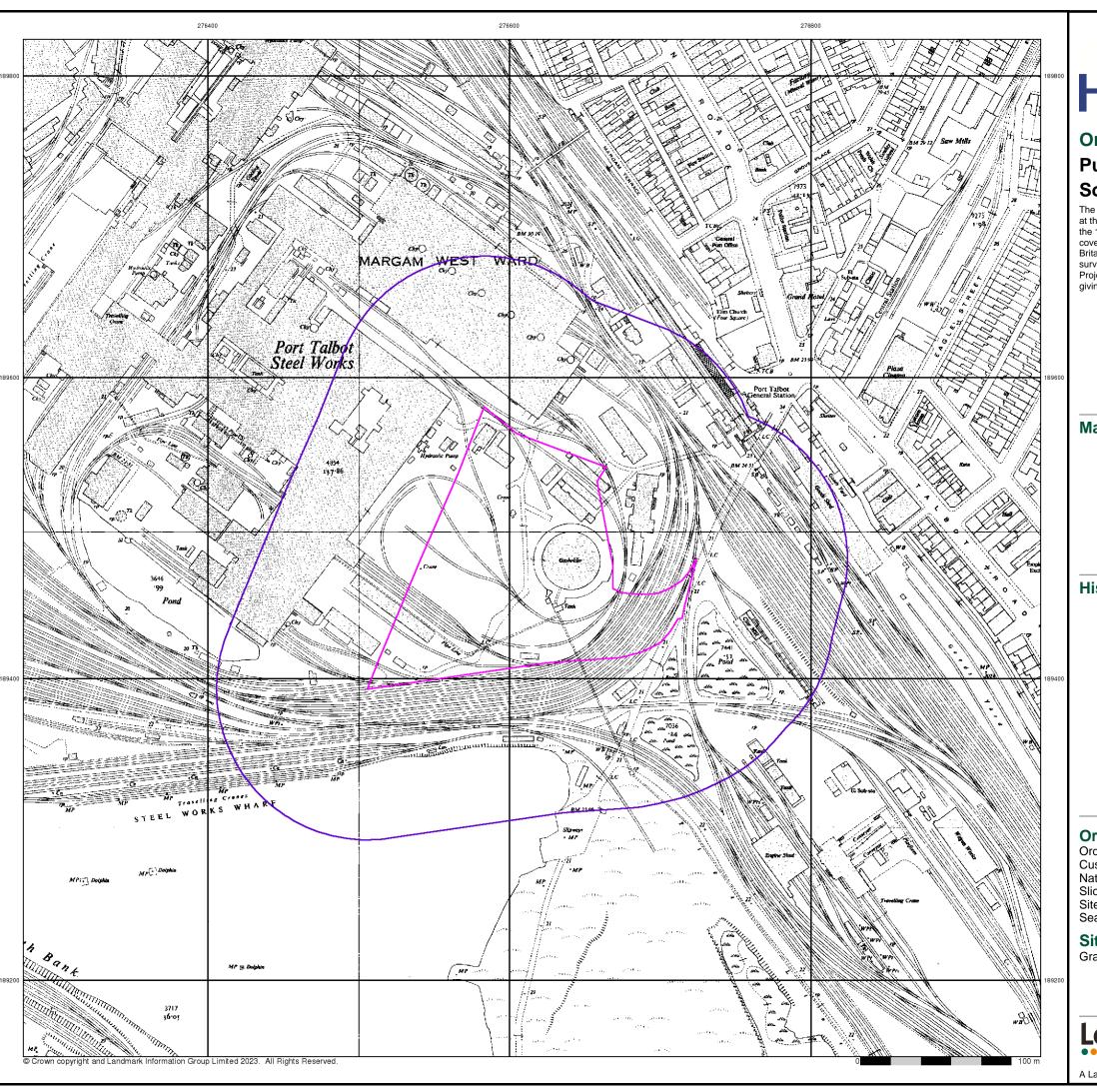
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

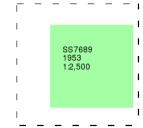
Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Slice: A
Site Area (Ha): 2.07
Search Buffer (m): 100


Site Details

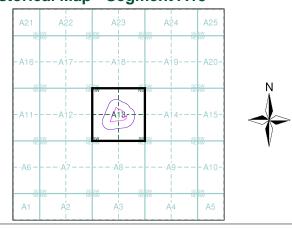
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 6 of 19


Ordnance Survey Plan

Published 1953


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

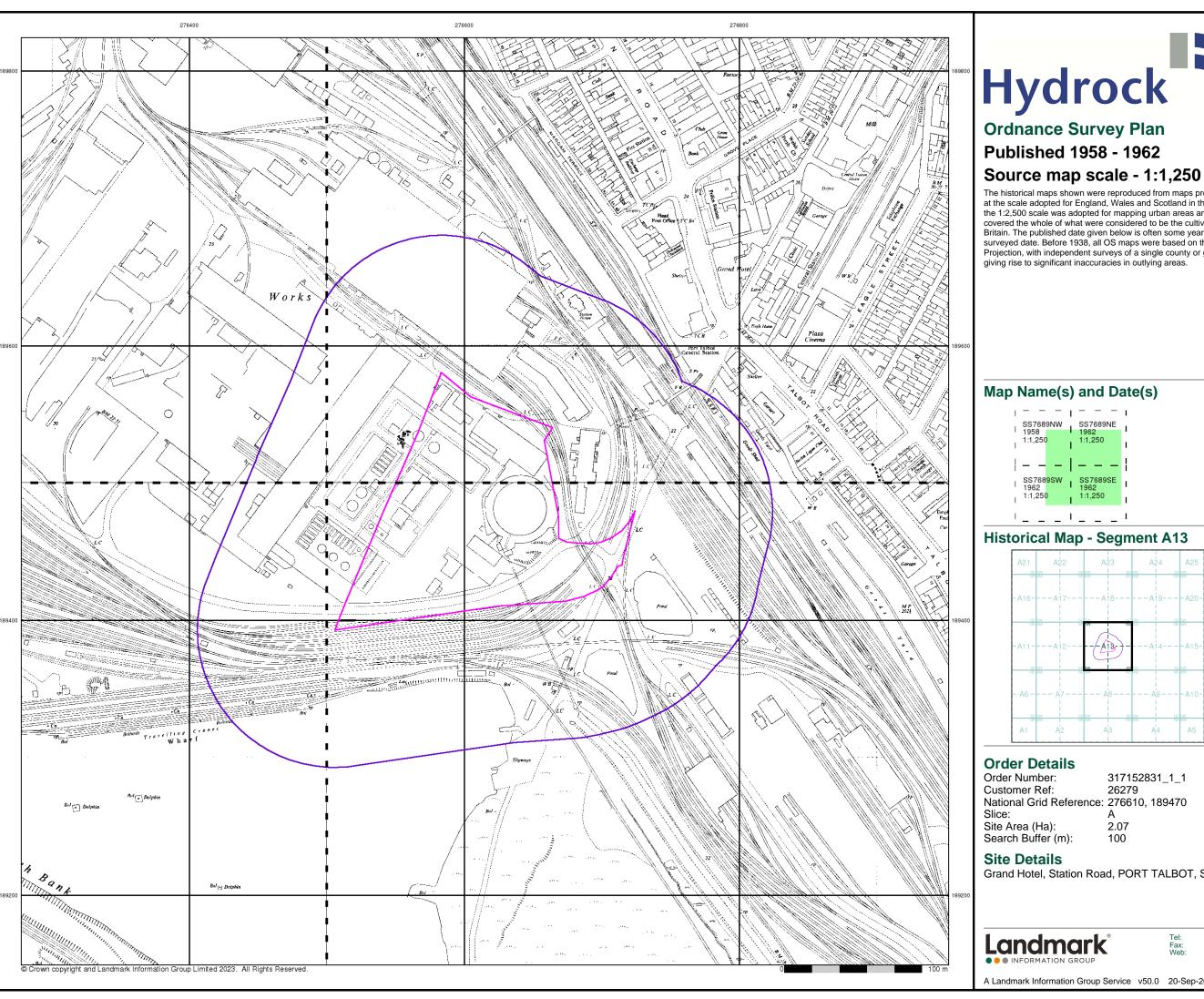
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

317152831_1_1 26279 Order Number: Customer Ref: National Grid Reference: 276610, 189470

Site Area (Ha): Search Buffer (m): 2.07 100


Site Details

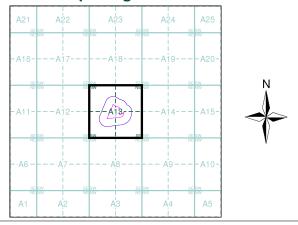
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Landmark

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 7 of 19

Ordnance Survey Plan


Published 1958 - 1962

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

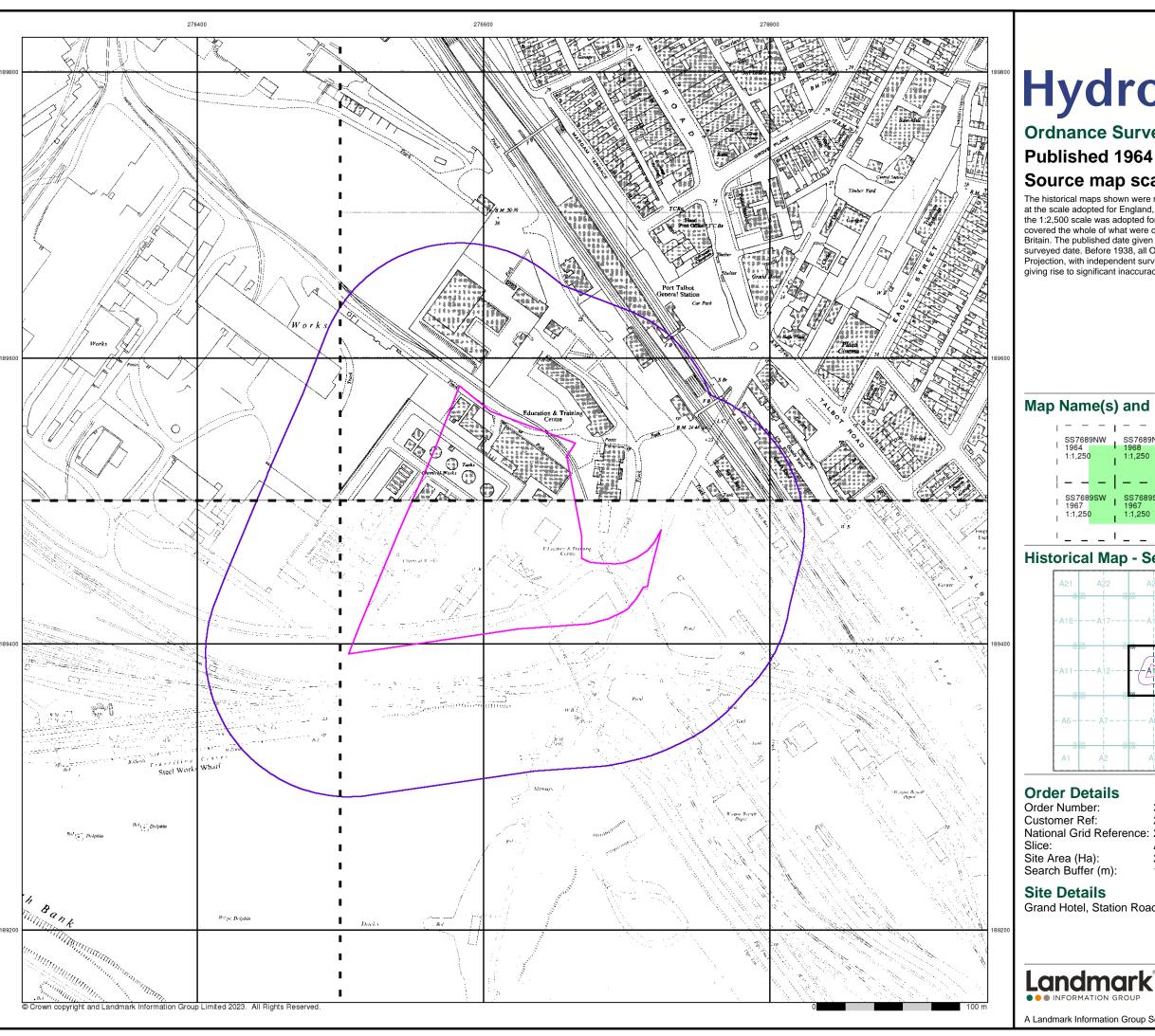
		_	-	_	_	ı
1	SS768 1958	9NW	SS 196	76891 2	ΝE	ı
1	1:1,250)		250		ı
-		-	_	_	_	l
1	SS768 1962	l l	196		SE	ı
1	1:1,250)	1:1,	,250		ı
1		_ 1	_	_	_	ı

Historical Map - Segment A13

Order Details

317152831_1_1 26279 Order Number: Customer Ref: National Grid Reference: 276610, 189470 Slice: 2.07

Site Area (Ha): Search Buffer (m): 100


Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

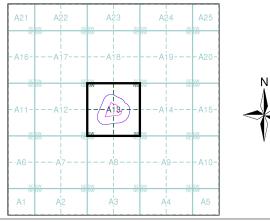
Landmark

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 8 of 19

Ordnance Survey Plan

Published 1964 - 1968

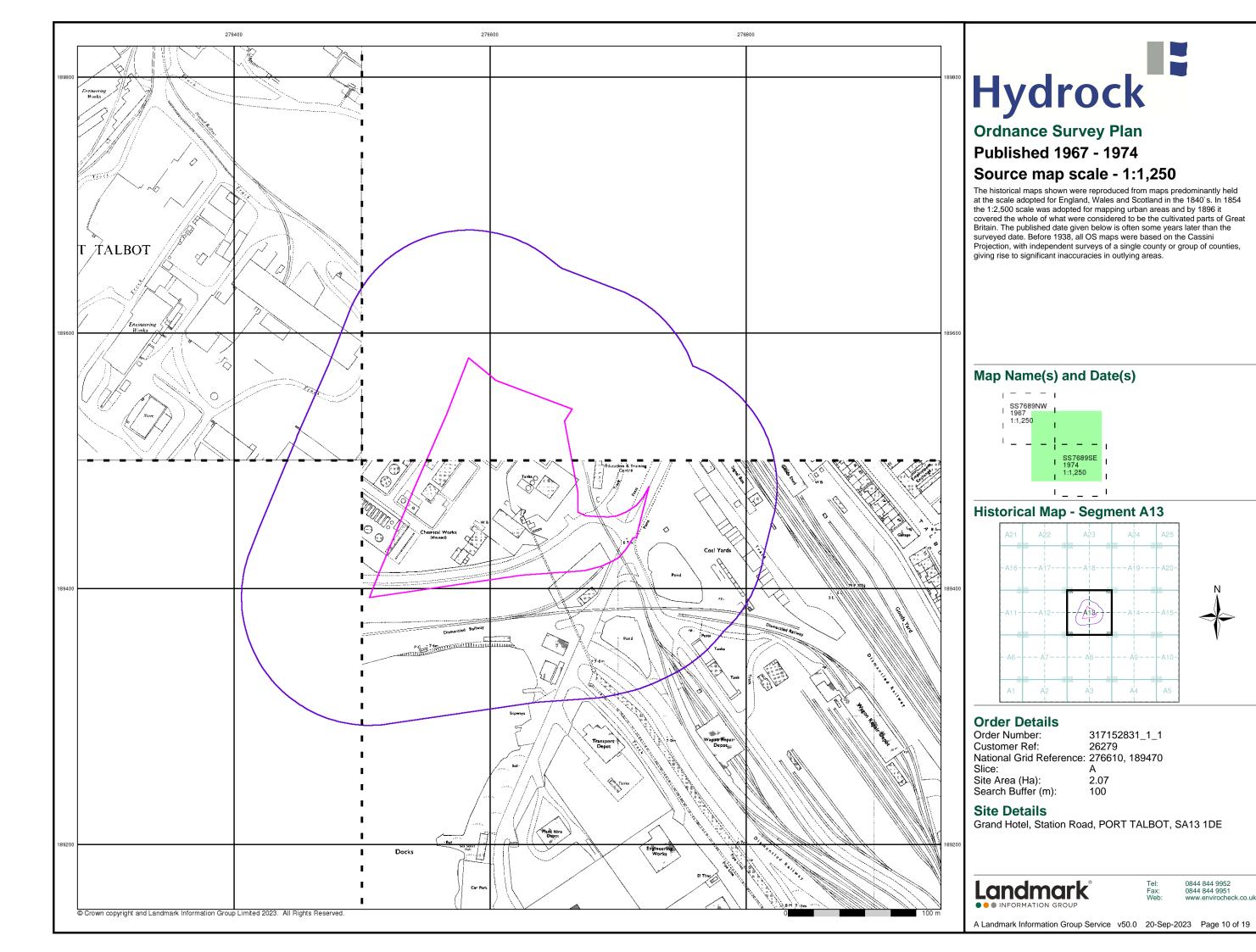

Source map scale - 1:1,250

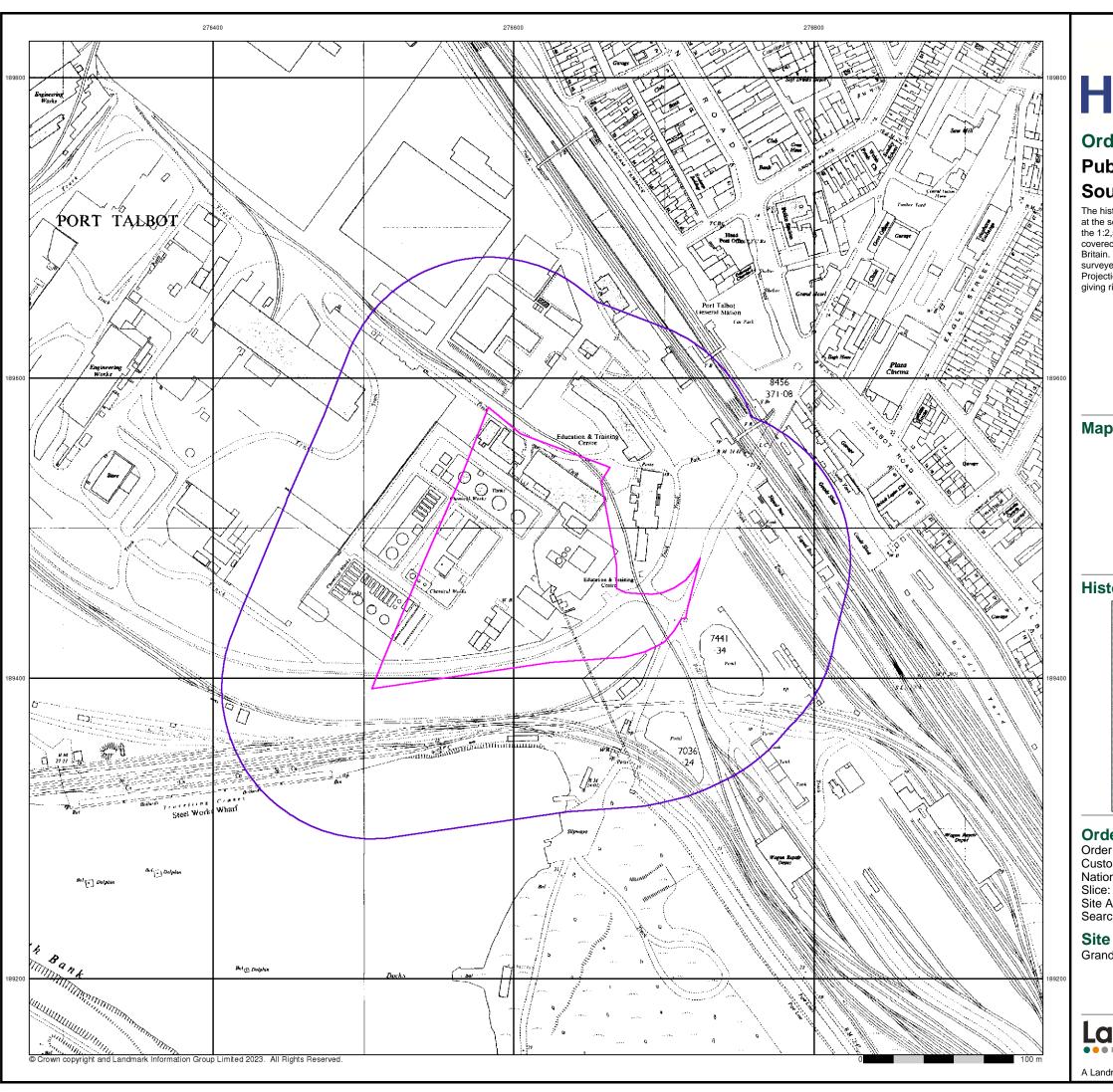
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

1		_	ı	_	_	_	
	SS768	9NW			689	ΝE	
I	1964 1:1,250	1	١.	196 1:1,			
1	1.1,250	,	L	1.1,	230		
1			ı				
i		_	L	-	-	-	
1	SS768	9SW	ı		689	SE	
	1967 1:1,250	2	٠.	196			
1	1.1,200	,	L	1.1,	230		
1							

Historical Map - Segment A13

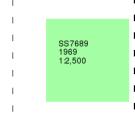

317152831_1_1 National Grid Reference: 276610, 189470


2.07 100

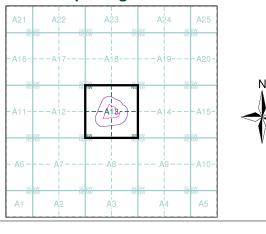
Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 9 of 19


Ordnance Survey Plan

Published 1969


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

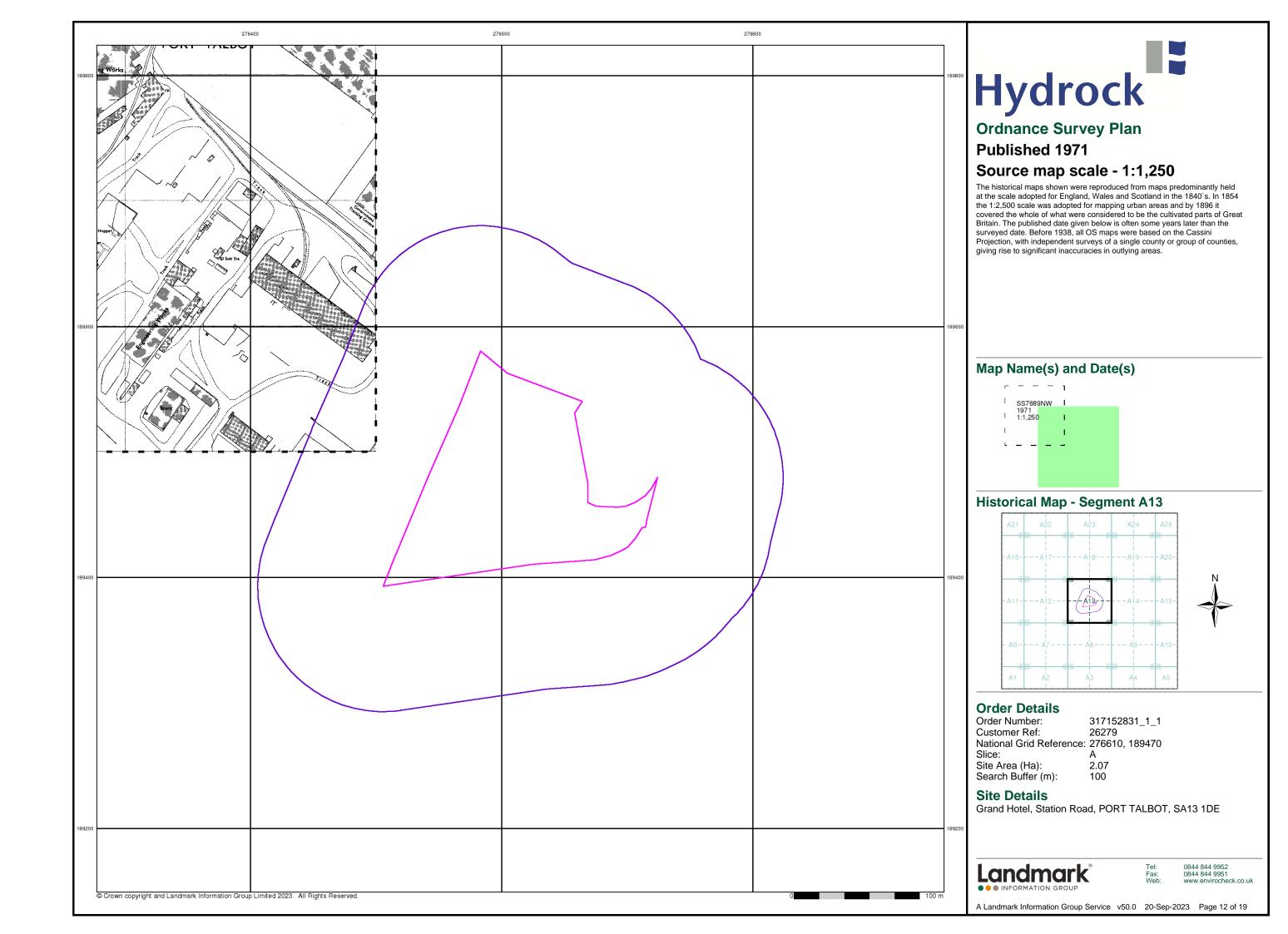
Map Name(s) and Date(s)

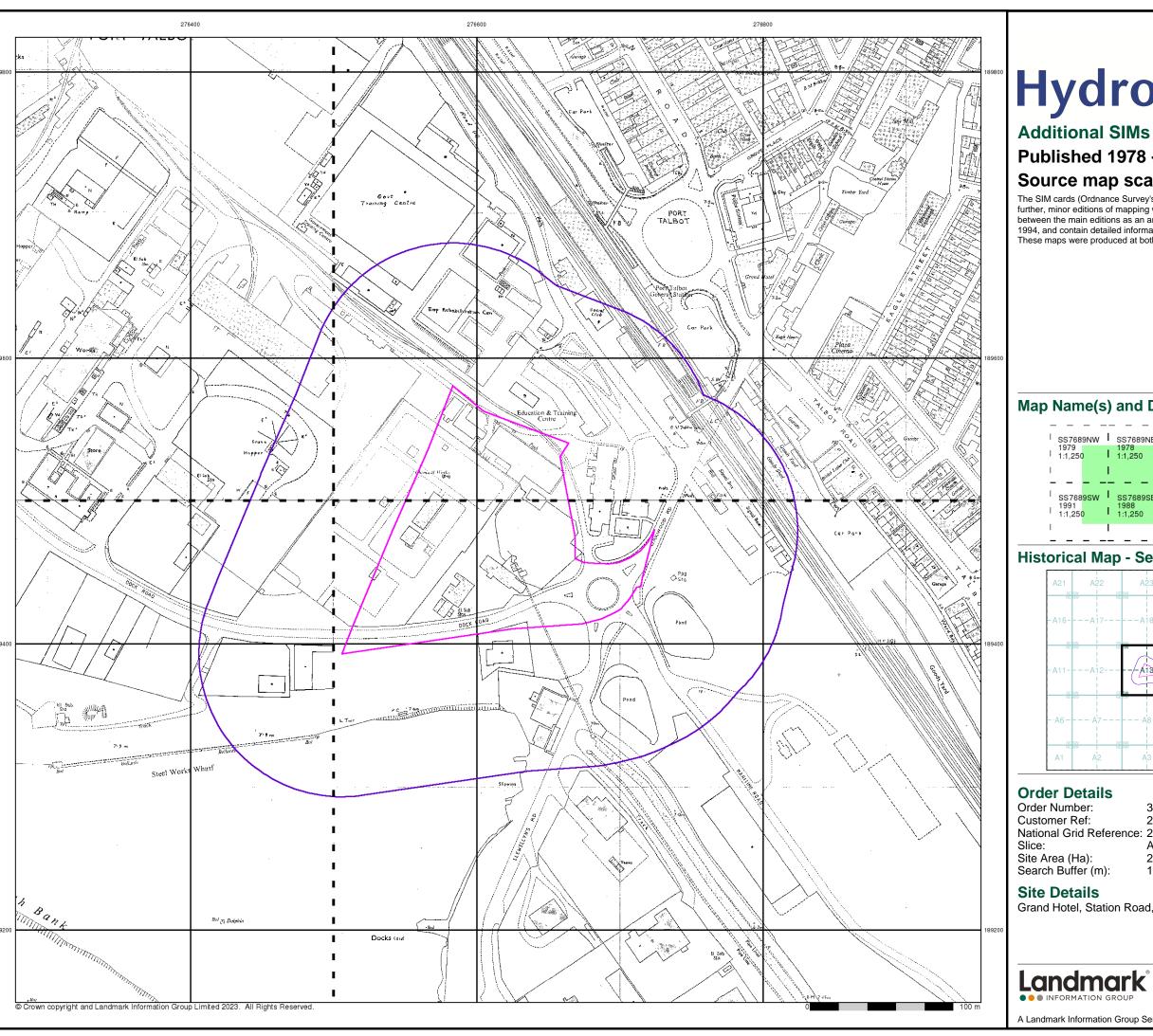
Historical Map - Segment A13

Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Slice: A
Site Area (Ha): 2.07

Site Area (Ha): 2.07 Search Buffer (m): 100

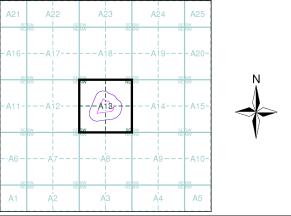

Site Details


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Landmark® INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 11 of 19

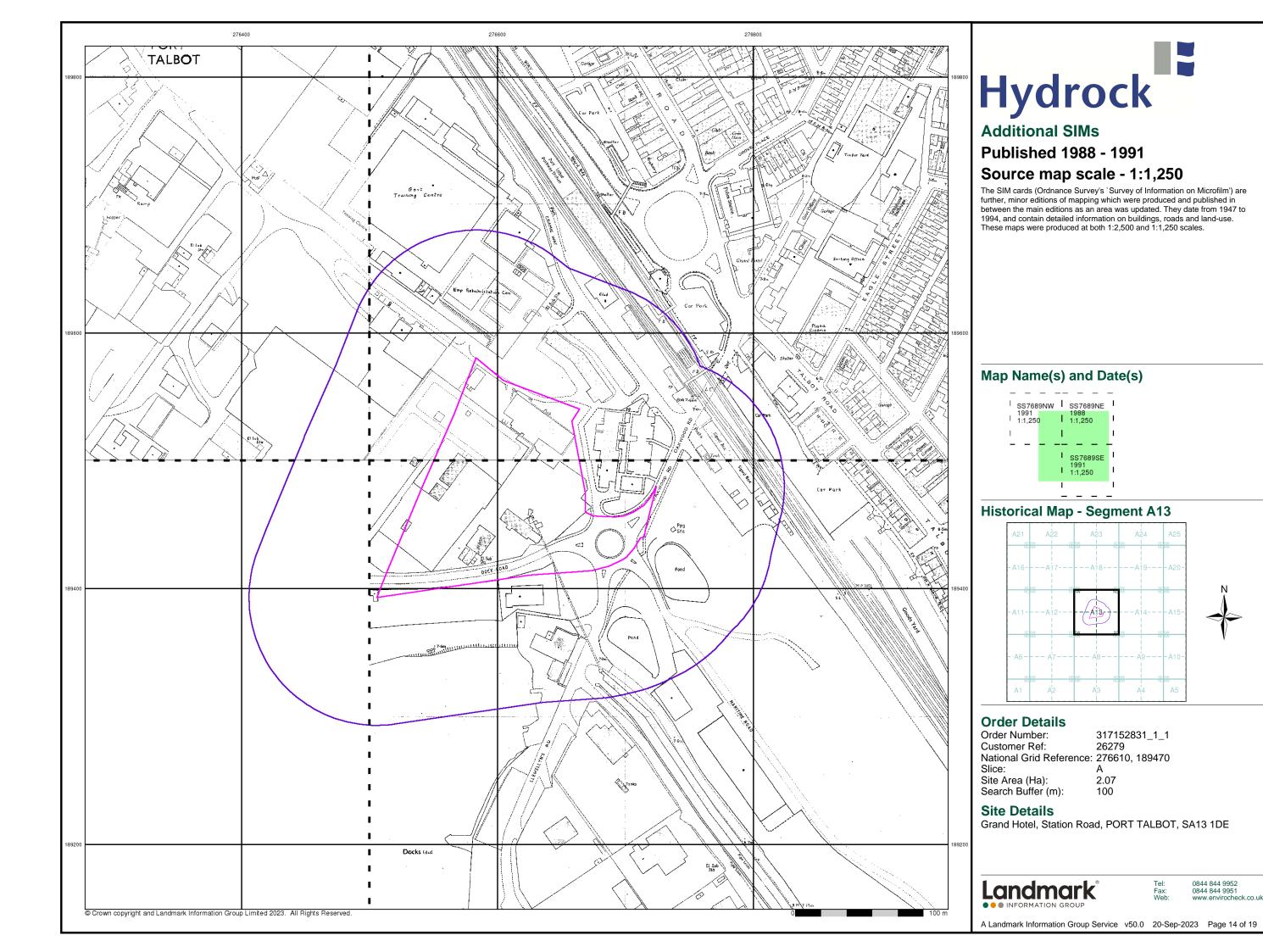

Published 1978 - 1991 Source map scale - 1:1,250

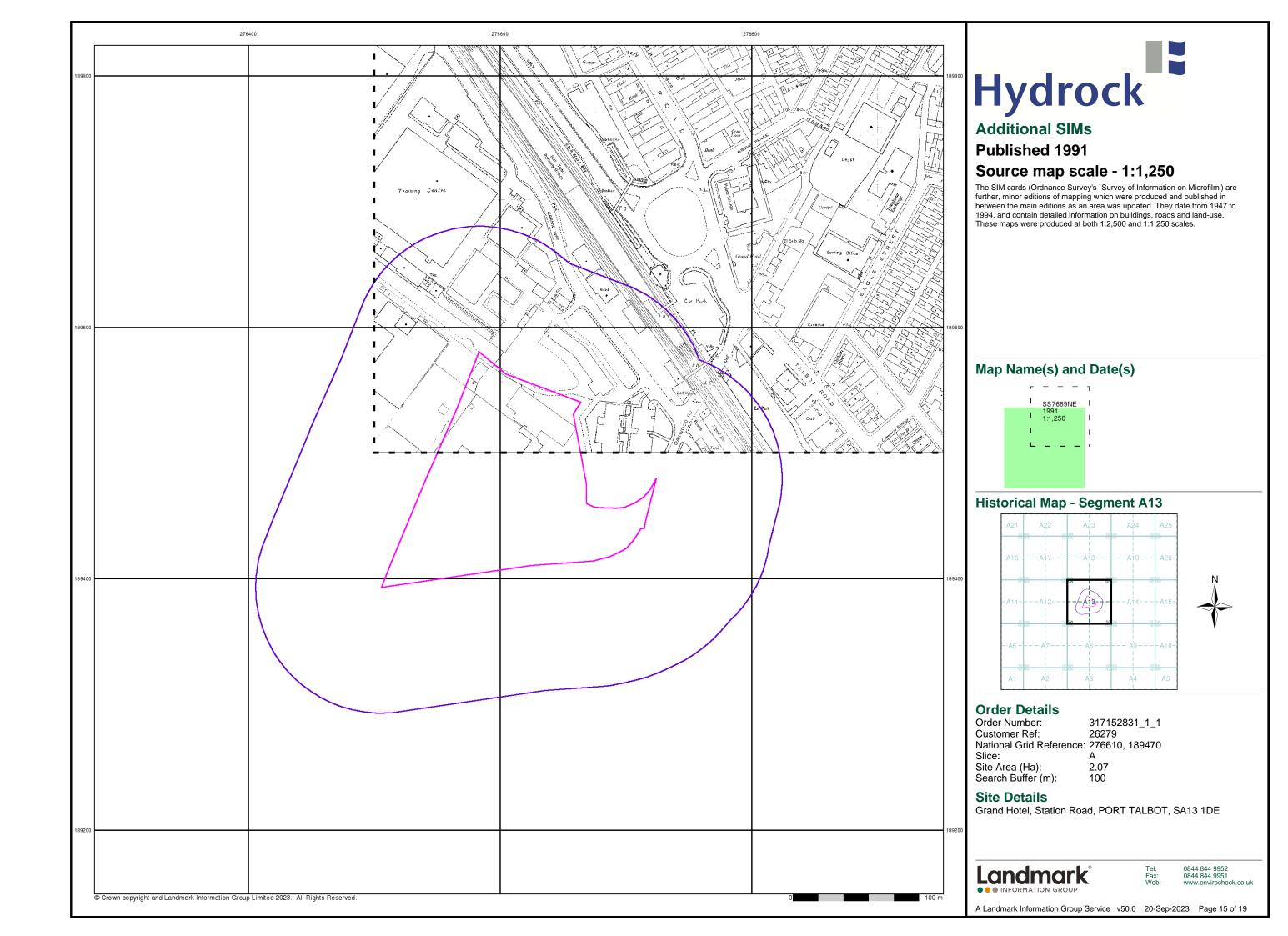
The SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

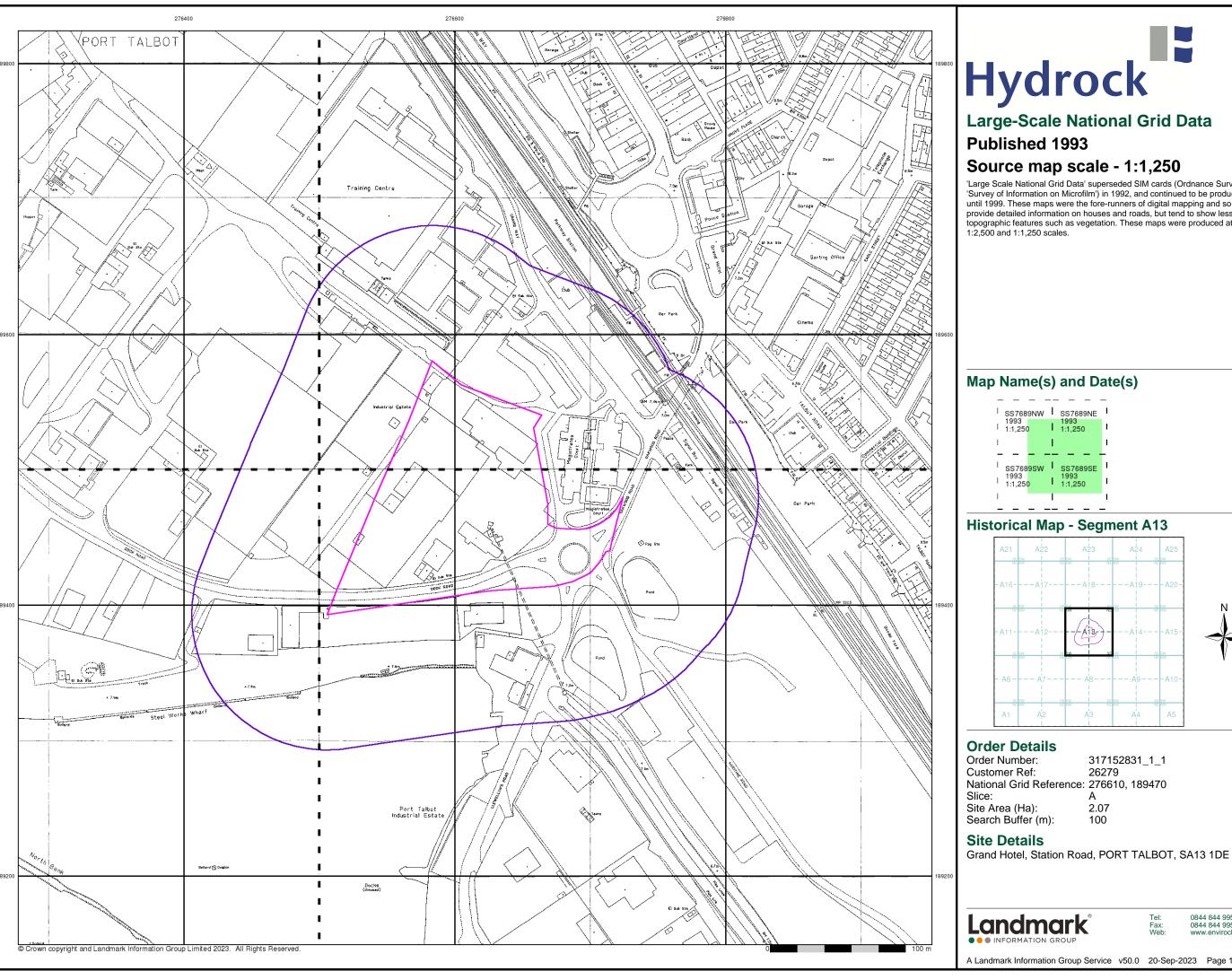
Map Name(s) and Date(s)

SS7689NW	SS7689NE	I
1979 1:1,250	1978 1 1:1,250	ı
1	l .	ı
		-
SS7689SW	I _{SS7689SE}	ı
1991 1:1,250	1988 1:1.250	ı
1.1,200		
1.11,200	1	ı

Historical Map - Segment A13

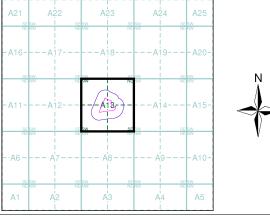

317152831_1_1 National Grid Reference: 276610, 189470


2.07 100


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

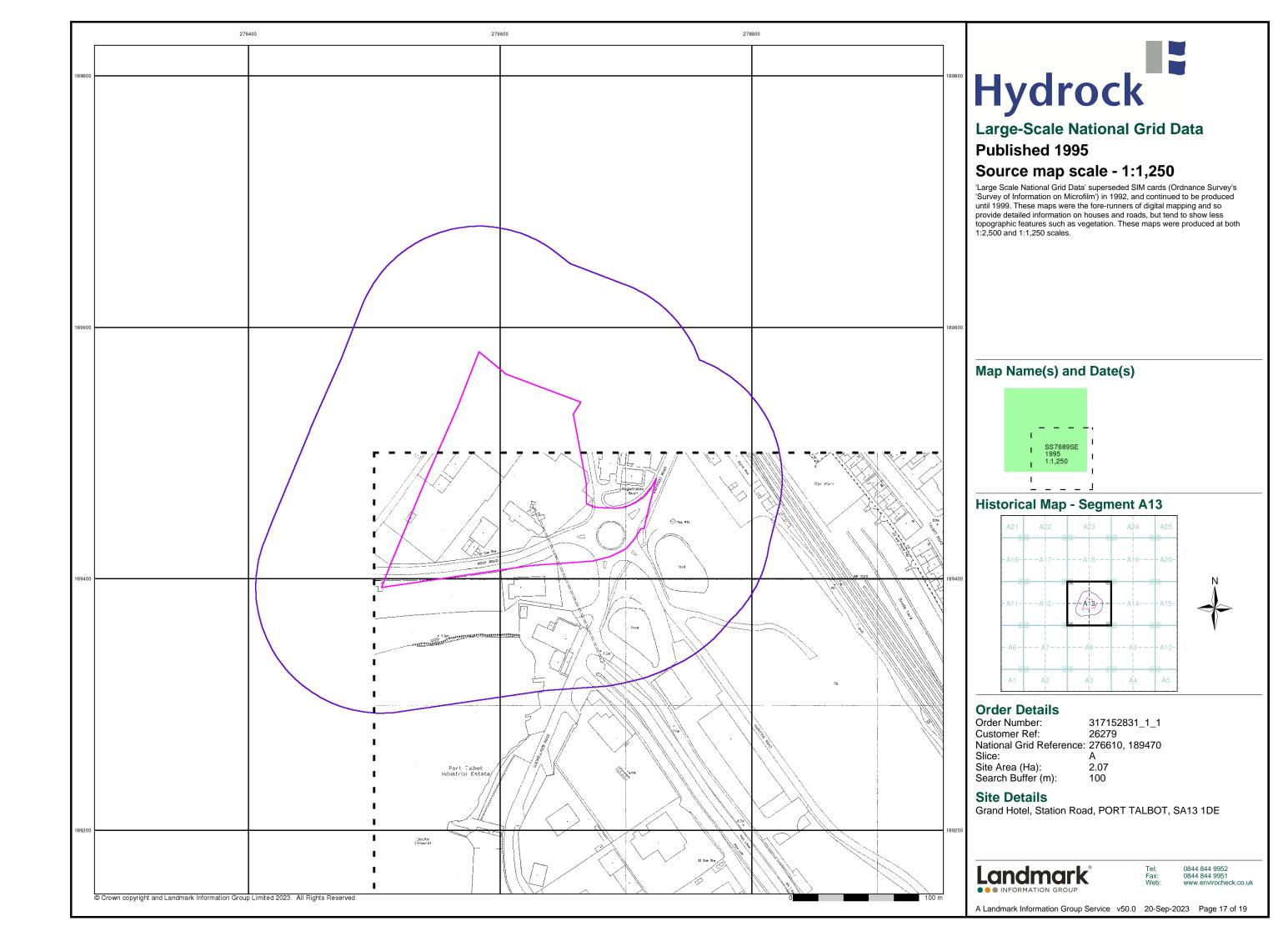
0844 844 9951 www.envirocheck.co.uk

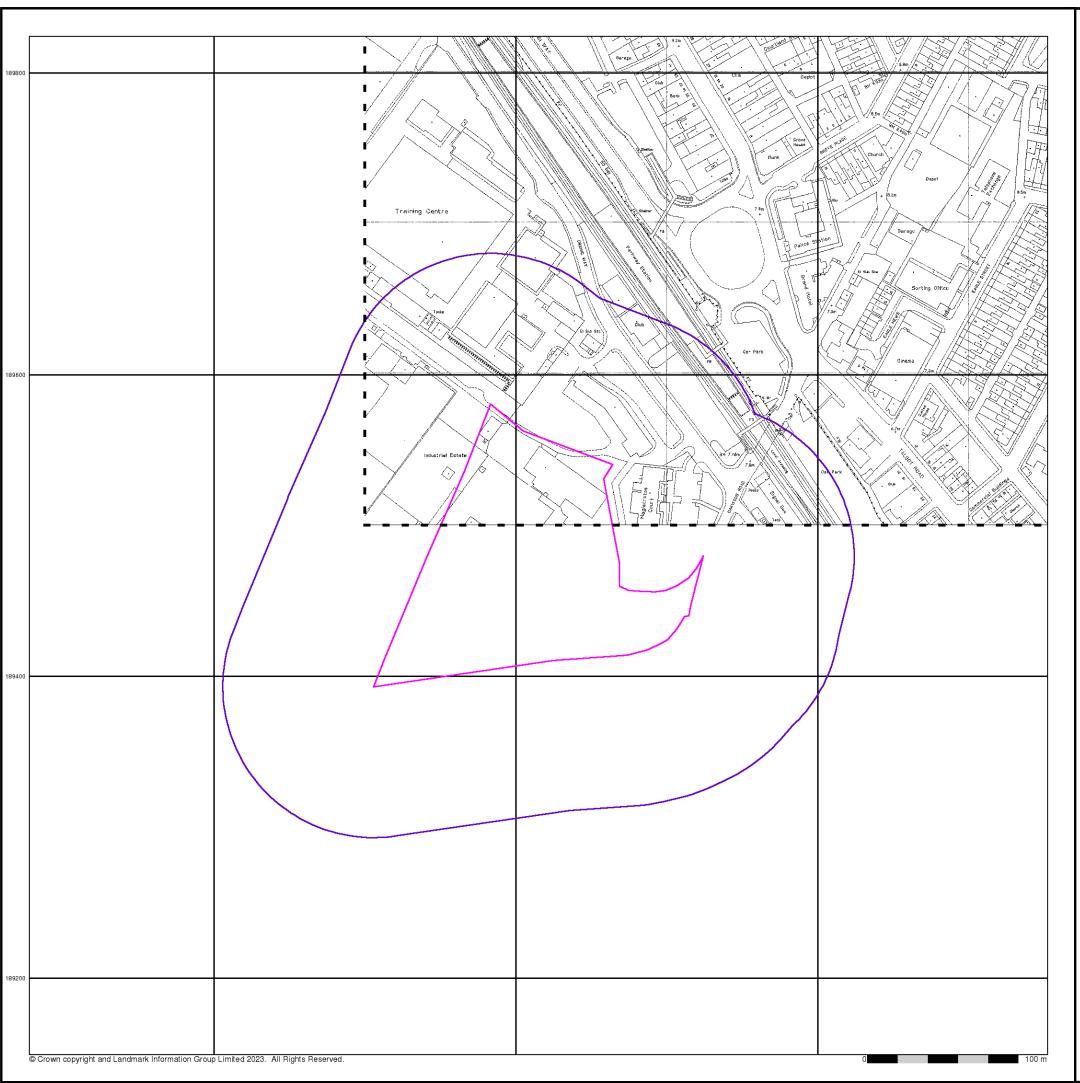
A Landmark Information Group Service v50.0 20-Sep-2023 Page 13 of 19



Large-Scale National Grid Data

Source map scale - 1:1,250

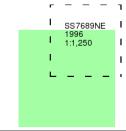

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.



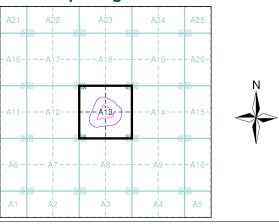
National Grid Reference: 276610, 189470

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 16 of 19


Large-Scale National Grid Data

Published 1996


Source map scale - 1:1,250

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

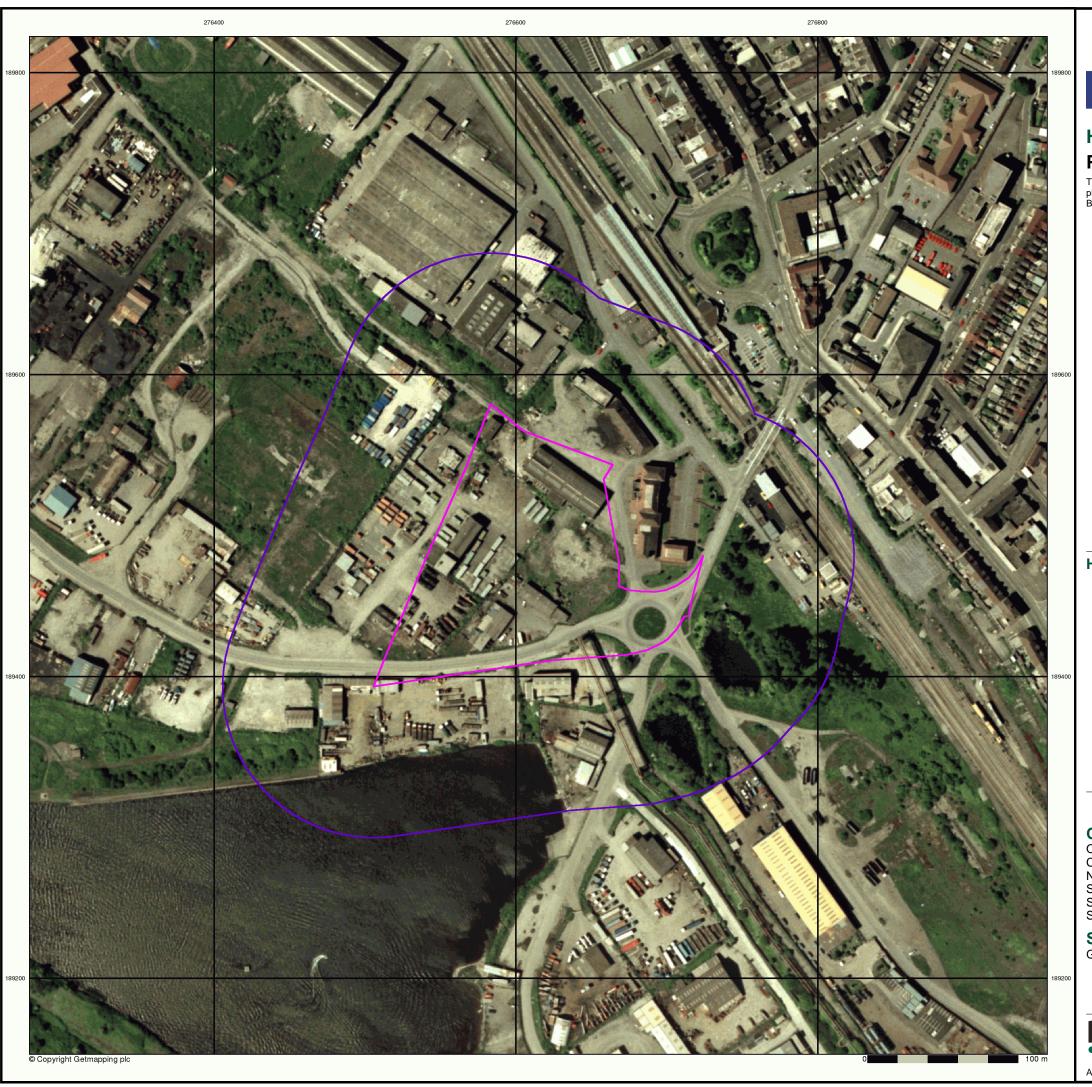
Historical Map - Segment A13

Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470

Slice:

Site Area (Ha): 2.07 Search Buffer (m): 100

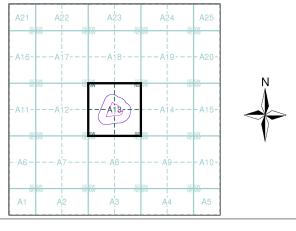

Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Landmark® INFORMATION GROUP

el: 0844 844 9952 ax: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 18 of 19



Hydrock Historical Aerial Photography

Published 2001

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470

Slice: A Site Area (Ha): 2.07 Search Buffer (m): 100

Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

Landmark

INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 19 of 19

Appendix D Desk study research information

Envirocheck

Geology 1:50,000 Maps Legends

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	LSGR	Landscaped Ground (Undivided)	Artificially Modified Ground	Not Supplied - Holocene
Z	MGR	Made Ground (Undivided)	Artificial Deposit	Not Supplied - Holocene
	WGR	Worked Ground (Undivided)	Void	Not Supplied - Holocene
	SLIP	Landslide Deposit	Unknown/Unclassif ied Entry	Not Supplied - Quaternary

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age				
	SUPNM	Superficial Theme Not Mapped [For Digital Map Use Only]	Unknown/Unclassif ied Entry	Not Supplied - Not Supplied				
	TFD	Tidal Flat Deposits	Clay, Silt and Sand	Not Supplied - Holocene				
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Not Supplied - Holocene				
	ALV	Alluvium	Sand and Gravel	Not Supplied - Holocene				
	GFICD	Glaciofluvial Ice Contact Deposits, Devensian	Sand and Gravel	Not Supplied - Devensian				
	TILLD	Till, Devensian	Diamicton	Not Supplied - Devensian				
	ALF	Alluvial Fan Deposits	Sand and Gravel	Not Supplied - Quaternary				
	BSA	Blown Sand	Sand	Not Supplied - Quaternary				
	HEAD	Head	Clay, Silt, Sand and Gravel	Not Supplied - Quaternary				
	MBD	Marine Beach Deposits	Sand	Not Supplied - Quaternary				
	STOB	Storm Beach Deposits	Gravel	Not Supplied - Quaternary				
	MBD	Marine Beach Deposits	Sand and Gravel	Not Supplied - Quaternary				
	RSBD	Raised Storm Beach Deposits	Sand and Gravel	Not Supplied - Quaternary				

Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	BD	Brithdir Member	Sandstone	Not Supplied - Westphalian

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	BD	Brithdir Member	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	SWUCM	South Wales Upper Coal Measures Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	LLFB	Llynfi Member	Sandstone	Not Supplied - Westphalian
	LLFB	Llynfi Member	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	RA	Rhondda Member	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	RA	Rhondda Member	Sandstone	Not Supplied - Westphalian
	SWUCM	South Wales Upper Coal Measures Formation	Sandstone	Not Supplied - Westphalian
	SWMCM	South Wales Middle Coal Measures Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
		Faults		
		Rock Segments		

Hydrock

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.

The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

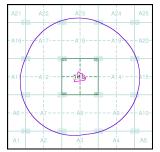
 Map ID:
 1

 Map Sheet No:
 247

 Map Name:
 Swansea

 Map Date:
 2011

 Bedrock Geology:
 Available


 Superficial Geology:
 Available

 Faults:
 Not Supplied

 Landslip:
 Available

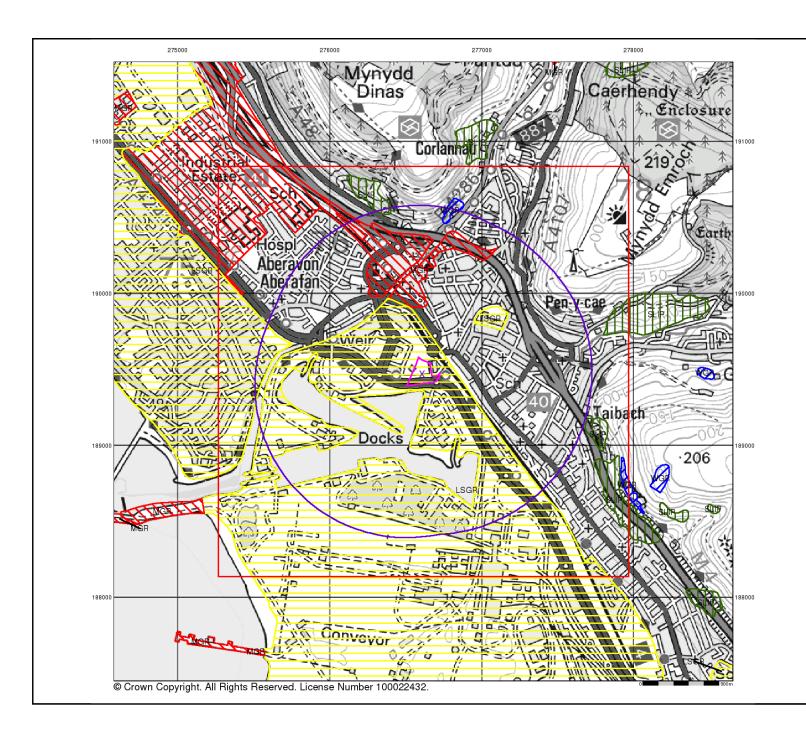
 Rock Segments:
 Not Supplied

Geology 1:50,000 Maps - Slice A

Order Details:

Order Number: 317152831_1_1
Customer Reference: 26279
National Grid Reference: 276610, 189470
Slice: A
Site Area (Ha): 2.07
Search Buffer (m): 1000

Site Details:


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

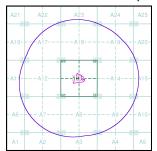
Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co

v15.0 20-Sep-2023

Page 1 of 5

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.


Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil heaps on the natural ground surface.

 - Worked ground - areas where the ground has been cut away such as
- quarries and road cuttings.
- Infilled ground areas where the ground has been cut away then wholly or partially backfilled.
- Landscaped ground areas where the surface has been reshaped.
 Disturbed ground areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

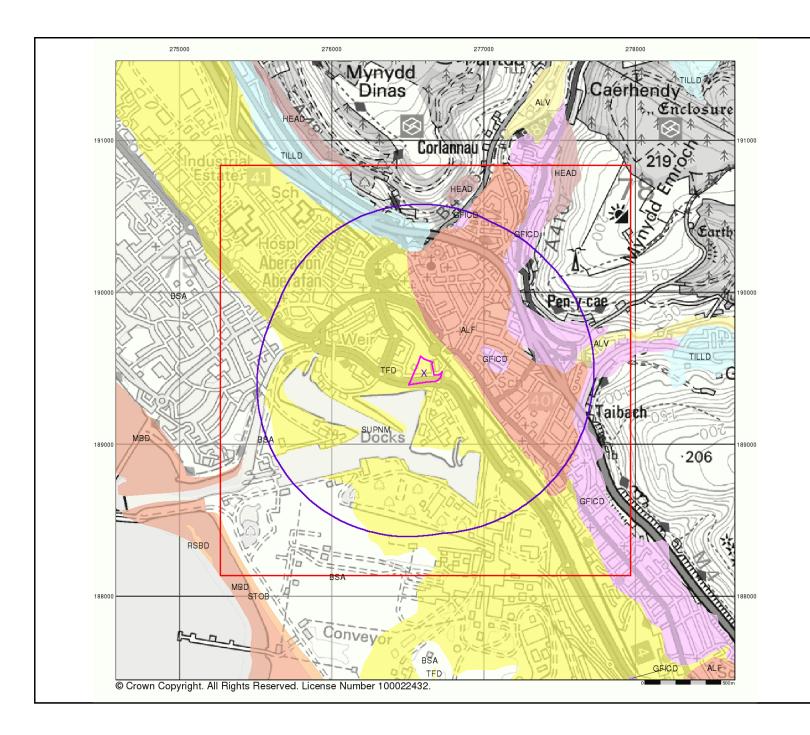
Artificial Ground and Landslip Map - Slice A

Order Details:

Order Number: Customer Reference: 317152831 1 1 26279 276610, 189470 National Grid Reference: A 2.07

Site Area (Ha): Search Buffer (m): 1000

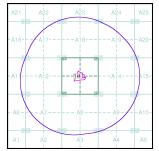
Site Details:


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9952 0844 844 9951

v15.0 20-Sep-2023

Page 2 of 5


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

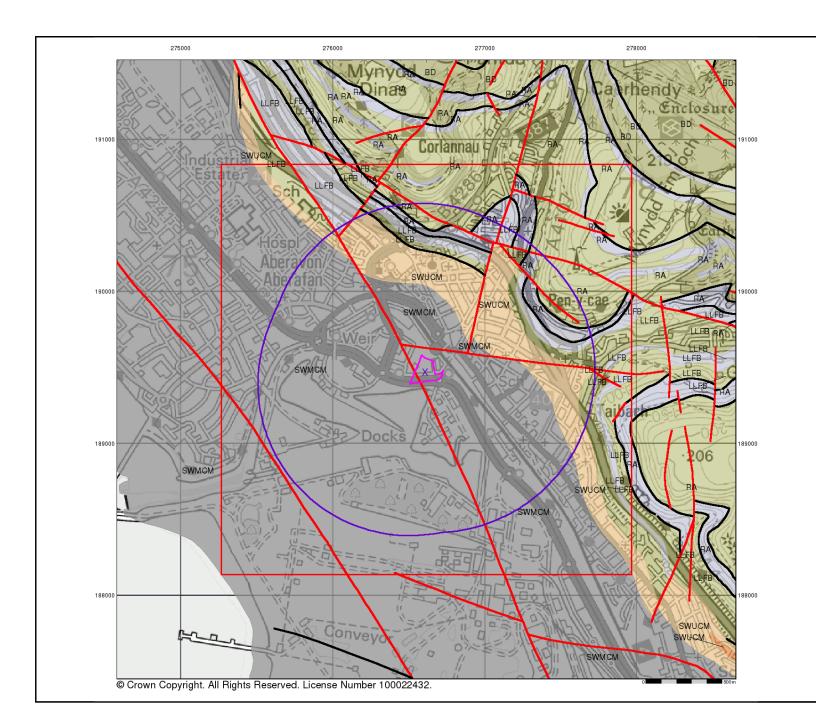
Superficial Geology Map - Slice A

Order Details:

Order Number: Customer Reference: 317152831_1_1 26279 276610, 189470 National Grid Reference: A 2.07

Site Area (Ha): Search Buffer (m): 1000

Site Details:

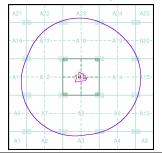

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9952 0844 844 9951

v15.0 20-Sep-2023

Page 3 of 5

Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

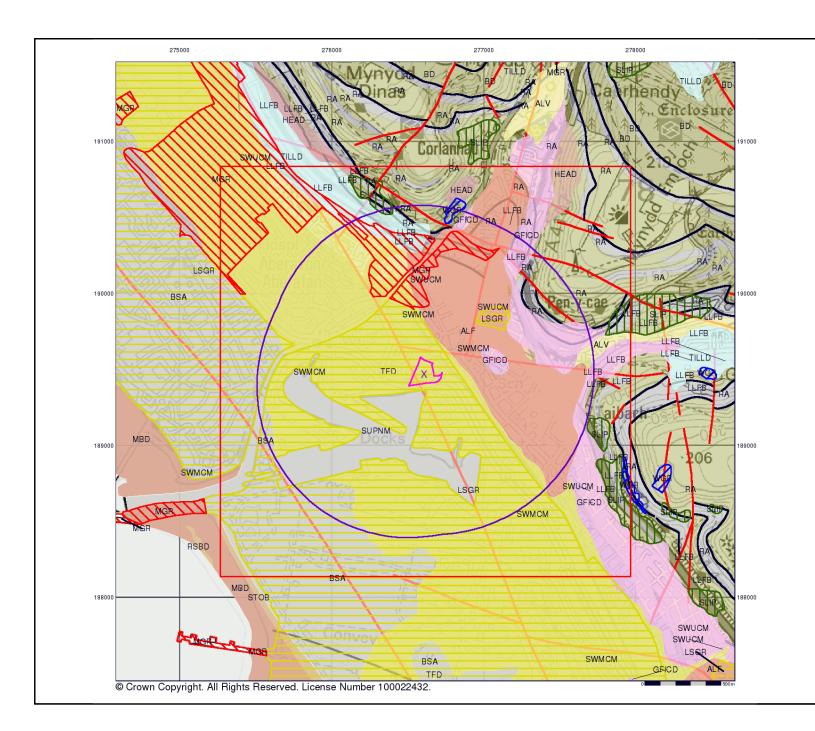
Bedrock and Faults Map - Slice A

Order Details:

Order Number: Customer Reference: 317152831 1 1 26279 276610, 189470 National Grid Reference: A 2.07

Site Area (Ha): Search Buffer (m): 1000

Site Details:


Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

0844 844 9952 0844 844 9951

v15.0 20-Sep-2023

Page 4 of 5

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

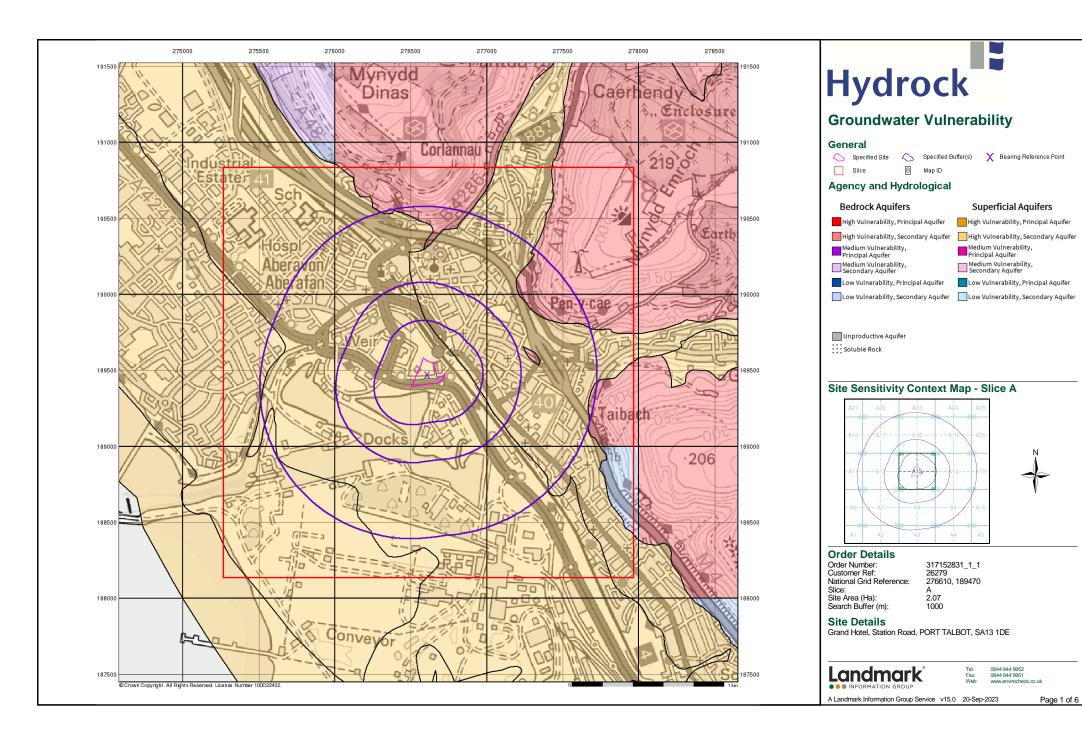
Combined Geology Map - Slice A

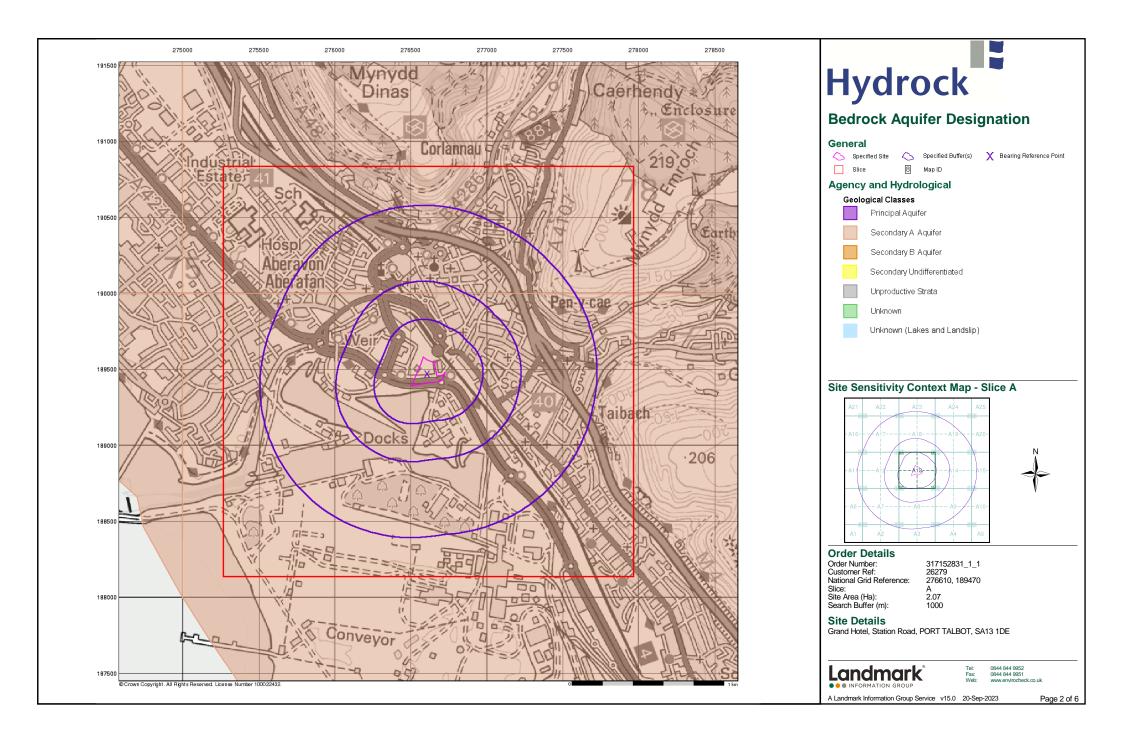
Order Details:

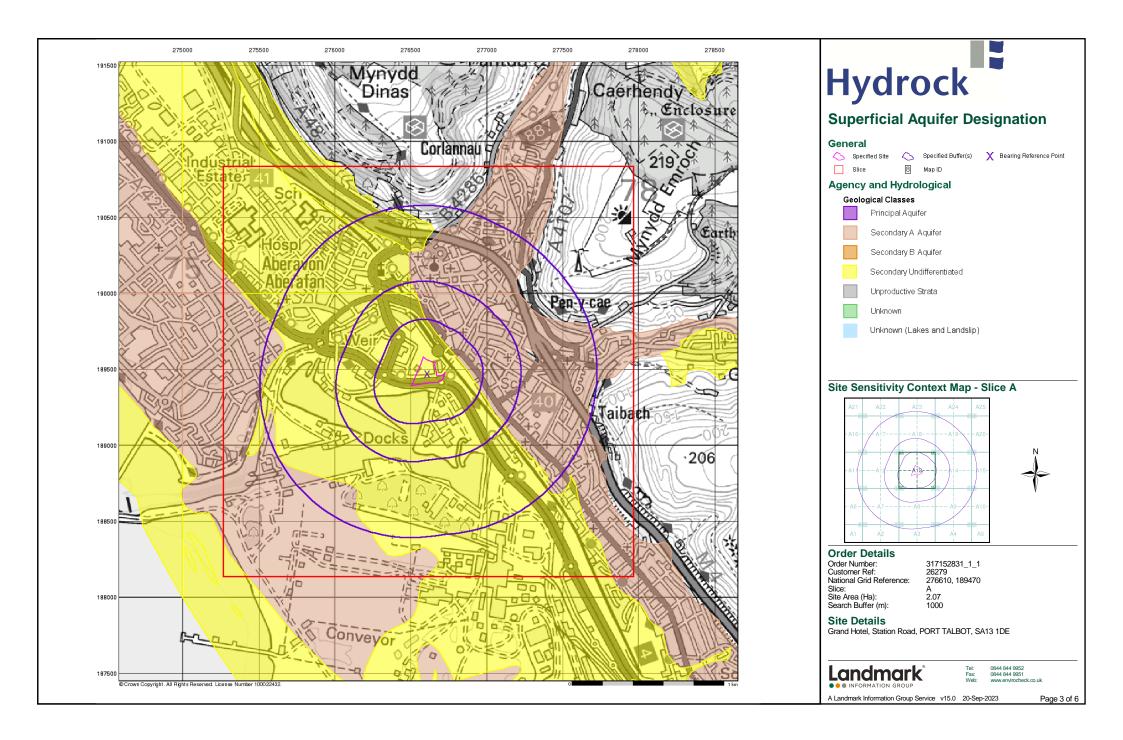
Order Number: Customer Reference: 317152831_1_1 26279 276610, 189470 National Grid Reference: A 2.07 Site Area (Ha): Search Buffer (m):

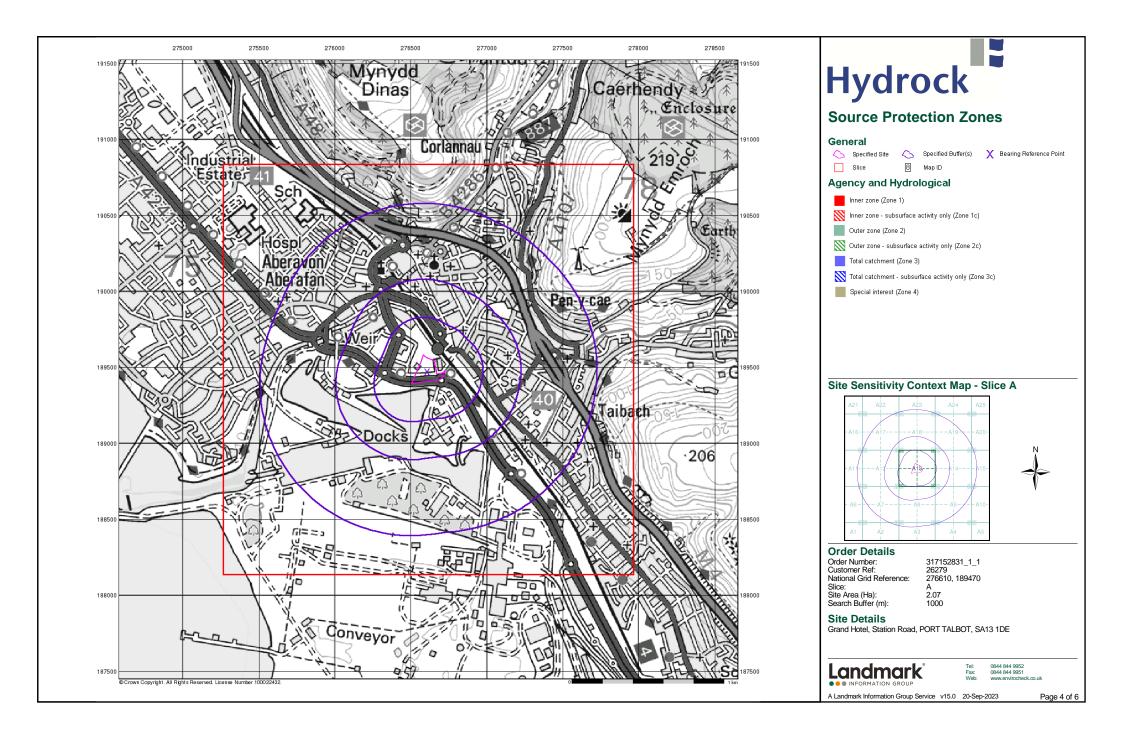
1000

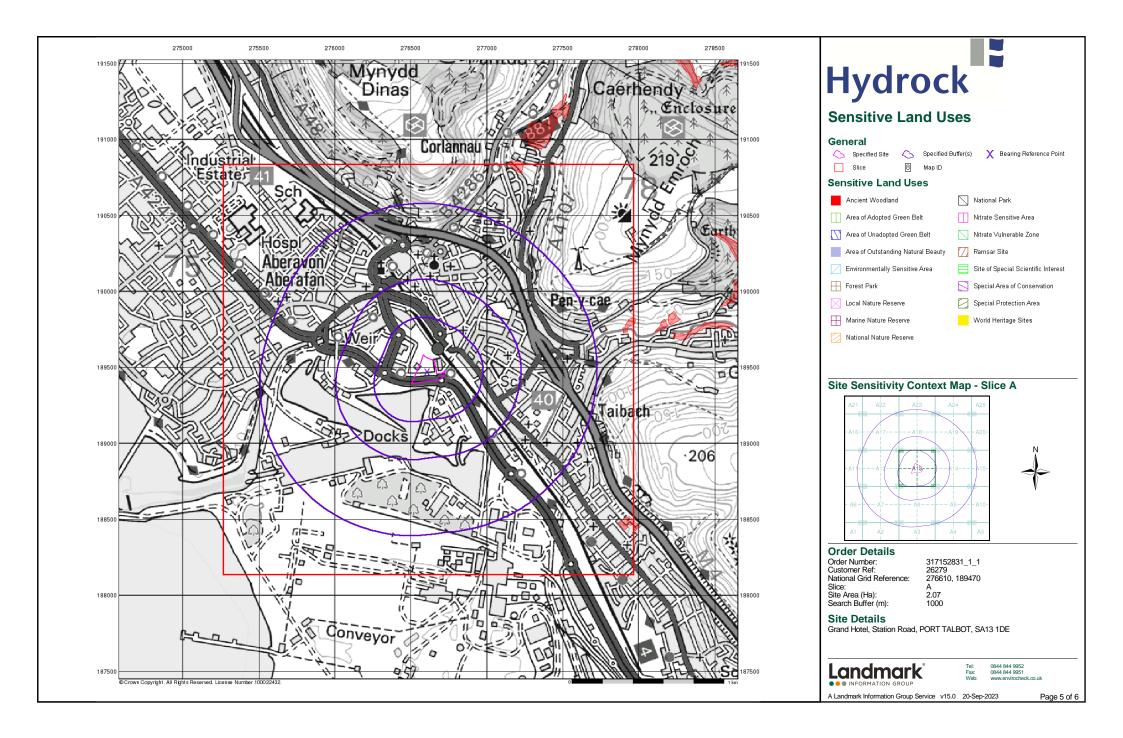
Site Details:

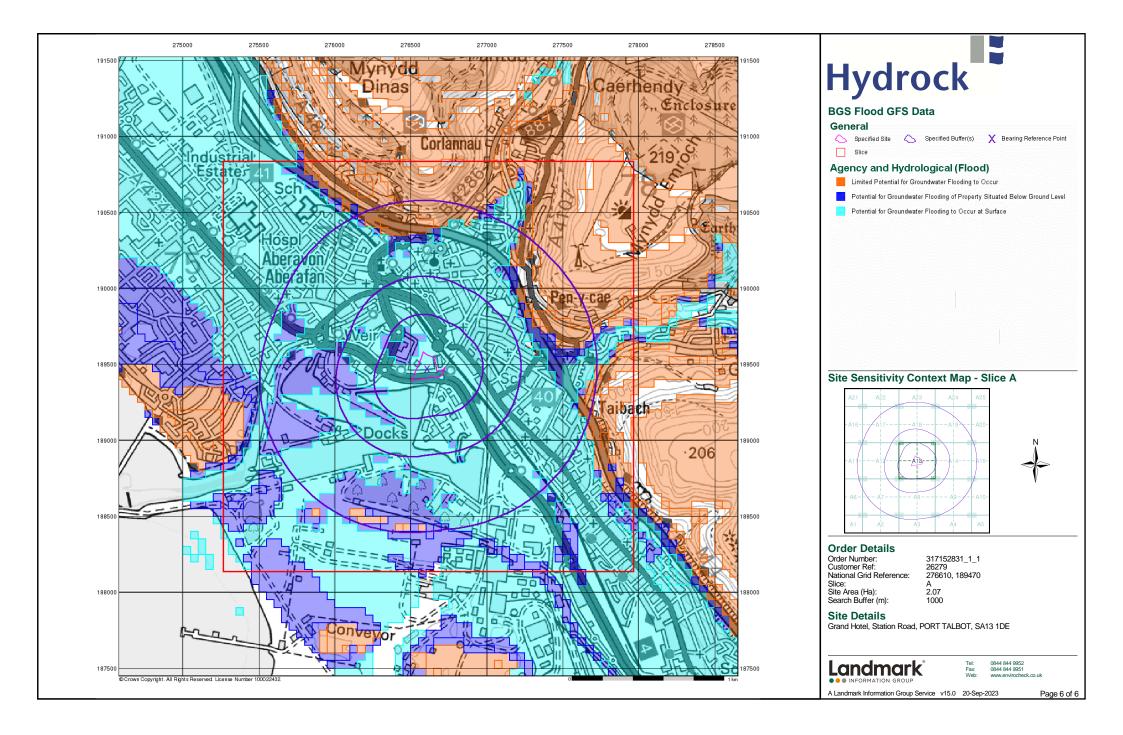

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE




0844 844 9952 0844 844 9951


v15.0 20-Sep-2023


Page 5 of 5



Envirocheck® Report:

Datasheet

Order Details:

Order Number:

317152831_1_1

Customer Reference:

26279

National Grid Reference:

276610, 189470

Slice:

Α

Site Area (Ha):

2.07

Search Buffer (m):

1000

Site Details:

Grand Hotel, Station Road PORT TALBOT SA13 1DE

Client Details:

Mr R Swayne Hydrock Consultants Over Court Barns Over Lane Almondsbury Bristol BS32 4DF

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	54
Hazardous Substances	61
Geological	62
Industrial Land Use	69
Sensitive Land Use	-
Data Currency	97
Data Suppliers	103
Useful Contacts	104

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination.

For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In this datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2023. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environme Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under

Agency/Natural Resolutes waters and Natural England, and mist not be reproduced in whole of in part by protocopying of any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Environment Agency & United Kingdom Research and Innovation 2023. © Natural Resources Wales & United Kingdom Research and Innovation 2023.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Scottish Natural Heritage Copyright

Contains SNH information licensed under the Open Government Licence v3.0.

Ove Arup Copyright Notice

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Stantec Copyright Notice

The cavity data presented has been extracted from the PBA (now Stantec UK Ltd) enhanced version of the original DEFRA national cavity databases. Stantec UK Ltd retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by Stantec UK Ltd. In no event shall Stantec UK Ltd or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Natural Resources Wales Copyright Notice

Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Contains Ordnance Survey Data. Ordnance Survey Licence number 100019741. Crown Copyright and Database Right. Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Some features of this information are based on digital spatial data licensed from the Centre for Ecology & Hydrology © NERC (CEH). Defra, Met Office and DARD Rivers Agency © Crown copyright. © Cranfield University. © James Hutton Institute. Contains OS data © Crown copyright and database right 2023. Land & Property Services © Crown copyright and database right.

Report Version v53.0

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1		6	6	75
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls	pg 23		5		1
Integrated Pollution Prevention And Control	pg 24		1		1
Local Authority Integrated Pollution Prevention And Control	pg 24				1
Local Authority Pollution Prevention and Controls	pg 24		2	1	5
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 25		Yes		
Pollution Incidents to Controlled Waters	pg 25		7		20
Prosecutions Relating to Authorised Processes	pg 30		1	1	
Registered Radioactive Substances					
River Quality	pg 30			1	4
River Quality Biology Sampling Points	pg 31				1
River Quality Chemistry Sampling Points	pg 32				4
Substantiated Pollution Incident Register	pg 35		1	2	2
Water Abstractions	pg 36				27
Water Industry Act Referrals	pg 42				1
Groundwater Vulnerability Map	pg 43	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 43	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 43	Yes	n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences	pg 43	Yes	Yes	n/a	n/a
Flooding from Rivers or Sea without Defences	pg 43	Yes	Yes	n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 48			10	43

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites					
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 54			13	1
Local Authority Landfill Coverage	pg 57	1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites					
Potentially Infilled Land (Non-Water)	pg 57				2
Potentially Infilled Land (Water)	pg 57	1	2	2	29
Registered Landfill Sites					
Registered Waste Transfer Sites	pg 59			3	
Registered Waste Treatment or Disposal Sites	pg 60			1	
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)	pg 61				1
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)	pg 61				1
Planning Hazardous Substance Consents	pg 61				1
Planning Hazardous Substance Enforcements					

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 62	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 62	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites	pg 65				9
BGS Urban Soil Chemistry	pg 67				Yes
BGS Urban Soil Chemistry Averages	pg 67		Yes		
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas	pg 67	Yes	n/a	n/a	n/a
Mining Instability	pg 67	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 67		Yes	n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 68		Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 68	Yes		n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 68		Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 68	Yes		n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 69	2	38	59	68
Fuel Station Entries	pg 83		1		4
Points of Interest - Commercial Services	pg 84		12	19	14
Points of Interest - Education and Health					
Points of Interest - Manufacturing and Production	pg 87		10	11	30
Points of Interest - Public Infrastructure	pg 92		8	6	29
Points of Interest - Recreational and Environmental	pg 95				10
Gas Pipelines					
Underground Electrical Cables					

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A13SW (S)	0	1	276608 189471
		Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (NW)	20	1	276550 189550
	Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SW (SW)	162	1	276350 189350
	BGS Groundwater Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A12NE (NW)	401	1	276200 189700
	BGS Groundwater	Flooding Susceptibility	, ,			
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A18SW (N)	420	1	276608 190000
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A8NE (S)	422	1	276750 189000
	BGS Groundwater	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A7NE (SW)	461	1	276150 189100
	Discharge Consent	s				
1	-	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055729 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A13SW (SW)	8	2	276500 189400
	Discharge Consent					
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055706 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A13SW (S)	106	2	276600 189300
	Discharge Consent	s				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055721 1 18th September 1987 18th September 1987 5th October 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A13SW (S)	106	2	276600 189300

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055707 1 18th September 1987 18th September 1987 16th December 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A13SW (S)	205	2	276600 189200
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055722 1 18th September 1987 18th September 1987 10th September 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A13SW (S)	205	2	276600 189200
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055723 1 18th September 1987 18th September 1987 29th September 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A13SW (S)	205	2	276600 189200
4	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Short Bros (Plant) Ltd, General Construction Work Llewellyn Quay P Talbot Natural Resources Wales River Afan Bp0028901 1 2nd October 1986 2nd October 1986 21st April 1994 Unspecified Not Supplied Soakaway Consent expired Located by supplier to within 10m	A13SE (SE)	251	2	276830 189210

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mechema Chemicals Ltd Basic Industry, Chemicals Inorganic Port Talbot Talbot Wharf Chemical W, Talbot Wharf Chemical Works W.Gl, W.Glam Natural Resources Wales River Afan Bp0096301 1 17th August 1988 17th August 1988 27th June 1994 Unspecified Not Supplied To Land Consent expired Located by supplier to within 100m	A8NE (S)	316	2	276700 189100
6	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales Unknown Bp0055701 1 1st January 1901 1st January 1901 17th September 1987 Unspecified Not Supplied Port Talbot Docks Authorisation revoked Located by supplier to within 100m	A8NW (S)	394	2	276500 189000
7	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055727 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A7NE (SW)	424	2	276200 189100
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Support Services - Sea Transport Tarmac Topmix Site Natural Resources Wales River Afan BP0055730 2 21st January 1993 21st October 1992 14th July 2008 Unspecified Freshwater Stream/River River Ffrwdwyllt (Tidal) Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A8NE (SE)	469	2	276900 189000

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Support Services - Sea Transport Tarmac Topmix Site Natural Resources Wales River Afan Bp0055730 1 18th September 1987 18th September 1987 20th January 1993 Unspecified Not Supplied River Ffrwdwyllt (Tidal) Authorisation revoked Located by supplier to within 100m	A8NE (SE)	469	2	276900 189000
9	-	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055715 1 18th September 1987 18th September 1987 18th November 1987 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8NW (S)	505	2	276400 188900
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Associated British Ports Support Services - Sea Transport Port Talbot Docks - Security B Natural Resources Wales River Afan Bp0055705 1 18th September 1987 18th September 1987 16th December 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A12NE (W)	547	2	276000 189600
11	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Lock Levelling Water Taken From R F, Water Taken From R Ffrwdwyllt Fo, For Port Talbot Docks Natural Resources Wales River Afan Bp0055733 1 18th September 1987 18th September 1987 10th May 1995 Unspecified Not Supplied River Ffrwdwyllt Consent expired Located by supplier to within 100m	A8NE (SE)	560	2	276900 188900

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	s			<u> </u>	
12	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Abbey Bsc Works Natural Resources Wales Not Given BO5081401 1 20th October 1989 20th October 1989 31st March 2004 Unspecified Not Supplied Betsi Lagoon Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A12NE (W)	585	2	276000 189700
	Discharge Consents	S				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Associated British Ports Not Supplied Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales Natural Resources Wales Not Supplied BP0055712 2 21st January 1993 21st October 1992 Not Supplied Not Supplied Controlled Sea Port Talbot Docks Effective Located by supplier to within 100m	A8SW (S)	594	2	276500 188800
40	_		40014	504		070500
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Not Supplied Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales Natural Resources Wales Not Supplied Bp0055712 Not Supplied 21st January 1993 21st October 1992 Not Supplied Not Supplied Controlled Sea Port Talbot Docks Effective Located by supplier to within 100m	A8SW (S)	594	2	276500 188800
	Discharge Consents					
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Associated British Ports Metal Treatment, Bolts, Nuts Etc. Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales Natural Resources Wales River Afan Bp0055712 1 18th September 1987 18th September 1987 20th January 1993 Unspecified Not Supplied Port Talbot Docks Authorisation revoked Located by supplier to within 100m	A8SW (S)	594	2	276500 188800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
13	Discharge Consent Operator: Property Type:	s Associated British Ports Metal Treatment, Bolts, Nuts Etc.	A8SW (S)	594	2	276500 188800
	Location: Authority:	Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales Natural Resources Wales				100000
	Catchment Area: Reference: Permit Version:	River Afan Bp0055714 1				
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge	18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied				
	Environment: Receiving Water: Status: Positional Accuracy:	Port Talbot Docks Consent expired Located by supplier to within 100m				
	Discharge Consent	s				
13	Operator: Property Type: Location:	Associated British Ports Metal Treatment, Bolts, Nuts Etc. Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales Natural Resources Wales	A8SW (S)	594	2	276500 188800
	Authority: Catchment Area: Reference: Permit Version:	River Afan Bp0055725 1				
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge	Date: 18th September 1987 tion Date: 18th November 1992 ge Type: Unspecified ge Not Supplied				
	Environment: Receiving Water: Status:	Port Talbot Docks Consent expired Located by supplier to within 100m				
	Discharge Consent	s				
13	Operator: Property Type: Location:	Associated British Ports Metal Treatment, Bolts, Nuts Etc. Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales	A8SW (S)	594	2	276500 188800
	Authority: Catchment Area: Reference: Permit Version:	Natural Resources Wales River Afan Bp0055726 1				
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge	18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied				
	Environment: Receiving Water: Status:	Port Talbot Docks Consent expired Located by supplier to within 100m				
	Discharge Consent	s				
13	Operator: Property Type: Location:	Associated British Ports Metal Treatment, Bolts, Nuts Etc. Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales	A8SW (S)	594	2	276500 188800
	Authority: Catchment Area: Reference: Permit Version:	Natural Resources Wales River Afan Bp0055731				
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge	18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied				
	Environment: Receiving Water: Status:	Port Talbot Docks Consent expired Located by supplier to within 100m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
13	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Metal Treatment, Bolts, Nuts Etc. Metal Mend Ltd Port Talbot Docks, Porta Talbot Docks, Neath Port Talbot, Wales Natural Resources Wales River Afan Bp0055732 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SW (S)	594	2	276500 188800
14	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Not Supplied John Nicholas Timber Site Natural Resources Wales Not Supplied BP0055713 2 21st January 1993 21st October 1992 Not Supplied Not Supplied Not Supplied Freshwater Stream/River Port Talbot Docks Effective Located by supplier to within 100m	A8SW (S)	603	2	276400 188800
14	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Not Supplied John Nicholas Timber Site Natural Resources Wales Not Supplied Bp0055713 Not Supplied 21st January 1993 21st October 1992 Not Supplied Not Supplied Freshwater Stream/River Port Talbot Docks Effective Located by supplier to within 100m	A8SW (S)	603	2	276400 188800
14	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Support Services - Sea Transport John Nicholas Timber Site Natural Resources Wales River Afan Bp0055713 1 18th September 1987 18th September 1987 20th January 1993 Unspecified Not Supplied Port Talbot Docks Authorisation revoked Located by supplier to within 100m	A8SW (S)	603	2	276400 188800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
15	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Not Supplied Talbot Wharf, The Docks, Port Talbot, Neath Port Talbot, Sa13 1re Natural Resources Wales Not Supplied Bm0033601 2 26th November 2012 26th November 2012 Not Supplied Not Supplied Into Land Groundwater Via Infiltration System Effective Located by supplier to within 10m	A7NE (SW)	614	2	275990 189060
15	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Not Supplied Talbot Wharf, The Docks, Port Talbot, Neath Port Talbot, Sa13 1re Natural Resources Wales Not Supplied Bm0033601 Not Supplied 26th November 2012 26th November 2012 Not Supplied Not Supplied Into Land Groundwater Via Infiltration System Effective Located by supplier to within 10m	A7NE (SW)	614	2	275990 189060
15	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Support Services - Sea Transport Talbot Wharf, The Docks, Port Talbot, Neath Port Talbot, Sa13 1re Natural Resources Wales Not Given BM0033601 1 17th November 1983 17th November 1983 25th November 2012 Unspecified Land/Soakaway To Underground Strata New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A7NE (SW)	614	2	275990 189060
16	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks - Overflow F Natural Resources Wales River Afan Bp0055728 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A12NE (NW)	624	2	276000 189800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
17	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: This consent of the consent	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso 126, Moors St Culvert, 20m Upstream Of Bridge, Afan Way, Port Talbot, Sa12 6nr Natural Resources Wales Not Supplied Bp0240201 Not Supplied 16th December 2021 16th December 2021 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Afon Afan Effective Located by supplier to within 10m	A12NW (W)	649	2	275937 189716
17	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso No 126 Moors St Culvert Afan, Moors Street Culvert, Neath Port Talbot Cbc Natural Resources Wales AFAN ESTUARY INCL DOCKS Bp0240201 2 12th March 2003 11th March 2003 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River The Afon Afan Effective Located by supplier to within 10m	A12NW (W)	649	2	275937 189716
17	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso No 126 Moors St Culvert Afan, Moors Street Culvert, Neath Port Talbot Cbc Natural Resources Wales AFAN ESTUARY INCL DOCKS Bp0240201 2 12th March 2003 11th March 2003 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River The Afon Afan Effective Located by supplier to within 10m	A12NW (W)	649	2	275937 189716
18	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries Pt Talbot Wks Blast F'Ces Gas Wash, Blast F'Ces Gas Wash Water-Aba Natural Resources Wales River Afan Ba2020101 1 28th August 1965 28th August 1965 22nd January 1992 Unspecified Not Supplied Ffrwdwyllt Consent expired Located by supplier to within 10m	A9NW (SE)	652	2	277100 188910

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
19	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Moors Culvert 30 Metres U/S Road Br, 30 Metres U/S Road Bridge Abera, Aberavon Natural Resources Wales Not Given BP0240201 1 21st July 1994 21st July 1994 21st July 1994 11th March 2003 Unspecified Not Supplied River Afan New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A12NE (NW)	666	2	275950 189790
20	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Phoenix Wharf Surface Water Port, Port Talbot Natural Resources Wales River Afan Bp0043001 2 7th July 1987 7th July 1987 31st October 1995 Unspecified Not Supplied Phoenix Wharf Docks Consent expired Located by supplier to within 100m	A8SW (S)	700	2	276600 188700
20	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Phoenix Wharf Surface Water Port, Port Talbot Natural Resources Wales River Afan Bp0043001 1 1st January 1901 1st January 1901 6th July 1987 Unspecified Not Supplied Phoenix Wharf Docks Authorisation revoked Located by supplier to within 100m	A8SW (S)	700	2	276600 188700
21	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewage Disposal Works - Water Company Afan Wwtw Phoenix Wharf Harbour Rd, Port Talbot Natural Resources Wales Not Supplied Bp028760101 1 1st December 2000 1st December 2000 Not Supplied Sewage Discharges - Unspecified - Water Company Controlled Sea Swansea Bay New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Manually positioned within the geographical locality	A8SE (S)	704	2	276690 188709

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
21	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries Oil Tank Farm Bsc Por Natural Resources Wales River Afan Bp0059205 1 16th September 1987 16th September 1987 30th June 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SE (S)	715	2	276700 188700
22	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Isaacs Pice Sjc Port T Natural Resources Wales River Afan Bb4025506 1 19th July 1978 19th July 1978 14th March 1994 Unspecified Freshwater Stream/River Unnamed Consent expired Located by supplier to within 10m	A12NW (W)	712	2	275850 189670
23	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries No 3 Blast Furnace Port Talbot Work, Port Talbot Works Port Talbot Natural Resources Wales Not Given Ba2020002 1 1st January 1950 16th June 1994 20th September 1995 Trade Effluent Not Supplied The Culverted River Ffrwdwyllt Consent expired Located by supplier to within 100m	A9NW (SE)	718	2	277130 188850
23	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries No 3 Blast Furnace Port Talbot Work, Port Talbot Works Port Talbot Natural Resources Wales River Afan Ba2020001 1 28th August 1963 28th August 1963 9th June 1994 Trade Effluent Not Supplied Ffrwdwyllt Consent expired Located by supplier to within 10m	A9NW (SE)	718	2	277130 188850

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
24	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055716 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A7SE (SW)	719	2	276100 188800
25	_	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Water St.Cjc Port Talb Natural Resources Wales AFAN ESTUARY INCL DOCKS BB4025505 1 19th July 1978 19th July 1978 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Unnamed Surrendered Located by supplier to within 100m	A12NW (W)	789	2	275760 189650
25	-	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Water St.Cjc Port Talb Natural Resources Wales AFAN ESTUARY INCL DOCKS Bb4025505 1 19th July 1978 19th July 1978 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Tawe Surrendered Located by supplier to within 10m	A12NW (W)	789	2	275760 189650
25	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Henshaw St.Sjc. Port T Natural Resources Wales River Afan BB4025504 1 19th July 1978 19th July 1978 31st March 2004 Unspecified Freshwater Stream/River Unnamed Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A12NW (W)	808	2	275740 189650

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
26	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo.North St.Footbridge Pt.Tal Natural Resources Wales River Afan Bw0203101 1 27th October 1952 27th October 1952 14th March 1994 Unspecified Not Supplied River Ffrwdwyllt Consent expired Located by supplier to within 10m	A14SE (E)	814	2	277510 189270
27		Dwr Cymru Cyfyngedig Sewage Disposal Works Glandyrrryn Close Cso Port Talbot, Opp 28, Conduit Place (Across Heol Carodog), Taibach, Port Talbot, Sa13 2tt Natural Resources Wales Not Supplied Bp0359301 Not Supplied 17th December 2019 17th December 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Ffrwd Wyllt Effective Located by supplier to within 10m	A14SE (E)	820	2	277533 189351
27	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewage Disposal Works Glandyrrryn Close Cso Port Talbot, Glandyffryn Close Cso, Neath Port Talbot Wales, Sa13 2ub Natural Resources Wales FFRWD WYLLT - HEADWATERS TO TIDAL LIMIT Bp0359301 1 28th February 2007 28th February 2007 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Ffrwd Wyllt Effective Located by supplier to within 10m	A14SE (E)	820	2	277533 189351
27	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewage Disposal Works Glandyrrryn Close Cso Port Talbot, Glandyffryn Close Cso, Neath Port Talbot Wales, Sa13 2ub Natural Resources Wales FFRWD WYLLT - HEADWATERS TO TIDAL LIMIT Bp0359301 1 28th February 2007 28th February 2007 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Ffrwd Wyllt Effective Located by supplier to within 10m	A14SE (E)	820	2	277533 189351

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
28	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055709 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SE (S)	824	2	276800 188600
28	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055710 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SE (S)	824	2	276800 188600
28	-	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055711 1 18th September 1987 18th September 1987 18th November 1982 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SE (S)	824	2	276800 188600
28	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks Natural Resources Wales River Afan Bp0055724 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SE (S)	824	2	276800 188600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
29	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries Power Plants 12 & 12a (Cooling Wate, (Cooling Water) Natural Resources Wales River Afan Bp0059206 2 5th March 1993 5th December 1992 9th February 1999 Unspecified Not Supplied Port Talbot Dock Revoked and replaced by IPC Authorisation Located by supplier to within 100m	A8SE (S)	845	2	276900 188600
29	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Britsh Steel Plc Iron & Steel Industries Power Plants 12 & 12a (Cooling Wate, (Cooling Water) Natural Resources Wales River Afan Bp0059206 2 5th March 1993 5th December 1992 9th February 1999 Unspecified Not Supplied Port Talbot Dock Revoked and replaced by IPC Authorisation Located by supplier to within 100m	A8SE (S)	845	2	276900 188600
29	,	British Steel Plc (Tinplate) Iron & Steel Industries Power Plants 12 & 12a (Cooling Wate, (Cooling Water) Natural Resources Wales River Afan Bp0059204 2 5th March 1993 5th December 1992 20th September 1995 Unspecified Not Supplied Port Talbot Dock Consent expired Located by supplier to within 100m	A8SE (S)	845	2	276900 188600
29	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Iron & Steel Industries Power Plants 12 & 12a (Cooling Wate, (Cooling Water) Natural Resources Wales River Afan Bp0055708 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A8SE (S)	845	2	276900 188600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
29	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries Power Plants 12 & 12a (Cooling Wate, (Cooling Water) Natural Resources Wales River Afan Bp0059204 1 16th September 1987 16th September 1987 4th March 1993 Unspecified Not Supplied Port Talbot Dock Authorisation revoked Located by supplier to within 100m	A8SE (S)	845	2	276900 188600
30	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Afan St Cso, End Of Afan St, Port Talbot, Sa13 1ax Natural Resources Wales Not Supplied Bp0304101 Not Supplied 21st August 2019 21st August 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Afon Afan Effective Located by supplier to within 10m	A18NE (N)	846	2	276810 190395
30	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso 136 Afan Street Velindre Afan, Afan Street, Velindre Natural Resources Wales AFAN - CONFLUENCE WITH PELENNA TO TIDAL LIMIT Bp0304101 1 29th January 2003 29th January 2003 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River The Afon Afan Effective Located by supplier to within 10m	A18NE (N)	846	2	276810 190395
30	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso 136 Afan Street Velindre Afan, Afan Street, Velindre Natural Resources Wales AFAN - CONFLUENCE WITH PELENNA TO TIDAL LIMIT Bp0304101 1 29th January 2003 29th January 2003 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River The Afon Afan Effective Located by supplier to within 10m	A18NE (N)	846	2	276810 190395

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
31	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Recreational & Cultural Sea Cadets Club Site Port Talbot Do, Port Talbot Docks Natural Resources Wales AFAN ESTUARY INCL DOCKS BP0055704 2 21st January 1993 21st October 1992 Not Supplied Not Supplied Freshwater Stream/River Port Talbot Docks Effective Located by supplier to within 100m	A7NW (SW)	861	2	275800 188900
31	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Recreational & Cultural Sea Cadets Club Site Port Talbot Do, Port Talbot Docks Natural Resources Wales Not Supplied Bp0055704 Not Supplied 21st January 1993 21st October 1992 Not Supplied Not Supplied Freshwater Stream/River Port Talbot Docks Effective Located by supplier to within 100m	A7NW (SW)	861	2	275800 188900
31	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Recreational & Cultural Sea Cadets Club Site Port Talbot Do, Port Talbot Docks Natural Resources Wales River Afan Bp0055704 1 18th September 1987 18th September 1987 20th January 1993 Unspecified Not Supplied Port Talbot Docks Authorisation revoked Located by supplier to within 100m	A7NW (SW)	861	2	275800 188900
32	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	British Steel Plc (Tinplate) Iron & Steel Industries No12ax Power Plt To D'K Natural Resources Wales River Afan Bp0059207 1 16th September 1987 16th September 1987 28th March 1994 Trade Effluent Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A9SW (SE)	876	2	277000 188600

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
33	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso At O/S 54 Ynys Street, Velindre, Port Talbot, Sa13 1yw Natural Resources Wales Not Supplied Bp0322001 Not Supplied 7th October 2019 7th October 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Afan Effective Located by supplier to within 10m	A19NW (NE)	880	2	277128 190288
33	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company O/S 54 Ynys Street, Port Talbot, Neath Port Talbot, Neath Port Talbot Natural Resources Wales AFAN - CONFLUENCE WITH PELENNA TO TIDAL LIMIT Bp0322001 1 31st March 2009 7th March 2005 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Afan Effective Located by supplier to within 10m	A19NW (NE)	881	2	277121 190293
33	,	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company O/S 54 Ynys Street, Port Talbot, Neath Port Talbot, Neath Port Talbot Natural Resources Wales AFAN - CONFLUENCE WITH PELENNA TO TIDAL LIMIT Bp0322001 1 31st March 2009 7th March 2005 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Afan Effective Located by supplier to within 10m	A19NW (NE)	881	2	277121 190293
34	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Britsh Steel Plc Iron & Steel Industries Power Plants 12 & 12a (Cooling Wate, (Cooling Water) Natural Resources Wales River Afan Bp0059206 1 16th September 1987 16th September 1987 4th March 1993 Unspecified Not Supplied Port Talbot Dock Authorisation revoked Located by supplier to within 100m	A14SE (E)	880	2	277600 189400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	S				
35	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Pumping Staions Cso 104, Newbridge Road Pumping Station, Off Victoria Road, Aberavon, Por Talbot, Sa12 6dg Natural Resources Wales Not Supplied Bb4025501 Not Supplied 11th August 2022 11th August 2022 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Saline Estuary River Afan Effective Located by supplier to within 10m	A12NW (W)	898	2	275632 189598
	Discharge Consents	s				
35	_	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso 104 Newbridge Road Pumping Stat, Newbridge Road Pumping Station, Port Talbot, Neath Port Talbot Cbc Natural Resources Wales Not Supplied Bb4025501 2 1st April 2004 31st March 2004 Not Supplied Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River River Tawe Effective Located by supplier to within 10m	A12NW (W)	898	2	275632 189598
	Discharge Consents					
35		Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso 104 Newbridge Road Pumping Stat, Newbridge Road Pumping Station, Port Talbot, Neath Port Talbot Cbc Natural Resources Wales Not Supplied Bb4025501 2 1st April 2004 31st March 2004 Not Supplied Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River River Tawe Effective Located by supplier to within 10m	A12NW (W)	898	2	275632 189598
	Discharge Consents	S				
36	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Taibach Tan Y Groes Road Bridgend Natural Resources Wales Not Given BP0240101 1 21st July 1994 21st July 1994 31st March 2003 Unspecified Not Supplied Ffwdwyllt Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A15NW (E)	908	2	277630 189540

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
37	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Westbury Homes (Wales) Ltd Domestic Property (Multiple) Port Talbot Residentiol Development, Newbridge Road Natural Resources Wales River Afan Bp0105101 2 3rd November 1988 3rd November 1988 29th September 1992 Unspecified Not Supplied River Afan Consent expired Located by supplier to within 100m	A11NE (W)	912	2	275600 189500
37	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Westbury Homes (Wales) Ltd Domestic Property (Multiple) Port Talbot Residentiol Development, Newbridge Road Natural Resources Wales River Afan Bp0105101 1 1st January 1901 1st January 1901 2nd November 1988 Unspecified Not Supplied River Afan Authorisation revoked Located by supplier to within 100m	A11NE (W)	912	2	275600 189500
37	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Gasworks Sewer Junction Chamber Po, Chamber Port Talbot Natural Resources Wales Not Supplied BB4025503 1 19th July 1978 19th July 1978 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Unnamed Surrendered Located by supplier to within 100m	A11NE (W)	920	2	275600 189550
37	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Gasworks Sewer Junction Chamber Po, Chamber Port Talbot Natural Resources Wales Not Supplied Bb4025503 1 19th July 1978 19th July 1978 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Tawe Surrendered Located by supplier to within 10m	A11NE (W)	920	2	275600 189550

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
38	Discharge Consent Operator: Property Type: Location:	s Associated British Ports Recreational & Cultural Sea Cadets Club Site Port Talbot, Port Talbot Docks, Neath Port Talbot,	A7SW (SW)	922	2	275800 188800
	Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Sa13 1ra Natural Resources Wales AFAN ESTUARY INCL DOCKS BP0055703 2 21st January 1993 21st October 1992 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Port Talbot Docks Effective Located by supplier to within 100m				
	Discharge Consent	· · · ·				
38	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Recreational & Cultural Sea Cadets Club Site Port Talbot, Port Talbot Docks, Neath Port Talbot, Sa13 1ra Natural Resources Wales Not Supplied Bp0055703 Not Supplied 21st January 1993 21st October 1992 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Port Talbot Docks Effective Located by supplier to within 100m	A7SW (SW)	922	2	275800 188800
38	Discharge Consent Operator:	s Associated British Ports	A7SW	922	2	275800
	Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Recreational & Cultural Sea Cadets Club Site Port Talbot, Port Talbot Docks, Neath Port Talbot, Sa13 1ra Natural Resources Wales River Afan Bp0055703 1 18th September 1987 18th September 1987 20th January 1993 Unspecified Not Supplied Port Talbot Docks Authorisation revoked Located by supplier to within 100m	(SW)		-	188800
	Discharge Consent					
38	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Recreational & Cultural Sea Cadets Club Site Port Talbot, Port Talbot Docks, Neath Port Talbot, Sa13 1ra Natural Resources Wales River Afan Bp0055717 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A7SW (SW)	922	2	275800 188800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
39	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Basic Industry, Chemicals Inorganic Abp Sewer Ref No R2 Natural Resources Wales River Afan Bp0055718 1 18th September 1987 17th August 1987 31st October 1991 Unspecified Not Supplied Port Talbot Docks Authorisation revoked Located by supplier to within 100m	A11SE (W)	927	2	275600 189200
39		Mechema Chemicals Ltd Undefined Or Other Port Talbot Talbot Wharf Chemical W, Talbot Wharf Chemical Works West, West Glam Natural Resources Wales River Afan Bm0044501 1 30th January 1985 30th January 1985 30th June 1992 Sewerage System Discharge Not Supplied River Afan Consent expired Located by supplier to within 10m	A11SE (W)	966	2	275560 189200
40	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Associated British Ports Undefined Or Other Port Talbot Docks - Dry Dock Natural Resources Wales River Afan Bp0055734 1 18th September 1987 18th September 1987 18th November 1992 Unspecified Not Supplied Port Talbot Docks Consent expired Located by supplier to within 100m	A6NE (W)	952	2	275600 189100
41	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company S'Dfields Sewer J'Ction Chambe Port, Port Talbot Natural Resources Wales River Afan BB4025502 1 19th July 1978 31st March 2004 Unspecified Freshwater Stream/River Unnamed Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A11SE (W)	1000	2	275510 189310

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Integrated Pollution	Controls				
42	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Multiserv (Asr) Ltd British Steel Strip Products, Port Talbot Works, PORT TALBOT, West Glamorgan, SA13 1RE Environment Agency, Welsh Region BE7699 21st December 1998 IPC minor (non-substantial) variation to previous variation 2.1 A (B) Iron and Steel processes within the Metal Industry Authorisation superseded by a substantial or non substantial variation Automatically positioned to the address	A13SW (W)	126	3	276398 189462
	Integrated Pollution					
43	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Cambrian Stone Ltd CAMBRIAN STONE LTD, PO Box 12, PORT TALBOT, West Glamorgan, SA12 6RL Environment Agency, Welsh Region BE2069 24th November 1998 IPC minor (non-substantial) variation to previous variation 2.1 A (C) Iron and Steel processes within the Metal Industry Revoked - Now IPPC Automatically positioned to the address	A13NE (NE)	233	3	276864 189667
	Integrated Pollution	Controls				
43	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Cambrian Stone Ltd CAMBRIAN STONE LTD, PO Box 12, PORT TALBOT, West Glamorgan, SA12 6RL Environment Agency, Welsh Region BA1346 27th February 1998 IPC minor (non-substantial) variation to previous variation 2.1 A (C) Iron and Steel processes within the Metal Industry Authorisation superseded by a substantial or non substantial variation Automatically positioned to the address	A13NE (NE)	233	3	276864 189667
	Integrated Pollution	Controls				
43	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Cambrian Stone Ltd CAMBRIAN STONE LTD, PO Box 12, PORT TALBOT, West Glamorgan, SA12 6RL Environment Agency, Welsh Region AW8084 22nd January 1997 IPC major (substantial) variation 2.1 A (C) Iron and Steel processes within the Metal Industry Authorisation superseded by a substantial or non substantial variation Automatically positioned to the address	A13NE (NE)	233	3	276864 189667
	Integrated Pollution	··				
43	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Cambrian Stone Ltd CAMBRIAN STONE LTD, PO Box 12, PORT TALBOT, West Glamorgan, SA12 6RL Environment Agency, Welsh Region AQ9936 24th July 1995 IPC application for process that was regulated by HMIP for air releases under previous legislation 2.1 A (C) Iron and Steel processes within the Metal Industry Authorisation superseded by a substantial or non substantial variation Automatically positioned to the address	A13NE (NE)	233	3	276864 189667
	Integrated Pollution	Controls				
44	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Bitmac Ltd Phoenix Wharf, Port Talbot Dock, South Side, PORT TALBOT, West Glamorgan, SA13 1RA Environment Agency, Welsh Region BH2952 29th October 1999 IPC new application 1.2 A (B) Carbonisation and associated processes within the Fuel & Power Industry Application has met the requirements for authorisation (but not yet authorised) Manually positioned within the geographical locality	A8SE (S)	714	3	276675 188697

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
45	Name: Location: Authority: Permit Reference: Original Permit Ref: Effective Date: Status: Application Type: App. Sub Type: Positional Accuracy: Activity Code:	Prevention And Control Cambrian Stone Limited Port Talbot Steel Works, Port Talbot, West Glamorgan, SA12 6RL Natural Resources Wales Bx0873ik B15636if 7th December 2003 Superseded By Variation Variation Minor Automatically positioned to the address 3.5 B (A) Other Mineral Activities; Any Processing With Release Of Particulates Into Air (Unless A(1) Or A(2)), (Except Stone Ecutting)	A13NE (NE)	233	2	276864 189667
46	Name: Location: Authority: Permit Reference: Original Permit Ref: Effective Date: Status: Application Type: App. Sub Type: Positional Accuracy: Activity Code:	Not Supplied Valid Application New Located by supplier to within 10m 1.1 A(1) (A) Combustion; Any Fuel Greater Or Equal To 50Mw Y 0.0 Associated Process	A8SE (S)	789	3	276670 188620
47	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	egrated Pollution Prevention And Control Civil & Marine Slag Cement Ltd Rio Tinto Wharf, Port Talbot Docks, Port Talbot, Sa13 1ra Neath Port Talbot County Borough Council, Environmental Health Department E3/1/102 Not Supplied Mineral Industries SG6 Permit Issued Located by supplier to within 10m	A7NE (SW)	611	4	276274 188828
48	Local Authority Poll Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Ilution Prevention and Controls Civil & Marine Slag Cement Ltd Rio Tinto Wharf, Docks Road, The Docks, PORT TALBOT, West Glamorgan, SA13 1RA Neath Port Talbot County Borough Council, Environmental Health Department E3/1/86 29th June 1999 Local Authority Air Pollution Control PG3/8 Quarry processes including roadstone plants and the size reduction of bricks, tiles and concrete Authorised Authorised Automatically positioned to the address	A13SW (SW)	28	4	276479 189385
49	Local Authority Poli Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Ilution Prevention and Controls Blakemore Retail Ltd Talbot Road, PORT TALBOT, West Glamorgan, SA13 1HN Neath Port Talbot County Borough Council, Environmental Health Department E3/1/71 26th February 1999 Local Authority Pollution Prevention and Control PG1/14 Petrol filling station Permitted Automatically positioned to the address	A13NE (E)	122	4	276821 189553
50	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Rhino Engineering Ltd Cramic House, Cramic Way, Port Talbot, Sa13 1ru Neath Port Talbot County Borough Council, Environmental Health Department E3/1/116 24th May 2006 Local Authority Air Pollution Control PG1/1/Waste oil burners, less than 0.4MW net rated thermal input Authorised Manually positioned to the address or location	A18SW (NW)	307	4	276436 189849

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
51	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	John Nicholas & Sons Ltd Docks Road, PORT TALBOT, West Glamorgan, SA13 1RS Neath Port Talbot County Borough Council, Environmental Health Department Not Given Not Supplied Local Authority Air Pollution Control PG3/18lending, packing, loading and use of bulk cement Authorisation revoked Manually positioned to the address or location	A12SW (W)	603	4	275907 189465
	Local Authority Poll	lution Prevention and Controls				
51	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	RMC Readymix Wales & Midlands Docks Road, PORT TALBOT, West Glamorgan, SA13 1RS Neath Port Talbot County Borough Council, Environmental Health Department e3/1/7 19th May 1994 Local Authority Air Pollution Control PG3/1Blending, packing, loading and use of bulk cement Authorisation has varied Manually positioned to the address or location	A12SW (W)	608	4	275902 189465
	Local Authority Poll	lution Prevention and Controls				
52	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Civil & Marine Ltd Rio Tinto Wharf, Port Talbot Docks, PORT TALBOT, SA13 1RA Neath Port Talbot County Borough Council, Environmental Health Department E3/1/102 3rd July 2003 Local Authority Air Pollution Control PG3/18lending, packing, loading and use of bulk cement Transferred to LAIPPC Located by supplier to within 10m	A7NE (SW)	611	4	276274 188828
	Local Authority Poll	lution Prevention and Controls				
53	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Afan Way Services Limited Afan Way, PORT TALBOT, West Glamorgan, SA12 6NR Neath Port Talbot County Borough Council, Environmental Health Department E3/1/83 8th April 1999 Local Authority Air Pollution Control PG1/14 Petrol filling station Authorised Manually positioned to the address or location	A17SE (NW)	670	4	275963 189833
	Local Authority Poll	lution Prevention and Controls				
54	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Tesco Stores Limited Aberafan Centre, Prior Street, PORT TALBOT, West Glamorgan, SA13 1PB Neath Port Talbot County Borough Council, Environmental Health Department E3/1/66 8th April 1998 Local Authority Air Pollution Control PG1/14 Petrol filling station Authorised Manually positioned to the address or location	A18NE (N)	747	4	276703 190317
	Nearest Surface Wa	ter Feature	A13SW	49	<u>-</u>	276605
			(S)	טד -	-	189354
55	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Industrial Premises Llewelyn Quay, PORT TALBOT Environment Agency, Welsh Region Sewage - Septic Tank Effluent Inadequate Design/Capacity 7th May 1991 4265 Not Given Not Given Runoff Category 3 - Minor Incident Located by supplier to within 100m	A13SE (SE)	22	3	276700 189400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
56	Pollution Incidents to Controlled Waters Property Type: Location: Authority: Pollutant: Incident Date: Incident Reference: Catchment Area: Receiving Water: Location Description Not Environment Agency, V Maritime Ponds; Leaka 29th October 1997 34375 Not Given Not Given Not Given Not Given Accidental Spillage/Leac Located by supplier to Not Cause of Incident: Located by supplier to Not Located Date: Located	/elsh Region ge kage ent	A13NE (E)	32	3	276700 189500
57	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Crannick Way, PORT To Crenoste Pollutant: Creosote Incident Date: 19th July 1997 Incident Reference: Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Located by supplier to the Coate of Incident Not Given Located by supplier to the Coate of Incident: Located by supplier to the Coate of Incident Not Given Located by supplier to the Coate of Incident Not Given Located by supplier to the Coate of Incident Not Given Located by supplier to the Coate of Incident Not Given Located by supplier to the Coate of Incident Not Given Located by supplier to the Coate of Incident Not Given Located by Supplier to the Coate of Incident Not Given Located Date Of Canada Not Given Located Not Given Locate	/elsh Region	A13NE (NE)	75	3	276750 189550
58	Pollution Incidents to Controlled Waters Property Type: Warehouses Location: Location Description Note: Environment Agency, Volume Note: Neglect Incident Date: 22nd September 1994 Incident Area: Not Given Not Given Not Given Not Given Cause of Incident: Leakage Incident Severity: Positional Accuracy: Located by supplier to Note Note Note Note Note Note Note N	elsh Region	A13SW (S)	106	3	276600 189300
58	Pollution Incidents to Controlled Waters Property Type: Location: Llewelyns Quay, 400M Authority: Pollutant: Note: Port Talbot Dock; Spilla Incident Date: Locathment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Not Given Not Given Not Given Not Given Cause of Incident: Located by supplier to the control of the	Agricultural) ge acity lent	A13SW (S)	107	3	276605 189300
58	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Llewellyns Dock Authority: Environment Agency, V Pollutant: Oils - Diesel (Including Note: Port Talbot Dock; Spilla Incident Date: 28th March 1998 Incident Reference: Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Located by supplier to the control of the control o	Agricultural) ge acity lent	A13SW (S)	111	3	276600 189295
58	Pollution Incidents to Controlled Waters Property Type: Location: Authority: Pollutant: Incident Date: Incident Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Property Type: Not Given Not Given Not Given Not Given Inadequate Design/Cap Category 3 - Minor Incident of Not Given Located by supplier to Note of	Agricultural) ge acity lent	A13SW (S)	112	3	276605 189295

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
59	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Weir Near, Dock Feeder Authority: Environment Agency, Welsh Region Pollutant: Crude Sewage Note: Not Supplied Incident Date: 28th November 1991 Incident Reference: Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 2 - Significant Incident Positional Accuracy: Located by supplier to within 100m	A12NE (NW)	549	3	276050 189725
60	Pollution Incidents to Controlled Waters Property Type: Domestic/Residential Location: Adjacent Tiger, Tyres, Greenpark Authority: Environment Agency, Welsh Region Pollutant: Miscellaneous - Fire water / Foam Note: Deliberate Act Incident Date: 24th August 1995 Incident Reference: 25479 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A12NE (W)	583	3	276000 189695
61	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Freshwater Docks, PORT TALBOT Authority: Environment Agency, Welsh Region Pollutant: Crude Sewage Note: Natural Causes Incident Date: 23rd September 1995 Incident Reference: 25959 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A8SE (S)	628	3	276800 188800
62	Pollution Incidents to Controlled Waters Property Type: Not Given Location: By Civic Centre, PORT TALBOT Authority: Environment Agency, Welsh Region Pollutant: Industrial Solid Waste Note: Deliberate Incident Date: 21st May 1997 Incident Reference: 32458 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Direct Discharge Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A18NW (N)	647	3	276400 190200
63	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Estuary Between, The Two Weirs Authority: Environment Agency, Welsh Region Pollutant: Light Oil Note: Not Supplied Incident Date: 7th March 1991 Incident Reference: 4029 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 2 - Significant Incident Positional Accuracy: Located by supplier to within 100m	A12NW (NW)	716	3	275900 189800
64	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Roadbridge, PORT TALBOT Authority: Environment Agency, Welsh Region Pollutant: Unknown Note: Not Supplied Incident Date: 31st October 1991 Incident Reference: Catchment Area: Not Given Receiving Water: Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A18NW (N)	725	3	276500 190300

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
65	Property Type: Not Given Location: Location Description Not Available Authority: Environment Agency, Welsh Region Note: Not Supplied Incident Date: 31st October 1995 Incident Reference: Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Vot Given Located by supplier to within 100m	A19NW (NE)	791	3	277100 190200
66	Pollution Incidents to Controlled Waters Property Type: Waste Handling Facilities Location: Railway Line, PORT TALBOT Authority: Environment Agency, Welsh Region Pollutant: Oils - Diesel (Including Agricultural) Note: Deliberate Act Incident Date: 9th May 1996 Incident Reference: 28283 Catchment Area: Not Given Receiving Water: Act Given Cause of Incident: Direct Discharge Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A9NE (SE)	797	3	277300 188900
66	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Side Of Railway Line, PORT TALBOT Authority: Environment Agency, Welsh Region Pollutant: Oils - Diesel (Including Agricultural) Note: Deliberate Act Incident Date: 9th May 1996 Incident Reference: 28283 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Direct Discharge Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A9NE (SE)	800	3	277300 188895
67	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Prior Road Near, Council Offices Authority: Environment Agency, Welsh Region Pollutant: Crude Sewage Note: Not Supplied Incident Date: 31st January 1991 Incident Reference: 2656 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Positional Accuracy: Located by supplier to within 100m	A18NW (N)	820	3	276600 190400
68	Pollution Incidents to Controlled Waters Property Type: Miscellaneous Premises: Surface Runoff Location: Where Passes, Under M4 Authority: Environment Agency, Welsh Region Pollutant: Farm Effluent/Slurry Note: Not Supplied Incident Date: 13th November 1991 Incident Reference: Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Located by supplier to within 100m	A18NE (N)	828	3	276700 190400
69	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Fractured Sewer In, River Bed B. Gas Pipeline Work, PORT TALBOT Authority: Environment Agency, Welsh Region Crude Sewage Note: River Afan; Direct Introduction Incident Date: 29th January 1998 Incident Reference: 34696 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A12NW (W)	832	3	275700 189600

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
70	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Location Description Not Available Authority: Environment Agency, Welsh Region Pollutant: Mud/Clay/Soil Note: Natural Causes Incident Date: 20th March 1996 Incident Reference: 27790 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Leachate Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A14NE (E)	904	3	277600 189700
71	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Afan Sewage, Pumping Station Authority: Environment Agency, Welsh Region Pollutant: Light Oil Note: Not Supplied Incident Date: 27th April 1995 Incident Reference: 23819 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A11NE (W)	919	3	275600 189545
72	Property Type: Water Company Sewage: Storm Overflow Location: River At End, Of Afan Street Authority: Environment Agency, Welsh Region Pollutant: Unknown Note: Blocked Sewer Incident Date: 6th January 1995 Incident Reference: Catchment Area: Not Given Receiving Water: Overflow Incident Severity: Positional Accuracy: Located by supplier to within 100m	A23SE (N)	927	3	276700 190500
73	Pollution Incidents to Controlled Waters Property Type: Forestry Location: Baglan Mountain Authority: Environment Agency, Welsh Region Pollutant: Miscellaneous - Fire water / Foam Note: Deliberate Act Incident Date: 18th August 1995 Incident Reference: 25462 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Runoff Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A23SW (N)	938	3	276400 190500
74	Pollution Incidents to Controlled Waters Property Type: Building Sites Location: Old Gas Works, Site Victoria Road, Port Authority: Environment Agency, Welsh Region Pollutant: Farm Effluent/Slurry Note: Accidental Spillage/Leakage Incident Date: 14th March 1996 Incident Reference: 27548 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A11NE (W)	957	3	275600 189700
75	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Road Bridge Authority: Environment Agency, Welsh Region Pollutant: Unknown Note: Not Supplied Incident Date: 7th August 1991 Incident Reference: 1347 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A23SW (N)	963	3	276300 190500

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
76	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Wildmill Estate, PORT TALBOT Environment Agency, Welsh Region Crude Sewage Inadequate Design/Capacity 25th September 1995 26060 Not Given Not Given Direct Discharge Category 3 - Minor Incident Located by supplier to within 100m	A15NW (E)	984	3	277700 189600
77	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Cul De Sac Environment Agency, Welsh Region Unknown Not Supplied 6th June 1991 938 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A15NW (E)	1000	3	277700 189695
78	Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Costs:	ing to Authorised Processes Cramic Way, Port Talbot, Sa13 Burning waste on land without a WML - five months suspended sentence served Epa90 S33(1)(C) 12th October 2004 Guilty 0 0 Manually positioned to the road within the address or location	A13NE (N)	83	3	276665 189628
79	Prosecutions Relati Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Costs:	ing to Authorised Processes Kenwoth Buildings, Llewellyns Quay, Port Talbot, West Glamorgan, Sa13 1rf Special Waste (Including Bonded Asbestos)Stored At A Site Without A Waste Management Licence Epa90 S33(1)(A) & S33(1)(B) 31st March 2003 Guilty 1500 1572 Manually positioned within the geographical locality	A8NE (S)	402	3	276704 189014
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Afan River Quality A Dock Intake Weir - M4 Motorway .7 Flow less than 5 cumecs River 2000	A17SE (NW)	399	3	276264 189826
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Not Supplied Unclassified Tidal River Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 1995	A12NE (W)	529	3	276034 189636
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Not Supplied Unclassified Tidal River Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 1995	A8SW (S)	638	3	276429 188755

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality					
	Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Afan River Quality A M4 Motorway - Conf. Pelena 5.6 Flow less than 5 cumecs River 2000	A19SW (NE)	699	3	277046 190125
	River Quality					
	Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Ffrwdwyllt River Quality A Docks Entr.P.Talbot-Conf.Nant Cwm Y Garn 2.4 Flow less than 1.25 cumecs River 2000	A9SW (SE)	787	3	277007 188699
	River Quality Biolog	y Sampling Points				
80	Name: Reach: Reach: Estimated Distance: Positional Accuracy: Year: GQA Grade: Year:	Afan Dock Intake Weir To M4 Motorway 0.70 Located by supplier to within 100m 1990 River Quality Biology GQA Grade B - Good 1995 River Quality Biology GQA Grade B - Good 2000 River Quality Biology GQA Grade B - Good 2002 River Quality Biology GQA Grade Not Supplied 2003 River Quality Biology GQA Grade Not Supplied 2004 River Quality Biology GQA Grade B - Good 2005 River Quality Biology GQA Grade B - Good 2005 River Quality Biology GQA Grade B - Good 2006 River Quality Biology GQA Grade B - Good 2007 River Quality Biology GQA Grade C - Fairly Good 2008 River Quality Biology GQA Grade C - Fairly Good 2009 River Quality Biology GQA Grade C - Fairly Good	A18NE (N)	828	3	276700 190400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
81	Name: Reach: Estimated Distance: Objective:	Afan Dock Intake Weir To M4 Motorway 0.70 Not Supplied	A12NE (NW)	552	3	276047 189727
	Positional Accuracy: Year: GQA Grade:	Located by supplier to within 10m 1990 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 1993				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1994				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1995				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1996				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1997				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	1998 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	1999 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	2000 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2001				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2002				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2003				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2004				
	Year: GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2005 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2007 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2008 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2009 River Quality Chemistry GQA Grade A - Very Good Not Supplied				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
82	Name: Reach: Estimated Distance: Objective:	Ffrwdwyllt Docks Enterance Port Talbot To Confluence Nant Cwm Y Garn	A9NW (SE)	736	3	277244 188929
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 1996 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1997 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1998 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1999 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1999 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2000 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2001 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2001 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	2002 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2003 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2004 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2005 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2007 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2009 River Quality Chemistry GQA Grade A - Very Good				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
82	Name: Reach: Estimated Distance: Objective: Positional Accuracy:	Ffrwdwyllt Confluence Cwm Y Garn To Confluence Cwm Wernderi 1.40 Not Supplied Located by supplier to within 10m	A9NW (SE)	736	3	277244 188929
	Year: GQA Grade: Compliance: Year:	1990 River Quality Chemistry GQA Grade B - Good Not Supplied 1993				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1994				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1995				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1996				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1997				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1998				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1999				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2000				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2001 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2002 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2003 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2004 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2005 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2007 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2008 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade:	Not Supplied 2009 River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
82	Name: Reach: Estimated Distance: Objective: Positional Accuracy: Year: GQA Grade: Compliance:	Ffrwdwyllt Confluence Cwm Wernderi To Varteg Road Bridge 3.20 Not Supplied Located by supplier to within 10m 1990 River Quality Chemistry GQA Grade B - Good Not Supplied	A9NW (SE)	736	3	277244 188929
	Year: GQA Grade: Compliance: Year: GQA Grade: Compliance: Year: GQA Grade:	1993 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1994 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1995 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance: Year:	Not Supplied 1996 River Quality Chemistry GQA Grade A - Very Good Not Supplied 1997				
	GQA Grade: Compliance: Year: GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 1998 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year: GQA Grade:	1999 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2000 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance: Year:	Not Supplied 2001 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2002				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2003 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance: Year:	Not Supplied 2004 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2005				
	GQA Grade: Compliance: Year: GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	2007 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008				
	GQA Grade: Compliance: Year: GQA Grade: Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2009 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Substantiated Pollu	tion Incident Register				
83	Water Impact: Air Impact: Land Impact: Positional Accuracy: Pollutant: Pollutant:	Natural Resources Wales 12th October 2003 195725 Category 4 - No Impact Category 2 - Significant Incident Category 2 - Significant Incident Located by supplier to within 10m Atmospheric Pollutants and Effects: Smoke Oils And Fuel: Gas And Fuel Oils Asbestos Waste	A13NW (N)	78	2	276597 189657
84	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	Natural Resources Wales 27th February 2014 1212608 Category 4 - No Impact Category 4 - No Impact Category 2 - Significant Incident Located by supplier to within 10m Specific Waste Materials: Tyres	A12NE (NW)	456	2	276156 189738

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 35 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
85	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Natural Resources Wales 12th July 2016 1603860 Category 4 - No Impact Category 2 - Significant Incident Category 2 - Significant Incident Located by supplier to within 10m Atmospheric Pollutants and Effects: Smoke	A17SE (NW)	484	2	276252 189933
86	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Natural Resources Wales 29th March 2004 225980 Category 4 - No Impact Category 2 - Significant Incident Category 4 - No Impact Located by supplier to within 10m Atmospheric Pollutants and Effects: Smoke	A12NW (W)	643	2	275885 189558
87	Authority: Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact:	tion Incident Register Natural Resources Wales 22nd August 2016 1606170 Category 2 - Significant Incident Category 4 - No Impact Category 2 - Significant Incident Located by supplier to within 10m Oils And Fuel: Gas And Fuel Oils	A8SE (S)	914	2	276751 188504
88	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Environment Agency Wa/058/0061/007 Not Supplied Not Supplied Natural Resources Wales Impounding Not Supplied Surface Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A12NE (NW)	557	2	276054 189756
89	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Costain Limited Wa/058/0061/004 1 Port Talbot Dock At Margam Moors Environment Agency, Welsh Region Construction: Dust Suppression Water may be abstracted from a single point Surface Not Supplied Not Supplied Margam Moors - Port Talbot 01 April 31 March 5th August 2011 Not Supplied Located by supplier to within 10m	A9NW (SE)	559	3	276967 188933
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil And Marine Ltd 21/58/61/0042 5 Port Talbot Docks Port Talbot Natural Resources Wales Other Industrial/Commercial/Public Services: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Port Talbot Docks, Port Talbot 01 April 31 March 1st May 2014 Not Supplied Located by supplier to within 10m	A7NE (SW)	583	2	276230 188880

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil And Marine Ltd 21/58/61/0042 4 Port Talbot Docks Port Talbot Environment Agency, Welsh Region Other Industrial/Commercial/Public Services: Dust Suppression Water may be abstracted from a single point Surface Not Supplied Not Supplied Port Talbot Docks, Port Talbot 01 April 31 March 21st May 2010 Not Supplied Located by supplier to within 10m	A7NE (SW)	583	3	276230 188880
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil And Marine Ltd 21/58/61/0042 4 Port Talbot Docks Port Talbot Environment Agency, Welsh Region Other Industrial/Commercial/Public Services: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Port Talbot Docks, Port Talbot 01 April 31 March 21st May 2010 Not Supplied Located by supplier to within 10m	A7NE (SW)	583	3	276230 188880
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil And Marine Ltd 21/58/61/0042 Not Supplied Abstraction From Port Tallbot Dock Natural Resources Wales Other Industrial/Commercial/Public Services: Process Water Not Supplied Surface Not Supplied Not Supplied Not Supplied Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A7NE (SW)	583	2	276230 188880
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil And Marine Ltd 21/58/61/0042 3 Civil & Marine Slag Cement Ltd Quay At Port Talbot Docks Environment Agency, Welsh Region Other Industrial/Commercial/Public Services: Dust Suppression Water may be abstracted from a single point Surface Not Supplied Not Supplied Land At Civil & Marine Slag Cement Ltd 01 January 31 December 12th September 2008 Not Supplied Located by supplier to within 10m	A7NE (SW)	596	3	276240 188860

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 37 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil And Marine Ltd 21/58/61/0042 2 Civil & Marine Slag Cement Ltd Quay At Port Talbot Docks Environment Agency, Welsh Region Other Industrial/Commercial/Public Services: Dust Suppression Water may be abstracted from a single point Surface Not Supplied Not Supplied Land At Civil & Marine Slag Cement Ltd 01 January 31 December 10th October 2007 Not Supplied Located by supplier to within 10m	A7NE (SW)	596	3	276240 188860
90	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Civil & Marine Slag Cement Ltd 21/58/61/0042 1 Civil & Marine Slag Cement Ltd Quay At Port Talbot Docks Environment Agency, Welsh Region Other Industrial/Commercial/Public Services: Dust Suppression Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied Land At Civil & Marine Slag Cement Ltd 01 January 31 December 1st April 2003 Not Supplied Located by supplier to within 10m	A7NE (SW)	596	3	276240 188860
91	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Strip Products 21/58/61/0009 100 River Afan To Port Talbot Docks Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Licenced from 01-Jan to 31-Dec 01 January 31 December 1st April 2000 Not Supplied Located by supplier to within 10m	A12NE (W)	597	3	275980 189685
91	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0009 101 River Afan To Port Talbot Docks Natural Resources Wales Metal: Evaporative Cooling Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied O1 January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A12NE (W)	599	2	275980 189690

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 38 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
91	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0009 101 River Afan To Port Talbot Docks Natural Resources Wales Metal: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied O1 January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A12NE (W)	599	2	275980 189690
91	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Strip Products 21/58/61/0009 100 River Afan To Port Talbot Docks Environment Agency, Welsh Region Metal: Evaporative Cooling Water may be abstracted from a single point Surface Not Supplied Not Supplied River Afan To Port Talbot Docks 01 January 31 December 1st April 2000 Not Supplied Located by supplier to within 100m	A12NE (W)	599	3	275980 189690
91	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0009 Not Supplied Land At British Steel, Port Talbot Natural Resources Wales Metal: Evaporative Cooling Not Supplied Surface Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A12NE (W)	599	2	275980 189690
91	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0009 Not Supplied Land At British Steel, Port Talbot Natural Resources Wales Metal: Process Water Not Supplied Surface Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A12NE (W)	599	2	275980 189690

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 39 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
92	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0024 101 River Ffrwdwyllt Natural Resources Wales Metal: Evaporative Cooling Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied O1 January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A9NW (SE)	714	2	277150 188870
92	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0024 101 River Ffrwdwyllt Natural Resources Wales Metal: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied O1 January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A9NW (SE)	714	2	277150 188870
92	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Strip Products 21/58/61/0024 100 River Ffrwdwyllt Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied River Ffrwdwyllt 01 January 31 December 1st April 2000 Not Supplied Located by supplier to within 100m	A9NW (SE)	714	3	277150 188870
92	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0024 Not Supplied Land At British Steel, Port Talbot Natural Resources Wales Metal: Evaporative Cooling Not Supplied Surface Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A9NW (SE)	714	2	277150 188870

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 1

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
92	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0024 Not Supplied Land At British Steel, Port Talbot Natural Resources Wales Metal: Process Water Not Supplied Surface Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A9NW (SE)	714	2	277150 188870
92	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Strip Products 21/58/61/0024 100 River Ffrwdwyllt Environment Agency, Welsh Region Metal: Evaporative Cooling Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied Licenced from 01-Jan to 31-Dec 01 January 31 December 1st April 2000 Not Supplied Located by supplier to within 10m	A9NW (SE)	718	3	277150 188865
93	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0012 101 Port Talbot Docks Natural Resources Wales Metal: Non-Evaporative Cooling Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied O1 January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A8SE (S)	853	2	276890 188590
93	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0012 101 Port Talbot Docks Natural Resources Wales Metal: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied Ot January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A8SE (S)	853	2	276890 188590

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 41 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
93	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Strip Products 21/58/61/0012 100 Port Talbot Docks Environment Agency, Welsh Region Metal: Non-Evaporative Cooling Water may be abstracted from a single point Surface Not Supplied Not Supplied Port Talbot Docks 01 January 31 December 1st April 2000 Not Supplied Located by supplier to within 100m	A8SE (S)	853	3	276890 188590
93	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0012 Not Supplied Land At British Steel Natural Resources Wales Metal: Non-Evaporative Cooling Not Supplied Surface Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A8SE (S)	853	2	276890 188590
93	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 21/58/61/0012 Not Supplied Land At British Steel Natural Resources Wales Metal: Process Water Not Supplied Surface Not Supplied Not Supplied Not Supplied Not Supplied O1 January 31 December Not Supplied Not Supplied Located by supplier to within 10m	A8SE (S)	853	2	276890 188590
93	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Strip Products 21/58/61/0012 100 Port Talbot Docks Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Surface Not Supplied Not Supplied Licenced from 01-Jan to 31-Dec 01 January 31 December 1st April 2000 Not Supplied Located by supplier to within 10m	A8SE (S)	857	3	276890 188585
94	Water Industry Act I Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Referrals Dwr Cymru Cyfyngedig Afan Wwtw, Phoenix Wharf, Harbour Road, Port Talbot, Sa13 1ra Natural Resources Wales BP0284701 26th March 2021 Permissions or amendments to discharge under the Water Industry Act 1991 Processes which result in the discharge of Special Category effluents under The Trade Effluents (Prescribed Processes and Substances) Regulations Application has been authorised and any conditions apply to the operator Manually positioned within the geographical locality	A8SE (S)	761	2	276703 188654

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 42 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Groundwater Vulne	rability Map				
	Combined	Secondary Superficial Aquifer - High Vulnerability	A13SW	0	2	276608
	Classification: Combined	High	(S)			189471
	Vulnerability:	i iigii				
	Combined Aquifer: Pollutant Speed:	Productive Bedrock Aquifer, Productive Superficial Aquifer High				
	Bedrock Flow:	Well Connected Fractures				
	Dilution: Baseflow Index:	>550 mm/year				
	Superficial	>70% >90%				
	Patchiness:	. 10				
	Superficial Thickness:	>10m				
	Superficial Recharge:	Medium				
	Bedrock Aquifer De	signations				
	Aquifer Designation:	Secondary Aquifer - A	A13SW	0	2	276608
	Superficial Aquifer	Designations	(S)			189471
	•	Secondary Aquifer - Undifferentiated	A13SW	0	2	276608
	Extreme Flooding fo	rom Pivers or Sea without Defences	(S)			189471
	Type:	rom Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences	A13SW	0	2	276608
	Flood Plain Type: Boundary Accuracy:	Fluvial Models	(S)	0	2	189471
	Extreme Flooding for	rom Rivers or Sea without Defences				
	Type:	Extent of Extreme Flooding from Rivers or Sea without Defences	A13SW	47	2	276606
	Flood Plain Type: Boundary Accuracy:	Fluvial/Tidal Models As Supplied	(S)			189357
	Extreme Flooding for	rom Rivers or Sea without Defences				
	Type:	Extent of Extreme Flooding from Rivers or Sea without Defences	A13NE	201	2	276674
	Flood Plain Type: Boundary Accuracy:	Fluvial Models As Supplied	(N)			189760
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	0	2	276608
	Flood Plain Type: Boundary Accuracy:	Fluvial Models As Supplied	(S)			189471
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	47	2	276534
	Flood Plain Type: Boundary Accuracy:	Tidal Models As Supplied	(SW)			189349
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	48	2	276574
	Flood Plain Type: Boundary Accuracy:	Tidal Models As Supplied	(S)			189355
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	48	2	276571
	Flood Plain Type: Boundary Accuracy:	Fluvial Models As Supplied	(S)			189354
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	49	2	276546
	Flood Plain Type: Boundary Accuracy:	Tidal Models As Supplied	(SW)			189349
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	49	2	276554
	Flood Plain Type: Boundary Accuracy:	Tidal Models As Supplied	(SW)			189351
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	49	2	276607
	Flood Plain Type: Boundary Accuracy:	Fluvial/Tidal Models As Supplied	(S)			189355
	Flooding from River	rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	49	2	276515
	Flood Plain Type: Boundary Accuracy:	Fluvial Models As Supplied	(SW)			189345
		rs or Sea without Defences				
	Type:	Extent of Flooding from Rivers or Sea without Defences	A13SW	49	2	276523
	Flood Plain Type:	Fluvial Models	(SW)	,		189346

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 43 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	49	2	276536 189349
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (S)	49	2	276581 189355
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (S)	50	2	276584 189355
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (S)	50	2	276590 189355
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (S)	50	2	276606 189357
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (S)	50	2	276590 189355
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (S)	50	2	276595 189355
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	51	2	276550 189349
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	52	2	276518 189343
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (S)	54	2	276614 189355
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	55	2	276496 189339
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SE (S)	57	2	276615 189352
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	58	2	276494 189337
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	59	2	276490 189337
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	59	2	276488 189337
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	61	2	276487 189336

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 44 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	69	2	276471 189333
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	70	2	276470 189333
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	82	2	276453 189330
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	84	2	276450 189331
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	88	2	276445 189330
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	88	2	276446 189330
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	92	2	276440 189329
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	92	2	276440 189330
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	97	2	276434 189329
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	100	2	276431 189328
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	106	2	276423 189328
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	108	2	276421 189327
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	113	2	276415 189327
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	118	2	276410 189325
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SE (S)	130	2	276623 189279
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	133	2	276393 189323

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 45 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	136	2	276391 189322
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	137	2	276389 189322
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	141	2	276385 189322
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	141	2	276384 189323
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	146	2	276379 189322
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	150	2	276375 189320
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	154	2	276372 189319
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	155	2	276369 189321
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	158	2	276367 189319
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	158	2	276367 189319
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	159	2	276364 189321
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	162	2	276362 189319
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	165	2	276359 189320
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	172	2	276351 189318
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	183	2	276339 189317
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	187	2	276336 189315

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 46 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	188	2	276335 189316
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	191	2	276332 189317
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	193	2	276329 189316
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	201	2	276322 189313
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	204	2	276319 189313
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	205	2	276317 189313
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	207	2	276315 189314
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	209	2	276313 189314
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	212	2	276310 189313
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	214	2	276307 189315
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	216	2	276305 189313
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	216	2	276305 189313
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A13SW (SW)	230	2	276290 189315
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	230	2	276290 189315
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A12SE (SW)	245	2	276274 189315
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A12SE (SW)	246	2	276274 189315
	Areas Benefiting from Flood Defences None				

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 47 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flood Water Storage Areas None				
	Flood Defences None				
95	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 956.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 2	A7NE (SW)	395	5	276263 189083
96	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 352.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A8NE (SE)	403	5	276831 189040
97	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 566.6 Watercourse Level: On ground surface True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A8NW (SW)	417	5	276394 188992
98	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 313.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A8NE (SE)	429	5	276884 189037
99	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 339.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18SW (NW)	432	5	276283 189891
100	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 69.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18SW (NW)	438	5	276339 189944
101	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18SW (NW)	438	5	276338 189943
102	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A18SW (NW)	456	5	276389 189993

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 48 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
103	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 156.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18SW (NW)	456	5	276389 189993
	OS Water Network Lines				
104	Watercourse Form: Lake Watercourse Length: 669.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A8NW (SW)	466	5	276280 188986
	OS Water Network Lines				
105	Watercourse Form: Inland river Watercourse Length: 4.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18SW (N)	535	5	276495 190107
	OS Water Network Lines				
106	Watercourse Form: Inland river Watercourse Length: 31.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A8NW (SW)	537	5	276323 188889
	OS Water Network Lines				
107	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18SW (N)	538	5	276498 190111
	OS Water Network Lines				
108	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 2	A12NE (NW)	542	5	276065 189742
	OS Water Network Lines				
109	Watercourse Form: Inland river Watercourse Length: 42.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A12NE (NW)	542	5	276064 189739
	OS Water Network Lines				
110	Watercourse Form: Inland river Watercourse Length: 11.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 2	A12NE (NW)	542	5	276065 189742
	OS Water Network Lines				
111	Watercourse Form: Inland river Watercourse Length: 158.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 2	A12NE (W)	548	5	276037 189694

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
112	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 2	A12NE (W)	549	5	276036 189695
113	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 33.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 2	A12NE (NW)	550	5	276054 189738
114	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A12NE (NW)	552	5	276039 189709
115	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.2 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A8NW (SW)	554	5	276292 188882
116	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 14.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A12NE (W)	561	5	276027 189703
117	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 36.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A8NW (SW)	563	5	276278 188879
118	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 697.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A12NE (W)	574	5	276017 189714
119	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 21.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 2	A12NE (W)	574	5	276017 189714
120	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 16.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 2	A12NE (NW)	578	5	276027 189746

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
121	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A12NE (NW)	580	5	276030 189758
122	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A12NE (NW)	581	5	276029 189758
123	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A12NE (NW)	582	5	276028 189756
124	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.9 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A7NE (SW)	586	5	276243 188870
125	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 32.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A7NE (SW)	595	5	276230 188867
126	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 164.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A8SE (S)	646	5	276786 188778
127	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18NE (N)	697	5	276639 190274
128	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A9NW (SE)	697	5	277137 188882
129	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 99.3 Watercourse Level: On ground surface True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A9NW (SE)	698	5	277138 188882

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 1

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
130	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 519.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A18NE (N)	710	5	276648 190287
	OS Water Network Lines				
131	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A9NW (SE)	735	5	277229 188916
	OS Water Network Lines				
132	Watercourse Form: Inland river Watercourse Length: 693.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Arnallt Brook Catchment Name: Afan Primacy: 1	A9NW (SE)	735	5	277229 188916
	OS Water Network Lines				
133	Watercourse Form: Inland river Watercourse Length: 14.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A9NW (SE)	737	5	277246 188930
	OS Water Network Lines				
134	Watercourse Form: Inland river Watercourse Length: 301.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A9NW (SE)	740	5	277258 188939
	OS Water Network Lines				
135	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A14SE (E)	769	5	277435 189172
	OS Water Network Lines				
136	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A14SE (E)	769	5	277435 189173
	OS Water Network Lines				
137	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1nland river Under Catchment Name: Afan 1	A14SE (E)	795	5	277491 189272
	OS Water Network Lines				
138	Watercourse Form: Inland river Watercourse Length: 14.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A19NW (NE)	817	5	277062 190254

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
139	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 109.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A19NW (NE)	825	5	277058 190264
	OS Water Network Lines				
140	Watercourse Form: Inland river Watercourse Length: 297.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Ffrwd Wyllt Catchment Name: Afan Primacy: 1	A14NE (E)	895	5	277617 189532
141	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 157.4 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A14NE (E)	895	5	277617 189532
142	Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A19NW (NE)	908	5	277156 190303
	OS Water Network Lines				
143	Watercourse Form: Inland river Watercourse Length: 796.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A19NW (NE)	921	5	277150 190323
144	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 126.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 2	A11SE (W)	966	5	275545 189302
145	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 125.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Afan Catchment Name: Afan Primacy: 1	A11SE (W)	966	5	275545 189302
146	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Afan Primacy: 1	A11SE (W)	970	5	275560 189182
147	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 402.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Kenfig Primacy: 1	A3NW (S)	992	5	276387 188409

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
148	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	P3298FX Old Byass Works, The Docks, Port Talbot, Neath Port Talbot, SA13 1RS Cuddy Recycling Ltd Not Supplied Natural Resources Wales Metal recycling site Expired 1st September 2016 Not Supplied 1st May 2020 Not Supplied Located by supplier to within 10m	A18SW (NW)	396	2	276289 189844
148	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 34040 Old Byass Works, The Docks, Port Talbot, SA13 1RS C. P. Harvey (Scrap) Limited Not Supplied Natural Resources Wales Metal recycling site Modified 30th January 1994 26th June 2015 Not Supplied Located by supplier to within 10m	A18SW (NW)	396	2	276289 189844
149	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	AB3895CN Byass Works, The Docks, Port Talbot, Neath Port Talbot, SA13 1RS A W D Group Ltd Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Effective 26th January 2023 Not Supplied Located by supplier to within 10m	A12NE (NW)	403	2	276190 189681
149	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: IPPC Reference:	AB3895CN Byass Works, The Docks, Port Talbot, Neath Port Talbot, SA13 1RS A W D Group Ltd Not Supplied Natural Resources Wales HCI Waste TS + treatment Effective 24th September 2021 Not Supplied Located by supplier to within 10m	A12NE (NW)	403	2	276190 189681

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
149	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) LB3933DA Port Talbot Recovery Centre, Former Byass Works, Docks Road, Port Talbot, N P T, Neath Port Talbot, SA13 1RS Egan Metal Recycling Limited Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Expired 25th August 2006 Not Supplied 14th November 2015 Not Supplied Located by supplier to within 10m	A12NE (NW)	406	2	276183 189674
149	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 34283 Former Byass Works, Docks Road, Port Talbot, SA13 1RS Egan Metal Recycling Limited Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Modified 25th August 2006 4th April 2013 Not Supplied Located by supplier to within 10m	A12NE (NW)	406	2	276183 189674
150	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 102486 Llewellyn's Road, Llewellyn's Quay, Port Talbot, SA13 1RA Construction Recyclate Management Ltd Not Supplied Natural Resources Wales HCI Waste TS + treatment + asbestos Issued 7th June 2011 Not Supplied Located by supplier to within 10m	A8NE (S)	414	2	276680 189000
150	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) UP3296EX Llewellyn's Quay Recycling Centre, Port Talbot, Glamorgan, Neath Port Talbot, SA13 1RA Construction Recyclate Management Ltd Not Supplied Natural Resources Wales HCI Waste TS + treatment + asbestos Expired 7th June 2011 Not Supplied 27th April 2021 Not Supplied Located by supplier to within 10m	A8NE (S)	414	2	276680 189000

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 55 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
151	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	JP3598FX Port Talbot, N P T, SA13 1RF Avalon Insulation Services Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Effective 25th July 2006 Not Supplied Located by supplier to within 10m	A8NE (S)	438	2	276746 188983
	Licensed Waste Ma	nagement Facilities (Locations)				
151	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	JP3598FX Asbestos Store, Port Talbot, N P T, Neath Port Talbot, SA13 1RF Avalon Insulation Services Not Supplied Natural Resources Wales Special Waste Transfer Stations Effective 25th July 2006 Not Supplied Located by supplier to within 10m	A8NE (S)	438	2	276746 188983
	Licensed Waste Ma	nagement Facilities (Locations)				
152	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	34154 Old Byass Works, Docks Road, Port Talbot, N P T, SA13 1ER Jem Recycling Ltd Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Expired 1st April 1998 Not Supplied 1st April 2000 Not Supplied Located by supplier to within 100m	A12NE (NW)	493	2	276100 189700
	Licensed Waste Ma	nagement Facilities (Locations)				
152	-	34142 Old Byass Works, Docks Road, Port Talbot, N P T, SA13 1ER Jem Recycling Ltd Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Expired 24th December 1996 Not Supplied 1st April 2000 Not Supplied	A12NE (NW)	493	2	276100 189700
450		nagement Facilities (Locations)	A4015	400	0	070400
152	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	34168 Old Byass Works, Docks Road, Port Talbot, N P T, SA13 1ER Jem Recycling Ltd Not Supplied Natural Resources Wales Household, Commercial And Industrial Transfer Stations Expired 30th March 1994 Not Supplied 1st April 2000 Not Supplied Located by supplier to within 100m	A12NE (NW)	493	2	276100 189700

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
153	Licensed Waste Management Facilities (Locations) Licence Number: BB3195CB Location: Riverside Road, Port Talbot Docks, Port Talbot, Neath Port Talbot, SA13 Operator Name: Associated British Ports Operator Location: Not Supplied Authority: Natural Resources Wales Site Category: Household, Commercial And Industrial Transfer Stations Effective Licence Status: Effective Last Modified: Not Supplied Expires: Not Supplied Suspended: Not Supplied Revoked: Not Supplied Revoked: Not Supplied Not Supplied Positional Accuracy: Located by supplier to within 10m	A12SW 1RE (W)	686	2	275855 189179
	Local Authority Landfill Coverage Name: Neath Port Talbot County Borough Council - Has supplied landfill data		0	4	276608 189471
154	Potentially Infilled Land (Non-Water) Bearing Ref: E Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A14NW (E)	570	-	277276 189620
155	Potentially Infilled Land (Non-Water) Bearing Ref: E Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A14NE (E)	625	-	277331 189625
156	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A13SW (S)	0	-	276608 189471
157	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A13SE (E)	19	-	276735 189451
158	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A13SE (SE)	55	-	276696 189364
159	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A12SE (W)	466	-	276050 189295
160	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A12NE (NW)	500	-	276110 189742
161	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1885	A8NW (S)	516	-	276373 188895
162	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A9NW (SE)	567	-	276958 188920
163	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A12NE (NW)	584	-	276009 189720
164	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A8SW (S)	600	-	276502 188789
165	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A12NE (NW)	676	-	275944 189800
166	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A9SW (SE)	685	-	276953 188786
167	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A8SW (S)	705	-	276345 188707
168	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A12NW (W)	720	-	275838 189661

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 57 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
169	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A12NW (W)	750	-	275791 189620
170	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A9SW (SE)	765	-	277031 188735
171	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	821	-	276147 190275
172	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A8SE (S)	833	-	276927 188620
173	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A9SW (SE)	835	-	277131 188709
174	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	841	-	276168 190311
175	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A17SW (NW)	848	-	275903 190086
176	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A12NW (W)	853	-	275666 189541
177	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12NW (W)	874	-	275665 189628
178	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A9SW (SE)	877	-	276992 188595
179	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	894	-	276020 190275
180	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	897	-	276018 190276
181	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	908	-	276037 190305
182	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A8SW (S)	909	-	276411 188489
183	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	912	-	276024 190301
184	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A17NE (NW)	937	-	276045 190346
185	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A17NW (NW)	970	-	275893 190260
186	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A17NW (NW)	971	-	275869 190238
187	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A11SE (W)	974	-	275532 189349
188	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A17NW (NW)	983	-	275922 190308
189	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1900	A11SE (W)	988	-	275538 189193

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 58 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
190	Registered Waste T Licence Holder: Licence Reference:	Jem Recycling Ltd	A12NE (NW)	401	3	276200 189700
	Site Location: Operator Location: Authority: Site Category: Max Input Rate:	Byass Works, Docks Road, PORT TALBOT, West Glamorgan, SA13 1ER As Site Address Environment Agency Wales, South West Area Transfer Medium (Equal to or greater than 25,000 and less than 75,000 tonnes per	(NVV)			109700
	Waste Source Restrictions:	year) No known restriction on source of waste				
	Licence Status: Dated: Preceded By Licence:	Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 24th December 1996 Not Given				
	Superseded By Licence:	Not Given				
	Positional Accuracy: Boundary Quality: Authorised Waste	Manually positioned to the address or location Not Supplied Building Materials Cellulose Cement Bonded Asbestos				
		Clinker & Ash Demolition Wastes Food Waste Fragmentiser Waste				
		Glass Gypsum Based Filter Cake Man-Made Insulation Mat'Ls Max.Waste Permitted By Licence Natural & Man-Made Fibres				
		Packaging Mat'Ls Paper/Paper Prods/Cardboard Plant & Tree Cuttings Plasterboard				
		Plastic Scrap Metal Shot Blasting Grit Soil Tyres				
	Prohibited Waste	Wood/Wood Prods Clinical Wastes Fibrous Forms Of Asbestos Flue Ash Liquid Wastes Packaging Containing Special Waste				
		Pcbs/Pcts Percussive/Explosive/Similar Waste Sewage Screenings/Grit From S.T.Wks Sludge Wastes Special Wastes (As In '96 Regs) N.O.S				
		Sub'S Control. Radioactive Subs Act'60 Waste In Sealed Drums Waste N.O.S.				
191	Registered Waste T Licence Holder:	ransfer Sites C P Harvey (Recycling) Ltd	A12NE	416	3	276230
101	Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions:	Old Byass Works, Cramic Way, PORT TALBOT, West Glamorgan, SA13 1RS Alexandra House, 1 Alexandra Road, SWANSEA, West Glamorgan, SA1 5ED Environment Agency Wales, South West Area Scrapyard - with Transfer Station Very Small (Less than 10,000 tonnes per year) Some restriction on source of waste	(NW)		Ü	189800
	Licence Status: Dated: Preceded By Licence:	Site Closed 23rd December 1993 Not Given				
	Superseded By Licence:	Not Given				
	Positional Accuracy: Boundary Quality: Authorised Waste	Manually positioned to the address or location Not Supplied Electrical Scrap Max.Stor Ferrous Metal Scrap Max.Stor Fuel Oil Max.Stor Max.Waste From Fees/Charges Mineral Oils Max.Stor				
	Prohibited Waste	Non-Ferrous Metal Scrap Max.Stor Spec.Waste (Epa'90:S62/1996 Regs)N.O.S				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Registered Waste T	ransfer Sites				
192	Licence Holder: Licence Reference:	Port Talbot Mini Skips	A12NE (NW)	493	3	276100 189700
	Site Location:	rear of Byass Works, North Bank Road, The Docks, PORT TALBOT, West Glamorgan, SA13 1ER	(,			
	Operator Location: Authority:	As Site Address Environment Agency Wales, South West Area				
	Site Category: Max Input Rate: Waste Source	Transfer Large (Equal to or greater than 75,000 and less than 250,000 tonnes per year) Waste produced/controlled by licence holder				
	Restrictions: Licence Status: Dated: Preceded By	Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 30th March 1994 Not Given				
	Licence: Superseded By	Not Given				
	Licence: Positional Accuracy: Boundary Quality: Authorised Waste	Approximate location provided by supplier Not Supplied Construction Waste Max.Stor Glass Max.Stor Household Waste - General Plastic Max.Stor Wood Max.Stor				
	Registered Waste T	reatment or Disposal Sites				
193	Licence Holder: Licence Reference: Site Location:	Jem Recycling Ltd	A13NW (NW)	308	3	276300 189700
	Operator Location: Authority: Site Category: Max Input Rate:	As Site Address Environment Agency Wales, South West Area Transfer - with Baling(compaction) Medium (Equal to or greater than 25,000 and less than 75,000 tonnes per year)				
	Waste Source Restrictions:	No known restriction on source of waste				
	Licence Status: Dated: Preceded By Licence:	Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled 1st April 1998 Not Given				
	Superseded By	Not Given				
	Positional Accuracy: Boundary Quality: Authorised Waste	Manually positioned to the address or location Not Supplied Building Materials Cardboard/Paper/Paper Products Clay, Sand, Top/Subsoil Ferrous Metal Food Waste				
		Max.Waste By Agreement With Env.Agency Non-Ferrous Metal Plastic Plastic Film				
	Prohibited Waste	Tarmacadam Wood/Wood Products Difficult Wastes (As In Wmp.26) Drummed Waste Liquid Wastes				
		Sludge Wastes Spec.Waste (Epa'90:S62/1996 Regs) Waste N.O.S.				

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 60 of 104

Hazardous Substances

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Control of Major Ac	cident Hazards Sites (COMAH)				
194	Name: Location: Reference: Type: Status: Positional Accuracy:	Transco Plc Aberavon Gas Works, Victoria Road, PORT TALBOT, West Glamorgan, SA13 1PN Not Supplied Lower Tier Record Ceased To Be Supplied Under COMAH Regulations Manually positioned to the address or location	A12NW (W)	895	6	275655 189670
	Notification of Insta	Illations Handling Hazardous Substances (NIHHS)				
195	Name: Location: Status: Positional Accuracy:	Transco Aberavon Gas Works, Victoria Road, PORT TALBOT, West Glamorgan, SA13 1PN Not Active Unknown	A12NW (W)	888	6	275660 189662
	Planning Hazardous	s Substance Consents				
196	Name: Location: Authority: Application Ref: Hazardous Substance: Maximum Quantity: Application date: Decision: Positional Accuracy:	British Gas Plc Wales, Aberavon Gas Works, Victoria Road, PORT TALBOT, West Glamorgan, SA12 6DB Neath Port Talbot County Borough Council, Planning Department P2013/0135 Unknown at time of report 61.8 27th November 1992 Application revoked or cancelledCancelled Located by supplier to within 10m	A12NW (W)	900	7	275650 189670

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 61 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	South Wales Upper Coal Measures Formation	A13SW (S)	0	1	276608 189471
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A13SW (S)	0	1	276608 189471
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13NE (NE)	122	1	276775 189610
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 30 - 45 mg/kg	A14SW (E)	276	1	277000 189471
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A14NW (E)	545	1	277239 189656
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A9NW (SE)	671	1	277221 189000
	BGS Estimated Soil					
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 30 - 45 mg/kg	A18NW (N)	700	1	276527 190278

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 62 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A19SW (NE)	704	1	277215 189989
	Concentration:					
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A18NW (N)	715	1	276585 190295
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A7SE (SW)	716	1	276116 188792
	BGS Estimated Soil	Chamietry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A7SE (SW)	762	1	276133 188729
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg 1.8 - 2.2 mg/kg 60 - 90 mg/kg <100 mg/kg 30 - 45 mg/kg	A14SE (E)	776	1	277500 189471
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration:		A7SE (SW)	803	1	276000 188769
	Nickel Concentration:	30 - 45 mg/kg				

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 63 of 104

BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Gediment Concentration: 4.18 mg/kg Concentration: 4.09 mg/kg Nickel 15-30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: Soil Sample Type: Gediment Cadmium Cadmi	act NGR	Contact	Estimated Distance From Site	Quadrant Reference (Compass Direction)	Details	Map ID
Source: British Geological Survey, National Geoscience Information Service Soll Sample Type: Source 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Contomium 60 - 90 mg/kg Nickel 15 - 30 mg/kg Nickel 15 - 30 mg/kg Nickel 15 - 30 mg/kg Concentration: Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Source: British Geological Survey, National Geoscience Information Service Soll Sample Type: Sediment Arsenic 45 - 60 mg/kg Concentration: Concentration: Condmium <1.8 mg/kg Concentration: Concentration: Lead Concentration: Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Soll Sample Type: Sediment Arsenic 35 - 45 mg/kg Concentration: Concentration					ed Soil Chemistry	
Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: BGS Estimated Soil Chemistry Source: Soil Sample Type: Sediment Arsenic 45 - 60 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium Concentration: Cadmium Concentration: Chromium 60 - 90 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Concentration: Chromium Concentration: Chromium Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Soil Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Concentration: 15 - 25 mg/kg Concentration:	277497 189807	1	840		British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	;
Concentration: Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Concentration: <100 mg/kg Concentration: <100 mg/kg Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: Concentration: <100 mg/kg Concentration: Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: Concen					<1.8 mg/kg :	
BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: A5 - 60 mg/kg Concentration: 45 - 60 mg/kg Concentration: 41.8 mg/kg Concentration: 60 - 90 mg/kg Concentration: 1-10 mg/kg Nickel 15 - 30 mg/kg Concentration: 35 - 45 mg/kg Concentration: 35 - 45 mg/kg Concentration: 35 - 45 mg/kg Concentration: 1-10 mg/kg Nickel 15 - 30 mg/kg Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: A5 mg/kg Concentration: Concentration: 1-10 mg/kg Nickel 15 - 30 mg/kg Concentration: Chromium 60 - 90 mg/kg Nickel 15 - 30 mg/kg Concentration: Chromium 60 - 90 mg/kg Nickel 15 - 30 mg/kg Concentration: 1-10 mg/kg Nickel 15 - 30 mg/kg Concentration: 1-10 mg/kg Nickel 15 - 25 mg/kg Concentration: 1-10 mg/kg Nickel 15 - 30 mg/kg Concentration: 1-10 mg/kg Nickel 1-10 mg/kg Nickel 1-10 mg/kg Nickel 1-10 mg/kg Nickel 1-10 m					: ration: <100 mg/kg	1
Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Af-senic 45 - 60 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Soli Sample Type: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Arsenic - 4.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Concentration: Concentration: Chromium 60 - 90 mg/kg Arsenic - 4.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Nickel 15 - 30 mg/kg Concentration: Chromium 60 - 90 mg/kg Nickel 15 - 30 mg/kg Concentration:						(
Soil Sample Type: Sediment Arsenic 45 - 60 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: 15 - 30 mg/kg Nickel 15 - 30 mg/kg Concentration: Private Soil Chemistry Source: British Geological Survey, National Geoscience Information Service (W) Arsenic 35 - 45 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: 100 mg/kg Nickel 15 - 30 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Dead Concentration: Source: British Geological Survey, National Geoscience Information Service (N) Source: British Geological Survey, National Geoscience Information Service (N) Source: British Geological Survey, National Geoscience Information Service (N) Source: British Geological Survey, National Geoscience Information Service (N) Source: British Geological Survey, National Geoscience Information Service (N) Source: British Geological Survey, National Geoscience Information Service (N) Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: 15 - 30 mg/kg Concentration: Lead Concentration: Soil Sample Type: Sediment (E)					ed Soil Chemistry	1
Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Soli Sample Type: Soli Sample Type: Arsenic Concentration: Chromium 60 - 90 mg/kg Concentration: BGS Estimated Soil Chemistry Soli Sample Type: Arsenic Concentration: Cadmium 60 - 90 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Soli Sample Type: Soli Sample Ty	276644 190423	1	845		ype: Sediment 45 - 60 mg/kg	3
Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service (W) Arsenic 35 - 45 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium Source: Soil Sample Type: Sediment						
Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Arsenic 35 - 45 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Soil Sample Type: Sediment Arsenic 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A18NE Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead C					:	
Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Arsenic 35 - 45 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Source: British Geological Survey, National Geoscience Information Service A18NE Source: British Geological Survey, National Geoscience Information Service A18NE Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Soil Sample Type: Sediment A15 - 30 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Concentration: Lead Concentration: Soil Sample Type: Sediment Soil Sample Type: Sediment Soil Sample Type: Sediment Sediment A14NE Soil Sample Type: Sediment (E)					15 - 30 mg/kg	
Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Arsenic 35 - 45 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Source: British Geological Survey, National Geoscience Information Service A18NE Source: British Geological Survey, National Geoscience Information Service A18NE Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Soil Sample Type: Sediment A15 - 30 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Concentration: Lead Concentration: Soil Sample Type: Sediment Soil Sample Type: Sediment Soil Sample Type: Sediment Sediment A14NE Soil Sample Type: Sediment (E)					ed Soil Chemistry	
Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Cadmium <60 - 90 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Source: British Geological Survey, National Geoscience Information Service (N) BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment CED A14NE 885 1	275675 189643	1	868		ype: Sediment 35 - 45 mg/kg	3
Chromium 60 - 90 mg/kg Concentration: Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A18NE (N) Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Source: Soil Sample Type: Sediment A18 mg/kg Concentration: A18 mg/kg Concentration: A18 mg/kg Concentration: A18 mg/kg Concentration: A100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment A14NE 885 1					<1.8 mg/kg	
Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A18NE 874 1 Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment A18NE 874 1 (N) (N) B74 1 A18NE 874 1 (N) E874 1 A18NE 874 1 A18NE 885 1					:	
Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Soil Sestimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment A18NE (N) A18NE (N) B74 1 A18NE (N)					15 - 30 mg/kg	
Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg Concentration: Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: Lead Concentration: Lead Concentration: Soil Sestimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service Soil Sample Type: Sediment (N) (N) (N) (N) (A) (N) (N) (N)					ed Soil Chemistry	1
Cadmium <1.8 mg/kg Concentration: Chromium 60 - 90 mg/kg Concentration: Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment (E)	276898 190395	1	874		ype: Sediment 15 - 25 mg/kg	3
Concentration: Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment (E)					<1.8 mg/kg	
Nickel 15 - 30 mg/kg Concentration: BGS Estimated Soil Chemistry Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment (E)					:	
Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment (E)					15 - 30 mg/kg	
Source: British Geological Survey, National Geoscience Information Service A14NE 885 1 Soil Sample Type: Sediment (E)					ed Soil Chemistry	
Concentration:	277605 189558	1	885		British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	;
Cadmium <1.8 mg/kg Concentration:					:	
Chromium 60 - 90 mg/kg Concentration: Lead Concentration: <100 mg/kg					:	(
Nickel 15 - 30 mg/kg Concentration:					15 - 30 mg/kg	
BGS Estimated Soil Chemistry					ed Soil Chemistry	
Source: British Geological Survey, National Geoscience Information Service A14SE 912 1 Soil Sample Type: Sediment Arsenic 15 - 25 mg/kg	277621 189318	1	912		British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	;
Concentration: Cadmium 1.8 - 2.2 mg/kg Concentration:					1.8 - 2.2 mg/kg	
Chromium 60 - 90 mg/kg Concentration:					60 - 90 mg/kg :	
Lead Concentration: <100 mg/kg Nickel 15 - 30 mg/kg Concentration:					15 - 30 mg/kg	

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 64 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A11SE (W)	920	1	275598 189245
	Concentration: BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A11SE (W)	954	1	275567 189227
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg 1.8 - 2.2 mg/kg 60 - 90 mg/kg	A15SW (E)	965	1	277674 189314
197	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Gwar-Y-Caeau Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 156667 Opencast Ceased Unknown Operator Not Supplied Carboniferous Llynfi Member Sandstone Located by supplier to within 10m	A14NW (E)	573	1	277281 189613
198	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Port Talbot Steel Slag Aggregates Port Talbot Steelworks, Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 27196 Steel Works Active Tarmac (A Crh Company) Not Supplied Not Available Ground Granulated Blast Furnace Slag - Addition, Cementitious Blast Furnace Slag Located by supplier to within 10m	A8NW (SW)	618	1	276290 188815
199	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pen-Y-Cae Quarries Pen-Y-Cae Quarries Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 245982 Opencast Ceased Unknown Operator Not Supplied Carboniferous Rhondda Member Sandstone Located by supplier to within 10m	A19SE (NE)	853	1	277385 190019

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 65 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
200	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pen-Y-Cae Quarries Pen-Y-Cae Quarries Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 156659 Opencast Ceased Unknown Operator Not Supplied Carboniferous Rhondda Member Sandstone Located by supplier to within 10m	A19SE (NE)	859	1	277435 189961
201	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Velindre Quarries Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 245983 Opencast Ceased Unknown Operator Not Supplied Carboniferous Rhondda Member Sandstone Located by supplier to within 10m	A18NE (N)	862	1	276695 190435
202	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pen-Y-Cae Quarries Pen-Y-Cae Quarries Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 15660 Opencast Ceased Unknown Operator Not Supplied Carboniferous Rhondda Member Sandstone Located by supplier to within 10m	A19SE (NE)	903	1	277366 190115
203	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Mount Pleasant Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 156655 Opencast Ceased Unknown Operator Not Supplied Carboniferous Llynfi Member Sandstone Located by supplier to within 10m	A18NW (N)	920	1	276529 190498
204	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pen-Y-Cae Quarries Pen-Y-Cae Quarries Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 156658 Opencast Ceased Unknown Operator Not Supplied Carboniferous Rhondda Member Sandstone Located by supplier to within 10m	A19NE (NE)	947	1	277326 190217
205	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Mount Pleasant Port Talbot, West Glamorgan British Geological Survey, National Geoscience Information Service 156656 Opencast Ceased Unknown Operator Not Supplied Carboniferous Rhondda Member Sandstone Located by supplier to within 10m	A23SE (N)	958	1	276803 190512

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 66 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration:	British Geological Survey, National Geoscience Information Service 276740, 190270 Topsoil Swansea 36.70 mg/kg	A18NE (N)	708	1	276740 190270
	Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:	72.10 mg/kg 210.60 mg/kg 62.10 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured	British Geological Survey, National Geoscience Information Service 276210, 190260 Topsoil Swansea 42.80 mg/kg	A17NE (NW)	776	1	276210 190260
	Concentration:					
	BGS Urban Soil Che Source: Sample Area: Count Id: Arsenic Minimum Concentration: Arsenic Average Concentration: Cadmium Minimum Concentration: Cadmium Minimum Concentration: Cadmium Maximum Concentration: Cadmium Maximum Concentration: Cadmium Maximum Concentration: Chromium Minimum Concentration: Chromium Minimum Concentration: Chromium Average Concentration: Lead Minimum Concentration: Lead Maximum Concentration: Lead Maximum Concentration: Lead Maximum Concentration: Lead Maximum Concentration: Nickel Minimum Concentration: Nickel Minimum Concentration: Nickel Maximum Concentration: Nickel Maximum Concentration: Nickel Maximum Concentration:	British Geological Survey, National Geoscience Information Service Swansea 368 8.00 mg/kg 79.00 mg/kg 2161.00 mg/kg 0.10 mg/kg 0.10 mg/kg 13.00 mg/kg 79.00 mg/kg 13.00 mg/kg	A13NW (N)	120	1	276608 189700
	Coal Mining Affecte Description:	d Areas In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A13SW (S)	0	8	276608 189471
	Mining Instability Mining Evidence: Source: Boundary Quality:	Inconclusive Coal Mining Ove Arup & Partners As Supplied	A13SW (S)	0	-	276608 189471
	Non Coal Mining Ar	eas of Great Britain				
	No Hazard	nible Cround Stability Hazarda				
	Potential for Collaps Hazard Potential:	sible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	276608 189471

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 67 of 104

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR		
	Potential for Collapsible Ground Stability Hazards							
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (S)	40	1	276603 189361		
	Potential for Comp	ressible Ground Stability Hazards						
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	276608 189471		
	Potential for Compi	ressible Ground Stability Hazards						
	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13NE (NE)	87	1	276764 189576		
	Potential for Comp	ressible Ground Stability Hazards						
	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13NE (N)	202	1	276625 189778		
	Potential for Groun	d Dissolution Stability Hazards						
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	276608 189471		
	Potential for Lands	lide Ground Stability Hazards						
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	276608 189471		
	Potential for Runni	ng Sand Ground Stability Hazards						
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	276608 189471		
	Potential for Runni	ng Sand Ground Stability Hazards						
	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13NE (NE)	87	1	276764 189576		
	Potential for Runnin	ng Sand Ground Stability Hazards						
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (NE)	123	1	276760 189626		
	Potential for Runni	ng Sand Ground Stability Hazards						
	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13NE (N)	202	1	276625 189778		
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards						
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (S)	0	1	276608 189471		
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards						
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	40	1	276603 189361		
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards						
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (NE)	123	1	276760 189626		
	Radon Potential - R	adon Affected Areas						
	Affected Area:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level).	A13SW (S)	0	1	276608 189471		
		Source: British Geological Survey, National Geoscience Information Service						
		Adon Protection Measures No radon protective measures are necessary in the construction of new	A13SW	0	1	276608		
	Source:	dwellings or extensions British Geological Survey, National Geoscience Information Service	(S)			189471		

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 68 of 104

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
206	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Davies Crane Hire Ltd Unit 30, Docks Road, The Docks, Port Talbot, West Glamorgan, SA13 1RA Crane Hire, Sales & Service Active Automatically positioned to the address	A13NW (NW)	0	-	276564 189491
207	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Suite Centres Direct The Docks, Port Talbot, West Glamorgan, SA13 1RE Furniture Manufacturers - Home & Office Inactive Manually positioned within the geographical locality	A13SE (E)	0	-	276634 189480
208	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Lounge Products Lount 11-12 The Docks, Port Talbot, West Glamorgan, SA13 1RE Upholstery Manufacturers Inactive Manually positioned within the geographical locality	A13SW (SW)	9	-	276572 189394
209	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Civil & Marine Slag Cement Ltd Docks Road, The Docks, Port Talbot, West Glamorgan, SA13 1RA Cement Manufacturers & Distributors Inactive Automatically positioned to the address	A13SW (SW)	29	-	276479 189385
209	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Autolec Diesel Services (Wales) Ltd Docks Road, The Docks, Port Talbot, West Glamorgan, SA13 1RA Fuel Injection Services Inactive Automatically positioned to the address	A13SW (SW)	29	-	276479 189385
209	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries A & S Commercial Repairs Docks Road, The Docks, Port Talbot, West Glamorgan, SA13 1RA Commercial Vehicle Servicing, Repairs, Parts & Accessories Inactive Automatically positioned to the address	A13SW (SW)	29	-	276479 189385
209	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Gregory Auto Repairs Somerset La, Port Talbot, West Glamorgan, SA13 1TY Car Body Repairs Inactive Manually positioned within the geographical locality	A13SW (W)	58	-	276454 189420
210	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries T W I Technology Centre Wales Harbourside Business Park, Harbourside Road, Port Talbot, West Glamorgan, SA13 1SB Engineering Services Inactive Automatically positioned to the address	A13SW (W)	73	-	276453 189456
211	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries M P G Tyres & Exhausts Ltd Unit 16, Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Tyre Repairs & Retreading Active Automatically positioned to the address	A13NE (N)	103	-	276668 189648
211	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Michael J Farmer Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Car Body Repairs Inactive Automatically positioned to the address	A13NE (N)	103	-	276668 189648
211	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Mpg Tyre & Exhausts Unit 16, Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Garage Services Inactive Automatically positioned to the address	A13NE (N)	103	-	276668 189648

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 69 of 104

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
211	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries G E S Court Workshop,Off Cramick Way, Port Talbot, West Glamorgan, SA13 2RR Cleaning Services - Commercial Inactive Manually positioned to the road within the address or location	A13NE (N)	105	-	276648 189662
211	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries M P G Tyre & Exhausts Port Talbot Railway Station, Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Tyre Dealers Inactive Automatically positioned to the address	A13NE (N)	148	-	276663 189704
212	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Astra Park Service Centre Unit 5, Astra Business Park, Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Garage Services Inactive Automatically positioned to the address	A13NW (N)	111	-	276552 189687
213	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Texaco Port Talbot Service Station, Talbot Road, Port Talbot, West Glamorgan, SA13 1HN Petrol Filling Stations Inactive Automatically positioned to the address	A13NE (E)	122	-	276821 189553
213	Contemporary Trad Name: Location: Classification: Status:		A13NE (E)	122	-	276821 189553
213	Contemporary Trad Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A13NE (E)	122	-	276821 189553
214	Contemporary Trad Name: Location: Classification: Status:	* '	A13SW (W)	126	-	276397 189461
215	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries G T E Motorhouse Ltd Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Car Dealers Inactive Manually positioned to the road within the address or location	A13NE (N)	127	-	276638 189694
215	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries C & C Auto Spares Unit 10 Cramic Way, Port Talbot, West Glamorgan, SA13 1RU Car Breakers & Dismantlers Inactive Manually positioned to the road within the address or location	A13NW (N)	158	-	276612 189735
216	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries W Doyle Transport Llewellyns Quay, Port Talbot, SA13 1RF Road Haulage Services Inactive Automatically positioned to the address	A13SE (SE)	138	-	276689 189278
217	Contemporary Trad Name: Location: Classification: Status:		A13NE (NE)	164	-	276817 189614

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 70 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
218	Name: Location: Classification: Status: Positional Accuracy:	Design Printers 1, Royal Buildings, 16, Talbot Road, Port Talbot, West Glamorgan, SA13 1DN Printers Inactive Manually positioned to the address or location	A13NE (E)	168	-	276879 189544
	Contemporary Trad	e Directory Entries				
218	Name: Location: Classification: Status: Positional Accuracy:	Mgm Gates Commercial Buildings,Talbot Rd, Port Talbot, West Glamorgan, SA13 1DR Wrought Ironwork Inactive Manually positioned to the address or location	A13NE (E)	186	-	276908 189504
	Contemporary Trad	e Directory Entries				
218	Name: Location: Classification: Status: Positional Accuracy:	D W Jones Ltd Empire Building, Beverley Street, Port Talbot, West Glamorgan, SA13 1DY Printers Inactive Automatically positioned to the address	A13NE (E)	189	-	276898 189552
	Contemporary Trad	e Directory Entries				
218	Name: Location: Classification: Status: Positional Accuracy:	Sp Power Washers Empire Building, Beverley Street, Port Talbot, SA13 1DY Car Washing & Polishing Equipment & Supplies Inactive Automatically positioned to the address	A13NE (E)	189	-	276898 189552
	Contemporary Trad	e Directory Entries				
218	Name: Location:	Stitching With Elegance Commercial Buildings, Beverley Street, Port Talbot, West Glamorgan, SA13 1DY	A13NE (E)	194	-	276914 189514
	Classification: Status: Positional Accuracy:	Soft Furnishings - Manufacturers Inactive Automatically positioned to the address				
	Contemporary Trad	-				
219	Name: Location: Classification: Status: Positional Accuracy:	Fairwood Holdings Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Metal Products - Fabricated Inactive Automatically positioned to the address	A13SE (SE)	173	-	276784 189273
	Contemporary Trad					
219	Name: Location: Classification: Status:	B H L Rolls Manufacturing Ltd Llewellyns Quay, The Docks, Port Talbot, West Glamorgan, SA13 1RE Metal Products - Fabricated Inactive Automatically positioned to the address	A13SE (SE)	173	-	276784 189273
	Contemporary Trad	e Directory Entries				
219	Name: Location: Classification: Status: Positional Accuracy:	Rhino Doors Maritime Road, Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Door Manufacturers - Industrial Active Manually positioned to the address or location	A13SE (SE)	212	-	276806 189241
	Contemporary Trad	e Directory Entries				
220	Name: Location:	Lounge Products Unit 1a, Towngate Business Centre, Cramic Way, Port Talbot, West Glamorgan, SA13 1RY	A13NW (N)	190	-	276545 189766
	Classification: Status: Positional Accuracy:	Furniture Manufacturers - Home & Office Inactive Manually positioned to the address or location				
	Contemporary Trad	e Directory Entries				
221	Name: Location: Classification: Status: Positional Accuracy:	Folland Joinery 49, Talbot Road, Port Talbot, West Glamorgan, SA13 1HN Builders' Merchants Inactive Automatically positioned to the address	A13SE (E)	203	-	276923 189444
	Contemporary Trad					
221	Name: Location: Classification: Status:	West Wales Home Care 49, Talbot Road, Port Talbot, West Glamorgan, SA13 1HN Vacuum Cleaners - Sales & Service Inactive Automatically positioned to the address	A13SE (E)	203	-	276923 189444

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 71 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
221	Contemporary Trade Directory Entries Name: Oakwood Energy Ltd Location: 49, Talbot Road, Port Talbot, West Glamorgan, SA13 1HN Classification: Fuel Dealers Status: Inactive Positional Accuracy: Automatically positioned to the address	A13SE (E)	203	-	276923 189444
221	Contemporary Trade Directory Entries Name: Pirson Montage Location: 49, Talbot Road, Port Talbot, West Glamorgan, SA13 1HN Classification: Refractory Materials & Supplies Status: Inactive Positional Accuracy: Automatically positioned to the address	A13SE (E)	203	-	276923 189444
222	Contemporary Trade Directory Entries Name: Loxam Access Location: Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Classification: Railways Status: Inactive Positional Accuracy: Automatically positioned to the address	A13SE (S)	205	-	276654 189207
223	Contemporary Trade Directory Entries Name: Coates Rentair Location: Coates Rentair, Dock Road, Port Talbot, SA13 1RA Classification: Air Compressors Status: Inactive Positional Accuracy: Automatically positioned to the address	A13SW (W)	233	-	276279 189446
224	Contemporary Trade Directory Entries Name: 1st Class Furniture Location: Astra Business Park, Cramic Way, Port Talbot, West Glamorga Classification: Furniture Manufacturers - Home & Office Status: Inactive Positional Accuracy: Automatically positioned to the address	n, SA13 1RU (N)	247	-	276484 189806
225	Contemporary Trade Directory Entries Name: Astra Park Service Centre Ltd Location: Oakwood Lane, PORT TALBOT, West Glamorgan, SA13 1DF Classification: Garage Services Status: Active Positional Accuracy: Automatically positioned to the address	A13NE (NE)	247	-	276863 189687
226	Contemporary Trade Directory Entries Name: Cockburn South West Ltd Location: Kenworth Buildings, Llewellyns Quay, Port Talbot, West Glamor 1RF Classification: Electrical Engineers Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	gan, SA13 A13SE (SE)	250	-	276824 189208
227	Contemporary Trade Directory Entries Name: Town Tyre Services Location: Station Road, Port Talbot, West Glamorgan, SA13 1NW Classification: Tyre Dealers Status: Active Positional Accuracy: Automatically positioned to the address	A13NE (N)	251	-	276674 189814
228	Contemporary Trade Directory Entries Name: Panel Match Location: 14, Station Road, Port Talbot, West Glamorgan, SA13 1JB Classification: Mobile Phone Accessories and Car Kits Status: Inactive Positional Accuracy: Manually positioned to the address or location	A13NE (NE)	252	-	276749 189777
228	Contemporary Trade Directory Entries Name: Employment Solutions.Com Location: 24, Station Road, Port Talbot, West Glamorgan, SA13 1JB Classification: Reclaiming - Waste Products Status: Inactive Positional Accuracy: Automatically positioned to the address	A13NE (N)	276	-	276730 189813
228	Contemporary Trade Directory Entries Name: Coloursmart Location: 20, Station Road, Port Talbot, West Glamorgan, SA13 1JB Classification: Printers Status: Inactive Positional Accuracy: Automatically positioned to the address	A13NE (NE)	276	-	276749 189803

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 72 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
228	Name: Location: Classification: Status:	Coloursmart 18, Station Road, Port Talbot, West Glamorgan, SA13 1JB Printers Inactive Automatically positioned to the address	A13NE (NE)	276	-	276749 189803
	Contemporary Trad	e Directory Entries				
229	Name: Location: Classification: Status:	R & R (Wales) Ltd Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Engineers - General Inactive Automatically positioned to the address	A8NE (S)	280	-	276691 189135
	Contemporary Trad	e Directory Entries				
229	Name: Location: Classification: Status:	Planguard Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Garage Services Active Automatically positioned to the address	A8NE (S)	280	-	276691 189135
	Contemporary Trad	e Directory Entries				
229	Name: Location: Classification: Status:	Independent Cleaning Services (South Wales) Ltd Llewellyns Quay, The Docks, Port Talbot, West Glamorgan, SA13 1SD Commercial Cleaning Services Inactive Automatically positioned to the address	A8NE (S)	292	-	276668 189122
229	Contemporary Trad Name: Location: Classification: Status:	J E S Port Talbot Ltd Phoenix Wharf,Docks Road, The Docks, Port Talbot, West Glamorgan, SA13 1RA Machine Shops Inactive	A8NE (S)	292	-	276668 189122
		Manually positioned within the geographical locality				
	Contemporary Trad	e Directory Entries				
229	Name: Location: Classification: Status:	Independent Cleaning Services (South Wales) Ltd Llewellyns Quay, The Docks, Port Talbot, West Glamorgan, SA13 1SD Cleaning Services - Commercial Inactive Automatically positioned to the address	A8NE (S)	292	-	276668 189122
	Contemporary Trad					
229	Name: Location: Classification: Status:	Speedy Asset Services Unit 1, Llewellyns Quay, Port Talbot, SA13 1RF Lifting Equipment Inactive Automatically positioned to the address	A8NE (S)	293	-	276667 189121
	Contemporary Trad	··				
229	Name: Location: Classification: Status:	Spraytech UNIT 5, LLEWELLYNS QUAY, LLEWELLYNS ROAD, PORT TALBOT, SA13 1RF Car Body Repairs Active Automatically positioned to the address	A8NE (S)	309	-	276672 189105
		• • • • • • • • • • • • • • • • • • • •				
230	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Astra Service Centre Oakwood Street, Port Talbot, West Glamorgan, SA13 1NF Mot Testing Centres Inactive Automatically positioned to the address	A13NE (NE)	284	-	276863 189742
	Contemporary Trad					
231	Name: Location: Classification:	Paul'S Tyres 1 Courtland Building,Courtland Place, Port Talbot, West Glamorgan, SA13 1JJ Tyre Dealers	A13NE (NE)	291	-	276783 189805
	Status:	Active				
	-	Manually positioned to the address or location				
232	Contemporary Trad Name: Location: Classification:	e Directory Entries Fairwood Engineering Ltd LLEWELLYNS QUAY, LLEWELLYNS ROAD, PORT TALBOT, SA13 1RF Precision Engineers	A8NE (SE)	291	-	276781 189143
	Status:	Active Automatically positioned to the address				

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 73 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
233	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries K & J Pipeline Supplies Ltd UNIT 7, LLEWELLYNS QUAY, PORT TALBOT, SA13 1RF Engineering Materials Inactive Automatically positioned to the address	A8NE (S)	295	-	276726 189125
233	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Talbot Hydraulics Unit 7, Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Hydraulic Equipment & Accessories - Sales & Service Active Automatically positioned to the address	A8NE (S)	304	-	276731 189116
233	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Quay Corporate Ltd Unit 3, Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Clothing & Fabrics - Manufacturers Inactive Automatically positioned to the address	A8NE (S)	304	-	276731 189116
233	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Turner Fluidpower Unit 3, Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Hydraulic Equipment & Accessories - Sales & Service Inactive Automatically positioned to the address	A8NE (S)	304	-	276731 189116
233	Contemporary Trad Name: Location: Classification: Status:	··	A8NE (S)	304	-	276731 189116
234	Contemporary Trad Name: Location: Classification: Status:		A18SW (NW)	306	-	276437 189849
234	Contemporary Trad Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A18SW (NW)	306	-	276437 189849
234	Contemporary Trad Name: Location: Classification: Status:		A18SW (NW)	306	-	276437 189849
235	Contemporary Trad Name: Location: Classification: Status:		A14SW (E)	316	-	277033 189416
236	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Evolve Electrical Engineering 21, BROAD STREET, PORT TALBOT, SA13 1EW Electrical Engineers Active Automatically positioned to the address	A14NW (E)	327	-	277043 189549
237	Contemporary Trad Name: Location: Classification: Status:		A12NE (NW)	335	-	276250 189648
238	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Wales Valley Music 77 Station Rd, Port Talbot, West Glamorgan, SA13 1NW Musical Instrument - Manufacturers Inactive Manually positioned to the address or location	A18SE (N)	336	-	276638 189911

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 74 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
239	Location: Classification: Status:	Directory Entries C P Harvey (Recycling) Ltd Old Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Scrap Metal Merchants Inactive Automatically positioned in the proximity of the address	A13NW (NW)	337	-	276291 189747
240	Location: Classification: Status:	Directory Entries Runtech Hauliers LLEWELLYNS QUAY, LLEWELLYNS ROAD, PORT TALBOT, SA13 1RF Road Haulage Services Active Automatically positioned to the address	A8NE (S)	363	-	276691 189052
241	Location: Classification: Status:	Directory Entries Raymond Joseph Engineers Ltd Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Engineers - General Inactive Automatically positioned to the address	A13NW (NW)	366	-	276287 189795
241	Location: Classification: Status:	Directory Entries Jem Recycling Ltd Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Waste Disposal Services Inactive Manually positioned to the address or location	A13NW (NW)	366	-	276287 189795
241	Location: Classification: Status:	Directory Entries Innotech (Wales) Ltd Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Engineers - General Inactive Automatically positioned to the address	A13NW (NW)	366	-	276287 189795
241	Location: Classification: Status:	Directory Entries The Recycling Co Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Reclaiming - Waste Products Inactive Manually positioned to the address or location	A13NW (NW)	366	-	276287 189795
241	Location: Classification: Status:	Directory Entries The Recycling Co Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Recycling Centres Inactive Manually positioned to the address or location	A13NW (NW)	367	-	276286 189794
241	Location: Classification: Status:	Directory Entries M P L S Engineering Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Engineers - General Inactive Automatically positioned to the address	A18SW (NW)	385	-	276294 189834
242	Location: Classification: Status:	Directory Entries M C Windows Cramic Way, The Docks, Port Talbot, West Glamorgan, SA13 1RS PVC-U Products - Manufacturers & Suppliers Inactive Automatically positioned to the address	A18SW (NW)	378	-	276378 189897
243	Location: Classification: Status:	Directory Entries Spraytech Runtech, Llewellyns Quay, Llewellyns Road, Port Talbot, SA13 1RF Paint Spraying Equipment & Accessories Inactive Automatically positioned to the address	A8NE (S)	387	-	276643 189023
244	Location: Classification: Status:	Directory Entries Valley Waste & Recycling Ltd The Recycling Company UK Ltd., Byass Works, Dock Road, Port Talbot, SA13 1RS Recycling Services Inactive Automatically positioned to the address	A12NE (NW)	398	-	276197 189686

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 75 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
244	Name: Location:	A W D Group Byass Works,Dock Road, The Docks, Port Talbot, West Glamorgan, SA13 1RS	A12NE (NW)	420	-	276178 189697
	Classification: Status: Positional Accuracy:	Recycling Services Active Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
245	Name: Location: Classification: Status:	Mitsui Babcock Energy Ltd Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Mechanical Engineers Inactive Automatically positioned to the address	A8NE (S)	403	-	276755 189020
	-					
245	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	J M Fabweld Ltd Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Mechanical Engineers Active Automatically positioned to the address	A8NE (S)	403	-	276755 189020
	Contemporary Trad					
245	Name: Location: Classification: Status:	Pump Supplies Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Pumps - Sales, Servicing & Repairs Active Automatically positioned to the address	A8NE (S)	403	-	276755 189020
	Contemporary Trad	**				
245	Name: Location: Classification: Status:	Pamarch (1997) Ltd Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Coating Specialists Inactive Automatically positioned to the address	A8NE (S)	403	-	276755 189020
	Contemporary Trad					
245	Name: Location: Classification: Status: Positional Accuracy:	Pump Supplies Llewellyns Quay, Port Talbot, West Glamorgan, SA13 1RF Pumps - Sales, Servicing & Repairs Inactive Automatically positioned to the address	A8NE (S)	403	-	276755 189020
	Contemporary Trad	e Directory Entries				
246	Name: Location: Classification: Status:	Your Own Cash Machine Ltd 103, Station Road, Port Talbot, West Glamorgan, SA13 1NR Cash Registers & Check-Out Equipment Inactive Automatically positioned to the address	A18SW (N)	408	-	276590 189988
	Contemporary Trad	e Directory Entries				
246	Name: Location: Classification: Status: Positional Accuracy:	Supasnaps 113, Station Road, Port Talbot, West Glamorgan, SA13 1NR Photographic Processors Inactive Automatically positioned to the address	A18SW (N)	441	-	276586 190021
	Contemporary Trad	e Directory Entries				
247	Name: Location: Classification: Status: Positional Accuracy:	Whirlpool Launderette Ltd 96, Talbot Road, Port Talbot, West Glamorgan, SA13 1LB Dry Cleaners Active Automatically positioned to the address	A14SW (SE)	421	-	277085 189240
	Contemporary Trad					
247	Name: Location: Classification: Status:	Whirlpool Launderette Ltd 96, Talbot Road, Port Talbot, West Glamorgan, SA13 1LB Laundries & Launderettes Inactive Automatically positioned to the address	A14SW (SE)	421	-	277085 189240
	Contemporary Trad	e Directory Entries				
247	Name: Location: Classification: Status:	Margam Windows & Doors Ltd Cwrt-Ucha Terr, Port Talbot, West Glamorgan, SA13 1LD PVC-U Products - Manufacturers & Suppliers Inactive Manually positioned to the address or location	A14SW (SE)	448	-	277086 189190

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 76 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
248	Contemporary Trade Directory Entries Name: Phil Reed Cleaning Location: 14, Gower Street, Port Talbot, West Glamorgan, SA13 1SL Classification: Carpet, Curtain & Upholstery Cleaners Status: Active Positional Accuracy: Automatically positioned to the address	A14SW (E)	427	-	277124 189322
249	Contemporary Trade Directory Entries Name: A T Auto Location: Cwrt-Ucha Terr, Port Talbot, West Glamorgan, SA13 1LD Classification: Garage Services Status: Inactive Positional Accuracy: Manually positioned to the address or location	A14SW (SE)	454	-	277090 189185
249	Contemporary Trade Directory Entries Name: L & J Car Repairs Location: Cwrt-Ucha Ter, Port Talbot, West Glamorgan, SA13 1LD Classification: Car Body Repairs Status: Inactive Positional Accuracy: Automatically positioned to the address	A14SW (SE)	458	-	277092 189181
249	Contemporary Trade Directory Entries Name: M R M Automotive Location: Cwrt-Ucha Terrace, Port Talbot, SA13 1LD Classification: Garage Services Status: Active Positional Accuracy: Automatically positioned to the address	A9NW (SE)	470	-	277082 189147
249	Contemporary Trade Directory Entries Name: Motor Mender Location: 9, Cwrt-Ucha Terrace, Port Talbot, West Glamorgan, SA13 1LD Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address	A14SW (SE)	481	-	277109 189165
250	Contemporary Trade Directory Entries Name: John Young & Co (Engineers) Ltd Location: Green Park Industrial Estate, Port Talbot, West Glamorgan, SA12 Classification: Engineers - General Status: Inactive Positional Accuracy: Automatically positioned to the address	A18SW (NW)	466	-	276291 189942
250	Contemporary Trade Directory Entries Name: Talbot Printing Co Ltd Location: Green Park Industrial Estate, Port Talbot, West Glamorgan, SA12 Classification: Printers Status: Inactive Positional Accuracy: Automatically positioned to the address	A18SW 2 6NT (NW)	466	-	276291 189942
250	Contemporary Trade Directory Entries Name: Unigate Dairies Ltd Location: Green Park Indust Est, Port Talbot, West Glamorgan, SA12 6NT Classification: Dairies Status: Inactive Positional Accuracy: Manually positioned to the address or location	A18SW (NW)	466	-	276290 189942
251	Contemporary Trade Directory Entries Name: Afan Atom Electronic Repair Centre Location: 127a, Station Road, Port Talbot, West Glamorgan, SA13 1NR Classification: Electronic Engineers Status: Inactive Positional Accuracy: Automatically positioned to the address	A18SW (N)	480	-	276568 190060
251	Contemporary Trade Directory Entries Name: Computopia Location: RiversideUnit 36, Port Talbot, West Glamorgan, SA13 1EJ Classification: Computer Manufacturers Status: Inactive Positional Accuracy: Manually positioned within the geographical locality	A18SW (N)	506	-	276508 190080
251	Contemporary Trade Directory Entries Name: Olympia Dry Cleaners Location: 5, Riverside, Port Talbot, West Glamorgan, SA13 1EJ Classification: Dry Cleaners Status: Inactive Positional Accuracy: Automatically positioned to the address	A18SW (N)	509	-	276530 190086
252	Contemporary Trade Directory Entries Name: M R M Automotive Ltd Location: Cwrt-Ucha Terrace, Port Talbot, West Glamorgan, SA13 1LD Classification: Garage Services Status: Inactive Positional Accuracy: Automatically positioned to the address	A9NW (SE)	485	-	277088 189132

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 77 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
253	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Dee-Creased Ironing 11, Rice Street, Port Talbot, SA13 1SN Ironing & Home Laundry Services Active Automatically positioned to the address	A14SW (E)	502	-	277181 189255
254	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Spraycare Body Repairs 22, Forge Road, Port Talbot, West Glamorgan, SA13 1NU Car Body Repairs Inactive Automatically positioned to the address	A18SE (N)	512	-	276697 190080
254	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Anglia Z7a, Forge Road, Port Talbot, West Glamorgan, SA13 1US Blinds, Awnings & Canopies Inactive Automatically positioned to the address	A18SE (N)	551	-	276716 190115
254	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Anglia Window Blinds 27a, Forge Road, Port Talbot, SA13 1US Blinds, Awnings & Canopies Inactive Automatically positioned to the address	A18SE (N)	551	-	276716 190115
255	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Orange West Scaffolding Green Pk Ind Est, Port Talbot, West Glamorgan, SA12 6NU Scaffolding & Work Platforms Inactive Manually positioned within the geographical locality	A17SE (NW)	521	-	276154 189874
256	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Margam Engineering & Welding Co Ltd North Bank, The Docks, Port Talbot, West Glamorgan, SA13 1RE Engineers - General Inactive Automatically positioned to the address	A12SE (W)	531	-	275978 189343
256	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Talbot Block Ltd North Bank, The Docks, Port Talbot, West Glamorgan, SA13 1RE Builders' Merchants Active Automatically positioned to the address	A12SE (W)	531	-	275978 189343
256	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Initial G W S Ltd North Bank, The Docks, Port Talbot, West Glamorgan, SA13 1RE Crane Hire, Sales & Service Inactive Automatically positioned to the address	A12SE (W)	531	-	275978 189343
256	Contemporary Trade Name: Location: Classification: Status:		A12SE (W)	531	-	275978 189343
256	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries D W E Hydraulics North Bank, The Docks, Port Talbot, West Glamorgan, SA13 1RE Hydraulic Equipment & Accessories - Sales & Service Active Automatically positioned to the address	A12SE (W)	531	-	275978 189343
257	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Valley Industrial Services Ltd The Docks, Port Talbot, West Glamorgan, SA13 1RS Commercial Cleaning Services Inactive Automatically positioned to the address	A12NE (W)	533	-	276040 189662
258	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Valley Reclamation Ltd Green Park Industrial Estate, Port Talbot, West Glamorgan, SA12 6NU Scrap Metal Merchants Inactive Automatically positioned in the proximity of the address	A17SE (NW)	551	-	276096 189837

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 78 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
258	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Builders Supplies Port Talbot Ltd Green Park Industrial Estate, Port Talbot, West Glamorgan, SA12 6NU Builders' Merchants Inactive Manually positioned within the geographical locality	A17SE (NW)	583	-	276076 189866
259	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Blind Soft Forge Rd, Port Talbot, West Glamorgan, SA13 1US Blinds, Awnings & Canopies Inactive Manually positioned to the road within the address or location	A18SE (N)	558	-	276786 190100
260	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Celtic Specialist Treatments Ltd The Docks, Port Talbot, West Glamorgan, SA13 1RH Metal Finishing Services Inactive Automatically positioned to the address	A7NE (SW)	560	-	276062 189052
260	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries A & S Commercial Vehicle Repairs A and S Commercial Repairs Ltd, Road From Riverside Road to Harbour House, Port Talbot, SA13 1RA Garage Services Inactive Automatically positioned to the address	A7NE (SW)	562	-	276057 189055
261	Contemporary Trad Name: Location: Classification: Status:		A17SE (NW)	563	-	276154 189944
262	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Bollom Ltd 23, Aberafan Centre, Port Talbot, West Glamorgan, SA13 1PB Dry Cleaners Inactive Automatically positioned to the address	A18SW (N)	578	-	276407 190131
262	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Brighthouse 21-22, Aberafan Centre, Port Talbot, SA13 1PB Electrical Goods Sales, Manufacturers & Wholesalers Inactive Automatically positioned to the address	A18SW (N)	583	-	276409 190136
263	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Homestyle By Fads Aberafan Centre, Port Talbot, West Glamorgan, SA13 1PB Wallpapers & Wall Coverings Inactive Manually positioned to the address or location	A18SW (N)	581	-	276484 190152
264	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries D W E Hydraulic North Bank Road, The Docks, Port Talbot, West Glamorgan, SA13 1RE Plant & Machinery Repairs Active Manually positioned to the address or location	A12SW (W)	591	-	275915 189406
265	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Sinclair Volkswagen Port Talbot DAN-Y-BRYN ROAD, PORT TALBOT, SA13 1AL Car Dealers Active Automatically positioned to the address	A19SW (NE)	599	-	277153 189897
265	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Sinclair Garages Ltd Dan-y-Bryn Road, Port Talbot, West Glamorgan, SA13 1AL Car Dealers Inactive Automatically positioned to the address	A19SW (NE)	608	-	277149 189914

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 79 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
266	Location: Classification: Status:	Directory Entries Harwoods Water Street, Port Talbot, SA12 6LF Garage Services Inactive Automatically positioned to the address	A17SE (NW)	614	-	276115 189977
266	Location: Classification: Status:	e Directory Entries B Harwood & Son Ltd Water Street, Port Talbot, West Glamorgan, SA12 6LF Mot Testing Centres Active Automatically positioned to the address	A17SE (NW)	623	-	276094 189964
267	Location: Classification: Status:	E Directory Entries Steel Solutions Wales 7, Mayfield Street, Port Talbot, West Glamorgan, SA13 1EY Metal Products - Fabricated Inactive Automatically positioned to the address	A14SE (E)	616	-	277340 189480
268	Location: Classification: Status:	Directory Entries Clear Force 12, Pont Street, Port Talbot, SA13 1AN Waste Disposal Services Inactive Automatically positioned to the address	A19SW (NE)	625	-	277113 189975
269	Location: Classification: Status:	E Directory Entries Klick 8, Aberafan Centre, Port Talbot, West Glamorgan, SA13 1PB Photographic Processors Inactive Automatically positioned to the address	A18NW (N)	645	-	276402 190199
269	Location: Classification: Status:	e Directory Entries Bollom Ltd Aberafan Centre, Port Talbot, West Glamorgan, SA13 1PB Dry Cleaners Inactive Manually positioned to the address or location	A18NW (N)	660	-	276380 190208
270	Location: Classification: Status:	e Directory Entries Ats Euromaster Ltd Afan Way, PORT TALBOT, West Glamorgan, SA12 6NR Tyre Dealers Active Automatically positioned to the address	A12NE (W)	649	-	275949 189744
271	Location: Classification: Status:	e Directory Entries Compressed Air Services Ltd Docks Road, The Docks, Port Talbot, SA13 1RA Air Compressors Inactive Automatically positioned to the address	A7SE (SW)	657	-	276223 188801
271	Location: Classification: Status:	e Directory Entries Brynbach Coal Docks Road, The Docks, Port Talbot, SA13 1RA Coal & Smokeless Fuel Merchants & Distributors Inactive Automatically positioned to the address	A7SE (SW)	657	-	276223 188801
272	Location: Classification: Status:	E Directory Entries Skelton Thomas Engineering Ltd Water Street, Port Talbot, West Glamorgan, SA12 6LL Valve Manufacturers & Suppliers Inactive Automatically positioned to the address	A12NE (NW)	685	-	275942 189820
273	Location: Classification: Status:	Directory Entries D M D Phoenix Wharf, The Docks, Port Talbot, SA13 1RA Metal Products - Fabricated Inactive Automatically positioned to the address	A8SW (S)	685	-	276343 188728
273	Classification: Status:	Directory Entries Galliver Engineering Ltd Phoenix Wharf, The Docks, Port Talbot, SA13 1RA Precision Engineers Inactive Automatically positioned to the address	A8SW (S)	685	-	276343 188728

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 80 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
274	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Slade Colour Tudor St, Port Talbot, West Glamorgan, SA13 1YF Printers Inactive Manually positioned within the geographical locality	A18NE (N)	707	-	276808 190250
275	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Cvc Recovery & Quality Used Parts 15, St. Mary Street, Port Talbot, West Glamorgan, SA12 6DU Car Breakdown & Recovery Services Inactive Automatically positioned to the address	A17NE (NW)	717	-	276210 190192
276	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Olympus Catering Ltd Isaacs Place, Port Talbot, West Glamorgan, SA12 6NP Catering Equipment Inactive Automatically positioned in the proximity of the address	A12NW (NW)	734	-	275876 189791
276	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Proclean Isaacs PI, Port Talbot, West Glamorgan, SA12 6NP Commercial Cleaning Services Inactive Manually positioned to the road within the address or location	A17SW (NW)	774	-	275849 189828
277	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Tesco Petrol Station Prior Street, Port Talbot, SA13 1YA Petrol Filling Stations Active Automatically positioned to the address	A18NE (N)	739	-	276698 190310
278	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Afan Way Services Water St, Port Talbot, West Glamorgan, SA12 6LL Petrol Filling Stations Inactive Manually positioned to the road within the address or location	A17SW (NW)	746	-	275904 189888
278	Contemporary Trad Name: Location: Classification: Status:		A17SW (NW)	750	-	275906 189902
278	Contemporary Trad Name: Location: Classification: Status:		A17SW (NW)	771	-	275886 189909
279	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries The Range Co Unit 4, Isaacs Place, Port Talbot, SA12 6NP Catering Equipment Inactive Automatically positioned to the address	A12NW (W)	763	-	275810 189707
279	Contemporary Trad Name: Location: Classification: Status:		A12NW (W)	769	-	275803 189705
280	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Oates Engineering Services Unit 1, Isaacs Place, Port Talbot, West Glamorgan, SA12 6NP Engineering Services Inactive Automatically positioned to the address	A12NW (W)	784	-	275785 189703
280	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries R P Tyres & Exhaust Centre Unit 4, Henshaw Street, Port Talbot, SA12 6NH Tyre Dealers Inactive Automatically positioned to the address	A12NW (W)	818	-	275751 189707

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 81 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
280	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Celtic Leather & Fabric Unit 1, Henshaw Street, Port Talbot, SA12 6NH Textile Manufacturing Inactive Automatically positioned to the address	A12NW (W)	819	-	275759 189729
280	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Site Heat Treatment Services Ltd Unit 2, Henshaw Street, Port Talbot, West Glamorgan, SA12 6NH Heat Treatment - Metals Active Automatically positioned to the address	A12NW (W)	819	-	275759 189729
281	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Ready Steel Reinforcements Talbot Wharf, The Docks, Port Talbot, West Glamorgan, SA13 1RH Concrete Reinforcements Inactive Manually positioned within the geographical locality	A7NW (SW)	790	-	275830 188984
282	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries J E S Group Ltd Phoenix Wharf, The Docks, Port Talbot, West Glamorgan, SA13 1RA Mechanical Engineers Active Automatically positioned to the address	A8SE (S)	805	-	276773 188616
283	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Celtic Engineering Services Ltd Phoenix Wharf, The Docks, Port Talbot, West Glamorgan, SA13 1RA Engineering Services Inactive Automatically positioned to the address	A8SE (S)	825	-	276629 188578
284	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Ron Evans Pies 17, Commercial Road, PORT TALBOT, West Glamorgan, SA13 1LN Food Products - Manufacturers Active Automatically positioned to the address	A9NE (SE)	854	-	277394 188923
284	Contemporary Trad Name: Location: Classification: Status:		A9NE (SE)	870	-	277405 188911
285	Contemporary Trad Name: Location: Classification: Status:		A18NE (N)	897	-	276790 190453
285	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Afan Valley Motors Gramavon Road, PORT TALBOT, West Glamorgan, SA12 8RF Car Dealers Inactive Automatically positioned to the address	A18NE (N)	897	-	276790 190453
286	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Be Directory Entries Body Repair Centre Henshaw St, Port Talbot, West Glamorgan, SA12 6NH Car Body Repairs Inactive Manually positioned to the road within the address or location	A12NW (W)	906	-	275702 189820
286	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Morris Windows Factory, Henshaw St, Port Talbot, West Glamorgan, SA12 6NH PVC-U Products - Manufacturers & Suppliers Inactive Manually positioned to the road within the address or location	A12NW (W)	907	-	275702 189822
287	Contemporary Trad Name: Location: Classification: Status:	**	A17SW (W)	915	-	275698 189834

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 82 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
287	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Dragon Heat Transfer Ltd Unit 3,Henshaw St, Port Talbot, West Glamorgan, SA12 6NH Car Radiator Servicing & Repairs Inactive Manually positioned to the road within the address or location	A17SW (W)	921	-	275696 189846
287	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Port Talbot Exhaust & Service Centre 5, Henshaw Street, Port Talbot, West Glamorgan, SA12 6NH Exhaust & Shock Absorber Centres Inactive Automatically positioned to the address	A17SW (W)	923	-	275688 189831
287	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Universal Heat Transfer Ltd 3, Henshaw Street, Port Talbot, West Glamorgan, SA12 6NH Heat Exchangers Inactive Automatically positioned to the address	A17SW (W)	926	-	275687 189837
287	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Celtic Leather & Fabric Upholstery Ltd 1, Henshaw Street, Port Talbot, West Glamorgan, SA12 6NH Furniture Manufacturers - Home & Office Inactive Automatically positioned to the address	A17SW (W)	930	-	275685 189843
287	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Boat Bits 1, Glyn Street, Port Talbot, West Glamorgan, SA12 6NF Chandlers Inactive Automatically positioned to the address	A17SW (W)	962	-	275654 189850
288	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Speedgold Ltd Pierhead, The Docks, Port Talbot, West Glamorgan, SA13 1RH Precision Engineers Inactive Automatically positioned to the address	A7NW (SW)	928	-	275668 188996
289	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries R Davies Ltd 2, Sea View Terrace, Baglan, Port Talbot, SA12 8HW Garage Services Active Automatically positioned to the address	A23SW (N)	982	-	276291 190517
290	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Port Talbot Service Station Talbot Road , , Port Talbot, Neath Port Talbot, SA13 1HN Low Prices Always Petrol Station Open Automatically positioned to the address	A13NE (E)	122	-	276821 189553
291	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Sinclair Garage Bridge Terrace Dan Y Bryn Road , , Port Talbot, Neath Port Talbot, SA13 1AL Obsolete Not Applicable Obsolete Automatically positioned to the address	A19SW (NE)	608	-	277149 189914
292	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Afan Way Service Station Afan Way , , Port Talbot, Neath Port Talbot, SA12 6NR Obsolete Not Applicable Obsolete Manually positioned to the address or location	A17SE (NW)	667	-	275967 189835
293	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Performance Centre Talbot Road,, Port Talbot, Neath Port Talbot, SA13 1HN OBSOLETE Not Applicable Obsolete Approximate location provided by supplier	A9NE (SE)	744	-	277320 189008

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 83 of 104

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
294	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Tesco Port Talbot East Bank Prior Street , , Port Talbot, Neath Port Talbot, SA13 1YA TESCO Hypermarket Open Manually positioned to the address or location	A18NE (N)	755	-	276708 190325
295	Name: Location: Category: Class Code:	Commercial Services A & S Commercial Repairs Docks Road, The Docks, Port Talbot, SA13 1RA Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SW (SW)	29	9	276479 189385
296	Name: Location: Category: Class Code:	Commercial Services Michael J Farmer Cramic Way, Port Talbot, SA13 1RU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (N)	103	9	276668 189648
296	Name: Location: Category: Class Code:	Commercial Services Mjf Cramic Way, Port Talbot, SA13 1RU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (N)	103	9	276668 189648
296	Name: Location: Category: Class Code:	Commercial Services Mpg Tyre & Exhausts Unit 16, Cramic Way, Port Talbot, SA13 1RU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (N)	103	9	276668 189648
296	Name: Location: Category: Class Code:	Commercial Services M P G Tyres & Exhausts Ltd Cramic Way, Port Talbot, SA13 1RU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (N)	103	9	276668 189648
297	Name: Location: Category: Class Code:	Commercial Services Astra Park Service Centre Unit 5 Astra Business Park, Cramic Way, Port Talbot, SA13 1RU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NW (N)	111	9	276552 189687
297	Name: Location: Category: Class Code:	Commercial Services Astra Park Service Centre Unit 5 Astra Business Park, Cramic Way, Port Talbot, SA13 1RU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NW (N)	111	9	276552 189687
298	Name: Location: Category: Class Code:	Commercial Services Port Talbot Service Station Port Talbot Service Station, Talbot Road, Port Talbot, SA13 1HN Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A13NE (E)	122	9	276821 189553
298	Name: Location: Category: Class Code:	Commercial Services Car Wash Port Talbot Service Station, Talbot Road, Port Talbot, SA13 1HN Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A13NE (E)	122	9	276821 189553
299	Name: Location: Category: Class Code:	Commercial Services W Doyle Transport Llewellyns Quay, Port Talbot, SA13 1RF Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A13SE (SE)	143	9	276693 189273
300	Name: Location: Category: Class Code:	Commercial Services Kickstart 51a Talbot Road, Port Talbot, SA13 1HU Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SE (E)	218	9	276934 189423

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 84 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
301	Points of Interest - Commercial Services Name: Astra Park Service Centre Ltd Location: Astra Service Centre, Oakwood Lane, Port Talbot, SA13 1DF Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A13NE (NE)	246	9	276855 189695
302	Points of Interest - Commercial Services Name: It Asset Disposal Ltd Location: Unit 2e, Cramic Way, Port Talbot, SA13 1RU Category: Recycling Services Class Code: Recycling, Reclamation and Disposal Positional Accuracy: Positioned to address or location	A18SW (NW)	306	9	276437 189849
302	Points of Interest - Commercial Services Name: M J F Car Body Repairs Location: Unit 1b, Cramic Way, Port Talbot, SA13 1RU Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A18SW (NW)	378	9	276378 189897
303	Points of Interest - Commercial Services Name: Spraytech Location: Unit 5 Llewellyns Quay, Llewellyns Road, Port Talbot, SA13 1RF Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A8NE (S)	309	9	276672 189105
303	Points of Interest - Commercial Services Name: Planguard Location: Llewellyns Quay, Port Talbot, SA13 1RF Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A8NE (S)	325	9	276727 189094
303	Points of Interest - Commercial Services Name: Runtech Hauliers Location: Unit 5 Llewellyns Quay, Llewellyns Road, Port Talbot, SA13 1RF Category: Transport, Storage and Delivery Class Code: Distribution and Haulage Positional Accuracy: Positioned to address or location	A8NE (S)	363	9	276690 189052
304	Points of Interest - Commercial Services Name: Runtech Hauliers Location: Llewellyns Quay, Port Talbot, SA13 1RF Category: Transport, Storage and Delivery Class Code: Distribution and Haulage Positional Accuracy: Positioned to address or location	A8NW (S)	321	9	276589 189082
305	Points of Interest - Commercial Services Name: The Recycling Co Location: Byass Works, The Docks, Port Talbot, SA13 1RS Category: Recycling Services Class Code: Recycling, Reclamation and Disposal Positional Accuracy: Positioned to address or location	A13NW (NW)	366	9	276287 189795
305	Points of Interest - Commercial Services Name: Scrap Yard Location: Not Supplied Category: Recycling Services Class Code: Scrap Metal Merchants Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	412	9	276246 189816
305	Points of Interest - Commercial Services Name: Scrap Yard Location: SA13 Category: Recycling Services Class Code: Scrap Metal Merchants Positional Accuracy: Positioned to address or location	A12NE (NW)	414	9	276241 189813
306	Points of Interest - Commercial Services Name: Valley Waste & Recycling Ltd Location: Byass Works, Dock Road, Port Talbot, SA13 1RS Category: Recycling Services Class Code: Recycling, Reclamation and Disposal Positional Accuracy: Positioned to address or location	A12NE (NW)	398	9	276197 189686
306	Points of Interest - Commercial Services Name: A W D Group Location: Byass Works, Dock Road, Port Talbot, SA13 1RS Category: Recycling Services Class Code: Recycling, Reclamation and Disposal Positional Accuracy: Positioned to address or location	A12NE (NW)	420	9	276178 189696

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 85 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
306	Points of Interest - Commercial Services Name: Egan Metals Recycling Ltd Location: Byass Works, The Docks, Port Talbot, SA13 1RS Category: Recycling Services Class Code: Recycling, Reclamation and Disposal Positional Accuracy: Positioned to address or location	A12NE (NW)	444	9	276141 189671
307	Points of Interest - Commercial Services Name: M R M Location: Cwrt-Ucha Terrace, Port Talbot, SA13 1LD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A14SW (SE)	431	9	277053 189175
307	Points of Interest - Commercial Services Name: M R M Automotive Location: Welsh Transport Museum, Port Talbot, SA13 1LD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A9NW (SE)	470	9	277082 189147
307	Points of Interest - Commercial Services Name: Motor Mender Location: 9 Cwrt-Ucha Terrace, Port Talbot, SA13 1LD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A14SW (SE)	481	9	277109 189165
307	Points of Interest - Commercial Services Name: Motor Mender Location: 9 Cwrt-Ucha Terrace, Port Talbot, SA13 1LD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A14SW (SE)	481	9	277109 189165
307	Points of Interest - Commercial Services Name: M R M Automotive Ltd Location: Cwrt-Ucha Terrace, Port Talbot, SA13 1LD Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A9NW (SE)	485	9	277088 189132
308	Points of Interest - Commercial Services Name: Smart Revolution Location: 46 Tanygroes Street, Port Talbot, SA13 1EE Category: Personal, Consumer and other Services Class Code: Vehicle Cleaning Services Positional Accuracy: Positioned to address or location	A14NW (E)	458	9	277137 189677
309	Points of Interest - Commercial Services Name: Valley Waste Metal Services Location: Green Park Industrial Estate, Port Talbot, SA12 6NT Category: Recycling Services Class Code: Scrap Metal Merchants Positional Accuracy: Positioned to address or location	A12NE (NW)	500	9	276145 189820
310	Points of Interest - Commercial Services Name: Spraycare Body Repairs Location: 22 Forge Road, Port Talbot, SA13 1NU Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A18SE (N)	512	9	276697 190080
311	Points of Interest - Commercial Services Name: Trimtastick Location: Unit 8c Britton Ferry Industrial Estate, Britton Ferry, Pembroke, SA13 Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A19SW (NE)	603	9	277061 189994
311	Points of Interest - Commercial Services Name: Clear Force Location: 12 Pont Street, Port Talbot, SA13 1AN Category: Recycling Services Class Code: Recycling, Reclamation and Disposal Positional Accuracy: Positioned to address or location	A19SW (NE)	625	9	277113 189975
312	Points of Interest - Commercial Services Name: Harwoods Location: Water Street, Port Talbot, SA12 6LF Category: Repair and Servicing Class Code: Vehicle Repair, Testing and Servicing Positional Accuracy: Positioned to address or location	A17SE (NW)	614	9	276115 189977

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

			Quadrant			
Map ID		Details	Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Points of Interest -	Commercial Services				
312	Name: Location: Category: Class Code: Positional Accuracy:	B Harwood & Son Ltd 100 Water Street, Aberavon, SA12 6LF Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A17SE (NW)	614	9	276115 189977
	Points of Interest -	Commercial Services				
312	Name: Location: Category: Class Code: Positional Accuracy:	B Harwood & Son Water Street, Port Talbot, SA12 6LF Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A17SE (NW)	623	9	276094 189964
	Points of Interest -	Commercial Services				
313	Name: Location: Category: Class Code: Positional Accuracy:	Tesco Port Talbot East Bank Prior Street, Port Talbot, SA13 1YA Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A18NE (N)	755	9	276708 190325
	Points of Interest -	Commercial Services				
313	Name: Location: Category: Class Code: Positional Accuracy:	Car Wash Prior Street, Port Talbot, West Glamorgan, SA13 1YA Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A18NE (N)	755	9	276708 190325
	Points of Interest -	Commercial Services				
314	Name: Location: Category: Class Code: Positional Accuracy:	Gogo's Motors Unit 3, Isaacs Place, Aberavon, SA12 6NP Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A12NW (W)	769	9	275803 189705
	Points of Interest -	Commercial Services				
315	Name: Location: Category: Class Code: Positional Accuracy:	Scrap Yard SA13 Recycling Services Scrap Metal Merchants Positioned to an adjacent address or location	A19NW (NE)	794	9	277127 190185
	Points of Interest -	Commercial Services				
316	Name: Location: Category: Class Code: Positional Accuracy:	Taibach Autos 21 Commercial Road, Port Talbot, SA13 1LN Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A9NE (SE)	870	9	277405 188911
	Points of Interest -	Commercial Services				
317	Name: Location: Category: Class Code: Positional Accuracy:	Car Care 66 Cwmavon Road, Port Talbot, SA12 8RF Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A18NE (N)	904	9	276793 190459
	Points of Interest -	Commercial Services				
318	Name: Location: Category: Class Code: Positional Accuracy:	R Davies Ltd 2 Sea View Terrace, Baglan, SA12 8HW Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A23SW (N)	982	9	276291 190517
	Points of Interest -	Commercial Services				
318	Name: Location: Category: Class Code: Positional Accuracy:	Green Flag 2 Sea View Terrace, Port Talbot, SA12 8HW Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A23SW (N)	982	9	276291 190517
	Points of Interest -	Manufacturing and Production				
319	Name: Location: Category: Class Code: Positional Accuracy:	Industrial Estate SA13 Industrial Features Business Parks and Industrial Estates Positioned to an adjacent address or location	A13NW (NW)	11	9	276558 189546
	Points of Interest -	Manufacturing and Production				
320	Name: Location: Category: Class Code: Positional Accuracy:	Tank SA13 Industrial Features Tanks (Generic) Positioned to an adjacent address or location	A13NE (E)	55	9	276773 189504

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 87 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
321	Points of Interest - Manufacturing and Production Name: Tanks Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A13NW (N)	69	9	276550 189640
321	Points of Interest - Manufacturing and Production Name: Towngate Business Centre Location: SA13 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A13NW (N)	126	9	276545 189700
322	Points of Interest - Manufacturing and Production Name: Tanks Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A13SW (W)	117	9	276390 189402
322	Points of Interest - Manufacturing and Production Name: Steel Works Wharf Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	132	9	276396 189321
323	Points of Interest - Manufacturing and Production Name: Business Park Location: SA13 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A13NW (W)	139	9	276409 189523
324	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13SE (S)	170	9	276697 189246
324	Points of Interest - Manufacturing and Production Name: Tanks Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A13SE (SE)	171	9	276705 189247
324	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13SE (S)	173	9	276700 189244
325	Points of Interest - Manufacturing and Production Name: Port Talbot Industrial Estate Location: SA13 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A12SE (W)	300	9	276211 189445
326	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A13NW (NW)	307	9	276304 189706
327	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A18SE (N)	357	9	276772 189883
327	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A18SE (N)	357	9	276772 189883

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

			Quadrant			
Map ID		Details	Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
		Manufacturing and Production				
328	Name: Location: Category: Class Code: Positional Accuracy:	Tank SA13 Industrial Features Tanks (Generic) Positioned to an adjacent address or location	A8NW (S)	393	9	276608 189012
	Points of Interest - I	Manufacturing and Production				
329	Name: Location: Category: Class Code: Positional Accuracy:	Tank SA13 Industrial Features Tanks (Generic) Positioned to an adjacent address or location	A8NE (SE)	395	9	276807 189042
	Points of Interest - I	Manufacturing and Production				
330	Name: Location: Category: Class Code: Positional Accuracy:	Industrial Estate SA13 Industrial Features Business Parks and Industrial Estates Positioned to an adjacent address or location	A12NE (W)	425	9	276135 189610
	Points of Interest - I	Manufacturing and Production				
331	Name: Location: Category: Class Code: Positional Accuracy:	Works Not Supplied Industrial Features Unspecified Works Or Factories Positioned to an adjacent address or location	A14SW (SE)	437	9	277057 189170
	Points of Interest - I	Manufacturing and Production				
331	Name: Location: Category: Class Code: Positional Accuracy:	Works Not Supplied Industrial Features Unspecified Works Or Factories Positioned to an adjacent address or location	A9NW (SE)	467	9	277076 189145
	Points of Interest - I	Manufacturing and Production				
331	Name: Location: Category: Class Code: Positional Accuracy:	Works SA13 Industrial Features Unspecified Works Or Factories Positioned to an adjacent address or location	A9NW (SE)	468	9	277076 189144
	Points of Interest - I	Manufacturing and Production				
332	Name: Location: Category: Class Code: Positional Accuracy:	Works Not Supplied Industrial Features Unspecified Works Or Factories Positioned to an adjacent address or location	A18SW (NW)	453	9	276312 189943
	Points of Interest - I	Manufacturing and Production				
333	Name: Location: Category: Class Code: Positional Accuracy:	Tanks SA12 Industrial Features Tanks (Generic) Positioned to an adjacent address or location	A12NE (W)	543	9	276038 189683
	Points of Interest - I	Manufacturing and Production				
333	Name: Location: Category: Class Code: Positional Accuracy:	Tank SA13 Industrial Features Tanks (Generic) Positioned to address or location	A12NE (W)	547	9	276032 189678
	Points of Interest - I	Manufacturing and Production				
333	Name: Location: Category: Class Code: Positional Accuracy:	Tank SA13 Industrial Features Tanks (Generic) Positioned to address or location	A12NE (W)	549	9	276030 189680
	Points of Interest - I	Manufacturing and Production				
333	Name: Location: Category: Class Code: Positional Accuracy:	Tank SA13 Industrial Features Tanks (Generic) Positioned to address or location	A12NE (W)	552	9	276028 189682
_	Points of Interest - I	Manufacturing and Production				
334	Name: Location: Category: Class Code: Positional Accuracy:	Business Centre SA12 Industrial Features Business Parks and Industrial Estates Positioned to an adjacent address or location	A17SE (NW)	607	9	276101 189949

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

		Quadrant			
Map ID	Details	Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
335	Points of Interest - Manufacturing and Production Name: Roderick E W Sons Monumental Sclptrs Location: Brynheulog Street, Port Talbot, SA13 1AF Category: Extractive Industries Class Code: Stone Quarrying and Preparation Positional Accuracy: Positioned to address or location	A14NE (E)	635	9	277346 189604
336	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A8SW (S)	666	9	276577 188732
337	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	750	9	275826 189713
337	Points of Interest - Manufacturing and Production Name: Works Location: SA12 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	755	9	275820 189712
338	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	759	9	276663 188650
338	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A8SE (S)	766	9	276659 188642
338	Points of Interest - Manufacturing and Production Name: Tanks Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	777	9	276664 188632
338	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A8SE (S)	778	9	276651 188629
338	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A8SE (S)	788	9	276667 188621
338	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	812	9	276639 188593
338	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	821	9	276642 188584
339	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	802	9	276986 188674

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 90 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
339	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	803	9	276987 188673
340	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SE (SW)	809	9	276021 188746
340	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SE (SW)	810	9	276021 188745
340	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SE (SW)	831	9	275986 188745
341	Points of Interest - Manufacturing and Production Name: Tank Location: SA12 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	826	9	275778 189795
342	Points of Interest - Manufacturing and Production Name: Tank Location: SA13 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	847	9	277206 188746
343	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	895	9	276892 188547
343	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A8SE (S)	896	9	276892 188546
344	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	902	9	277154 188645
344	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A9SW (SE)	902	9	277154 188645
345	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SE (SW)	942	9	276159 188518
345	Points of Interest - Manufacturing and Production Name: Works Location: SA13 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SE (SW)	943	9	276159 188517

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 91 of 104

			Quadrant			
Map ID		Details	Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
346	Name: Location: Category: Class Code:	Manufacturing and Production Power Station SA12 Industrial Features Energy Production Positioned to an adjacent address or location	A11NE (W)	991	9	275565 189704
347	Name: Location: Category: Class Code:	Public Infrastructure Texaco Port Talbot Service Station, Talbot Road, Port Talbot, SA13 1HN Road And Rail Petrol and Fuel Stations Positioned to address or location	A13NE (E)	121	9	276821 189552
347	Name: Location: Category: Class Code:	Public Infrastructure Port Talbot Service Stations Port Talbot Service Station, Talbot Road, Port Talbot, SA13 1HN Road And Rail Petrol and Fuel Stations Positioned to address or location	A13NE (E)	122	9	276821 189553
347	Name: Location: Category: Class Code:	Public Infrastructure Port Talbot Sstn Port Talbot Service Station, Talbot Road, Port Talbot, SA13 1HN Road And Rail Petrol and Fuel Stations Positioned to address or location	A13NE (E)	122	9	276821 189553
347	Name: Location: Category: Class Code:	Public Infrastructure Port Talbot Service Station Port Talbot Service Station, Talbot Road, Port Talbot, SA13 1HN Road And Rail Petrol and Fuel Stations Positioned to address or location	A13NE (E)	122	9	276821 189553
348	Name: Location: Category: Class Code:	Public Infrastructure Port Talbot Parkway Rail Station Heilbronn Way, SA13 Public Transport, Stations and Infrastructure Railway Stations, Junctions and Halts Positioned to address or location	A13NE (N)	146	9	276662 189703
348	Name: Location: Category: Class Code:	Public Infrastructure Port Talbot Parkway Station Heilbronn Way, SA13 Public Transport, Stations and Infrastructure Railway Stations, Junctions and Halts Positioned to address or location	A13NE (N)	146	9	276662 189703
348	Name: Location: Category: Class Code:	Public Infrastructure Bus Station SA13 Public Transport, Stations and Infrastructure Bus and Coach Stations, Depots and Companies Positioned to an adjacent address or location	A13NE (NE)	163	9	276742 189683
349	Name: Location: Category: Class Code:	Public Infrastructure Port Talbot Police Station Station Road, Port Talbot, SA13 1JB Central and Local Government Police Stations Positioned to address or location	A13NE (NE)	215	9	276809 189698
350	Name: Location: Category: Class Code:	Public Infrastructure It Asset Disposal Ltd Unit 2e, Cramic Way, Port Talbot, SA13 1RU Infrastructure and Facilities Recycling Centres Positioned to address or location	A18SW (NW)	306	9	276437 189849
351	Name: Location: Category: Class Code:	Public Infrastructure Drake Clearance Services 13 Devonshire Place, Port Talbot, SA13 1SG Infrastructure and Facilities Waste Storage, Processing and Disposal Positioned to address or location	A14SW (E)	316	9	277033 189416
352	Name: Location: Category: Class Code:	Public Infrastructure The Recycling Co Byass Works, The Docks, Port Talbot, West Glamorgan, SA13 1RS Infrastructure and Facilities Recycling Centres Positioned to address or location	A13NW (NW)	367	9	276286 189794

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 92 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
353	Points of Interest - Public Infrastructure Name: Outfall Location: SA13 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A8NE (SE)	419	9	276873 189042
353	Points of Interest - Public Infrastructure Name: Outfall Location: SA13 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A8NE (SE)	422	9	276877 189041
354	Points of Interest - Public Infrastructure Name: Bus Station Location: SA13 Category: Public Transport, Stations and Infrastructure Class Code: Bus and Coach Stations, Depots and Companies Positional Accuracy: Positioned to an adjacent address or location	A18SW (NW)	497	9	276369 190028
354	Points of Interest - Public Infrastructure Name: Bus Station Location: SA13 Category: Public Transport, Stations and Infrastructure Class Code: Bus and Coach Stations, Depots and Companies Positional Accuracy: Positioned to address or location	A18SW (N)	511	9	276395 190055
355	Points of Interest - Public Infrastructure Name: Sluice Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	548	9	276058 189741
355	Points of Interest - Public Infrastructure Name: Weir Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	548	9	276049 189721
355	Points of Interest - Public Infrastructure Name: Weir Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	550	9	276047 189721
355	Points of Interest - Public Infrastructure Name: Sluice Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	550	9	276056 189741
355	Points of Interest - Public Infrastructure Name: Weir Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	552	9	276058 189751
355	Points of Interest - Public Infrastructure Name: Weir Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	554	9	276055 189750
355	Points of Interest - Public Infrastructure Name: Sluice Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (W)	564	9	276023 189702
355	Points of Interest - Public Infrastructure Name: Sluice Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (W)	568	9	276021 189706

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 93 of 104

Map ID	Details	Quadrant Reference (Compass Direction	Estimated Distance	Contact	NGR
355	Points of Interest - Public Infrastructure Name: Outfall Location: SA12 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NE (W)	582	9	276005 189706
355	Points of Interest - Public Infrastructure Name: Sluice Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	587	9	276017 189744
355	Points of Interest - Public Infrastructure Name: Sluice Location: SA12 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	590	9	276013 189743
356	Points of Interest - Public Infrastructure Name: Graveyard Location: Not Supplied Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SE (NW)	569	9	276182 189983
356	Points of Interest - Public Infrastructure Name: Graveyard Location: SA12 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SE (NW)	569	9	276183 189984
356	Points of Interest - Public Infrastructure Name: Cemetery Location: SA12 Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SE (NW)	616	9	276198 190061
356	Points of Interest - Public Infrastructure Name: Cemetery Location: Not Supplied Category: Infrastructure and Facilities Class Code: Cemeteries and Crematoria Positional Accuracy: Positioned to an adjacent address or location	A17SE (NW)	621	9	276191 190061
357	Points of Interest - Public Infrastructure Name: Tesco Petrol Filling Station Location: Prior St, Port Talbot, West Glamorgan, SA13 1YA Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A18SW (N)	581	9	276484 190152
358	Points of Interest - Public Infrastructure Name: Weir Location: SA13 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A9NW (SE)	697	9	277145 188888
359	Points of Interest - Public Infrastructure Name: Outfall Location: SA12 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	704	9	275859 189671
360	Points of Interest - Public Infrastructure Name: Tesco Petrol Station Location: Prior Street, Port Talbot, SA13 1YA Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A18NE (N)	753	9	276705 190323
360	Points of Interest - Public Infrastructure Name: Tesco Port Talbot East Bank Location: Prior Street, Port Talbot, SA13 1YA Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A18NE (N)	755	9	276708 190325

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 94 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
361	Points of Interest - Public Infrastructure Name: Outfall Location: SA13 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	796	9	275752 189647
361	Points of Interest - Public Infrastructure Name: Outfall Location: SA13 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	800	9	275747 189646
362	Points of Interest - Public Infrastructure Name: Weir Location: SA13 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14SE (E)	822	9	277539 189379
362	Points of Interest - Public Infrastructure Name: Weir Location: SA13 Category: Water Class Code: Weirs, Sluices and Dams Positional Accuracy: Positioned to an adjacent address or location	A14SE (E)	824	9	277541 189380
363	Points of Interest - Public Infrastructure Name: Outfall Location: SA12 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	890	9	275639 189593
363	Points of Interest - Public Infrastructure Name: Outfall Location: SA12 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	894	9	275635 189593
363	Points of Interest - Public Infrastructure Name: Outfall Location: SA12 Category: Infrastructure and Facilities Class Code: Waste Storage, Processing and Disposal Positional Accuracy: Positioned to an adjacent address or location	A12NW (W)	912	9	275607 189547
364	Points of Interest - Public Infrastructure Name: Port Talbot Fire Station Location: Rear of Commercial Road, Port Talbot, SA13 1LG Category: Central and Local Government Class Code: Fire Brigade Stations Positional Accuracy: Positioned to address or location	A9SE (SE)	970	9	277403 188757
365	Points of Interest - Recreational and Environmental Name: Playground Location: Park Street, SA13 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A14SE (E)	714	9	277381 189186
365	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A14SE (E)	719	9	277391 189198
366	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A18NW (N)	834	9	276490 190409
366	Points of Interest - Recreational and Environmental Name: Playground Location: Glen View Terrace, SA12 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A18NW (N)	836	9	276504 190412

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 95 of 104

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Points of Interest - Recreational and Environmental				
367	Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	899	9	276905 190419
	Points of Interest - Recreational and Environmental				
367	Name: Playground Location: Cross Street, SA13 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	900	9	276905 190420
	Points of Interest - Recreational and Environmental				
368	Name: Play Area Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A17NE (NW)	924	9	276005 190300
	Points of Interest - Recreational and Environmental				
368	Name: Play Area Location: SA12 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A17NE (NW)	946	9	275990 190316
	Points of Interest - Recreational and Environmental				
368	Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A17NE (NW)	980	9	275968 190343
	Points of Interest - Recreational and Environmental				
368	Name: Playground Location: Hopkin Street, SA12 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A17NE (NW)	992	9	275959 190351

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 96 of 104

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Bridgend County Borough Council - Environmental Health Department	January 2020	Annual Rolling Update
Natural Resources Wales	June 2020	Annually
Neath Port Talbot County Borough Council - Environmental Health Department	October 2017	Annual Rolling Updat
City and County of Swansea - Environmental Health Department	September 2017	Annual Rolling Update
Discharge Consents		
Environment Agency - Welsh Region	August 2014	Quarterly
Natural Resources Wales	August 2023	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - Welsh Region	March 2013	
ntegrated Pollution Controls		
Environment Agency - Welsh Region	January 2009	
ntegrated Pollution Prevention And Control		
Natural Resources Wales	August 2023	Quarterly
Environment Agency - Welsh Region	January 2021	Quarterly
Local Authority Integrated Pollution Prevention And Control		,
Swansea Bay Port Health Authority	April 2014	Variable
City and County of Swansea - Environmental Health Department	December 2020	Variable
Bridgend County Borough Council - Environmental Health Department	July 2015	Variable
Neath Port Talbot County Borough Council - Environmental Health Department	March 2014	Variable
Local Authority Pollution Prevention and Controls		
Swansea Bay Port Health Authority	April 2014	Annually
Bridgend County Borough Council - Environmental Health Department	July 2015	Not Applicable
City and County of Swansea - Environmental Health Department	June 2014	Annual Rolling Updat
Neath Port Talbot County Borough Council - Environmental Health Department	March 2014	Annual Rolling Updat
Local Authority Pollution Prevention and Control Enforcements		/ imaar roming opaar
Swansea Bay Port Health Authority	April 2014	Variable
Bridgend County Borough Council - Environmental Health Department	July 2015	Variable
City and County of Swansea - Environmental Health Department	June 2014	Variable
Neath Port Talbot County Borough Council - Environmental Health Department	March 2015	Variable
Nearest Surface Water Feature		1 0.11.00.10
Ordnance Survey	July 2023	
Pollution Incidents to Controlled Waters		
Environment Agency - Welsh Region	December 1998	
	Doddingor 1000	
Prosecutions Relating to Authorised Processes Environment Agency - Welsh Region	July 2015	
Natural Resources Wales	July 2015	
	July 2013	
Prosecutions Relating to Controlled Waters	March 2012	
Environment Agency - Welsh Region Natural Resources Wales	March 2013 March 2013	
	Walcii 2013	
Registered Radioactive Substances	1 0015	
Natural Resources Wales	January 2015	A =
Environment Agency - Welsh Region	June 2016	As notified
River Quality)	N
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	April 2012	
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	April 2012	
Substantiated Pollution Incident Register		
Natural Resources Wales	August 2023	Quarterly
Environment Agency Wales - South West Area	January 2021	Quarterly

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 97 of 104

Agency & Hydrological	Version	Update Cycle
Water Abstractions		
Environment Agency - Welsh Region	April 2023	Quarterly
Natural Resources Wales	June 2023	Quarterly
Water Industry Act Referrals		
Environment Agency - Welsh Region	October 2017	
Natural Resources Wales	October 2022	
Groundwater Vulnerability Map		
Natural Resources Wales	June 2018	As notified
Bedrock Aquifer Designations		
Natural Resources Wales	January 2018	Annually
Superficial Aquifer Designations		
Natural Resources Wales	January 2018	Annually
Source Protection Zones		
Natural Resources Wales	July 2022	Annual Rolling Update
Extreme Flooding from Rivers or Sea without Defences		
Natural Resources Wales	September 2020	
Flooding from Rivers or Sea without Defences		
Natural Resources Wales	September 2020	
Areas Benefiting from Flood Defences		
Natural Resources Wales	November 2019	Quarterly
Flood Water Storage Areas		
Natural Resources Wales	August 2019	Quarterly
Flood Defences		
Natural Resources Wales	November 2019	Quarterly
OS Water Network Lines		
Ordnance Survey	July 2023	Quarterly
Surface Water 1 in 30 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water 1 in 100 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water 1 in 1000 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water Suitability		
Natural Resources Wales	February 2016	Annually
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	As notified

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 98 of 104

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	November 2002	As notified
Historical Landfill Sites		
Natural Resources Wales	March 2023	As notified
Integrated Pollution Control Registered Waste Sites		
Environment Agency - Welsh Region	January 2009	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency Wales - South West Area	January 2023	Quarterly
Natural Resources Wales	October 2021	Quarterly
Licensed Waste Management Facilities (Locations)		
Natural Resources Wales	August 2023	Quarterly
Environment Agency Wales - South West Area	July 2021	Quarterly
Local Authority Landfill Coverage		
Bridgend County Borough Council	February 2003	Not Applicable
City and County of Swansea - Environmental Health Department	February 2003	Not Applicable
Neath Port Talbot County Borough Council - Environmental Health Department	February 2003	Not Applicable
Local Authority Recorded Landfill Sites		
Bridgend County Borough Council	October 2018	
City and County of Swansea - Environmental Health Department	October 2018	
Neath Port Talbot County Borough Council - Environmental Health Department	October 2018	
Potentially Infilled Land (Non-Water)		
Landmark Information Group Limited	December 1999	
Potentially Infilled Land (Water)		
Landmark Information Group Limited	December 1999	
Registered Landfill Sites		
Environment Agency Wales - South West Area	March 2006	Not Applicable
Registered Waste Transfer Sites		
Environment Agency Wales - South West Area	April 2018	
Registered Waste Treatment or Disposal Sites		
Environment Agency Wales - South West Area	June 2015	
<u> </u>		
Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	March 2023	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	August 2001	
Planning Hazardous Substance Enforcements		
City and County of Swansea - Planning Department	June 2023	Variable
Bridgend County Borough Council - Planning Department	March 2023	Variable
Neath Port Talbot County Borough Council - Planning Department	October 2015	Variable
Planning Hazardous Substance Consents		
Bridgend County Borough Council - Planning Department	February 2016	Variable
City and County of Swansea - Planning Department	January 2016	Variable
Neath Port Talbot County Borough Council - Planning Department	October 2015	Variable

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 99 of 104

Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	As notified
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	June 2023	Bi-Annually
BGS Urban Soil Chemistry		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
BGS Urban Soil Chemistry Averages		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	
Cheshire Brine Subsidence Compensation Board (CBSCB)	November 2020	As notified
Coal Mining Affected Areas		
The Coal Authority - Property Searches	February 2023	Annual Rolling Update
Mining Instability		
Ove Arup & Partners	June 1998	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	April 2020	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	September 2022	Annually
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	September 2022	Annually

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 100 of 104

Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	July 2023	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	June 2023	Quarterly
Gas Pipelines		
National Grid	October 2021	Bi-Annually
Points of Interest - Commercial Services		
PointX	September 2023	Quarterly
Points of Interest - Education and Health		
PointX	September 2023	Quarterly
Points of Interest - Manufacturing and Production		
PointX	September 2023	Quarterly
Points of Interest - Public Infrastructure		
PointX	September 2023	Quarterly
Points of Interest - Recreational and Environmental		
PointX	September 2023	Quarterly
Underground Electrical Cables		
National Grid	February 2023	Bi-Annually

Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 101 of 104

Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural Resources Wales	April 2023	Bi-Annually
Areas of Adopted Green Belt		
Bridgend County Borough Council	August 2023	Quarterly
City and County of Swansea	August 2023	Quarterly
Neath Port Talbot County Borough Council - Planning Services	August 2023	Quarterly
Areas of Unadopted Green Belt		
Bridgend County Borough Council	August 2023	Quarterly
City and County of Swansea	August 2023	Quarterly
Neath Port Talbot County Borough Council - Planning Services	August 2023	Quarterly
Areas of Outstanding Natural Beauty		
Natural Resources Wales	April 2023	Bi-Annually
Environmentally Sensitive Areas		
The National Assembly for Wales - GI Services (Department of Planning & Countryside)	January 2017	
Forest Parks		
Forestry Commission	May 2023	Not Applicable
Local Nature Reserves		
Bridgend County Borough Council	August 2023	Bi-Annually
City and County of Swansea	August 2023	Bi-Annually
Neath Port Talbot County Borough Council	August 2023	Bi-Annually
Marine Nature Reserves		
Natural Resources Wales	April 2023	Bi-Annually
National Nature Reserves		
Natural Resources Wales	February 2023	Bi-Annually
National Parks		
Natural Resources Wales	February 2018	Annually
Nitrate Vulnerable Zones		
The National Assembly for Wales - GI Services (Department of Planning & Countryside)	April 2016	
Natural Resources Wales	March 2023	Bi-Annually
Ramsar Sites		
Natural Resources Wales	March 2023	Bi-Annually
Sites of Special Scientific Interest		
Natural Resources Wales	March 2023	Bi-Annually
Special Areas of Conservation		
Natural Resources Wales	April 2023	Bi-Annually
Special Protection Areas		
Natural Resources Wales	April 2023	Bi-Annually

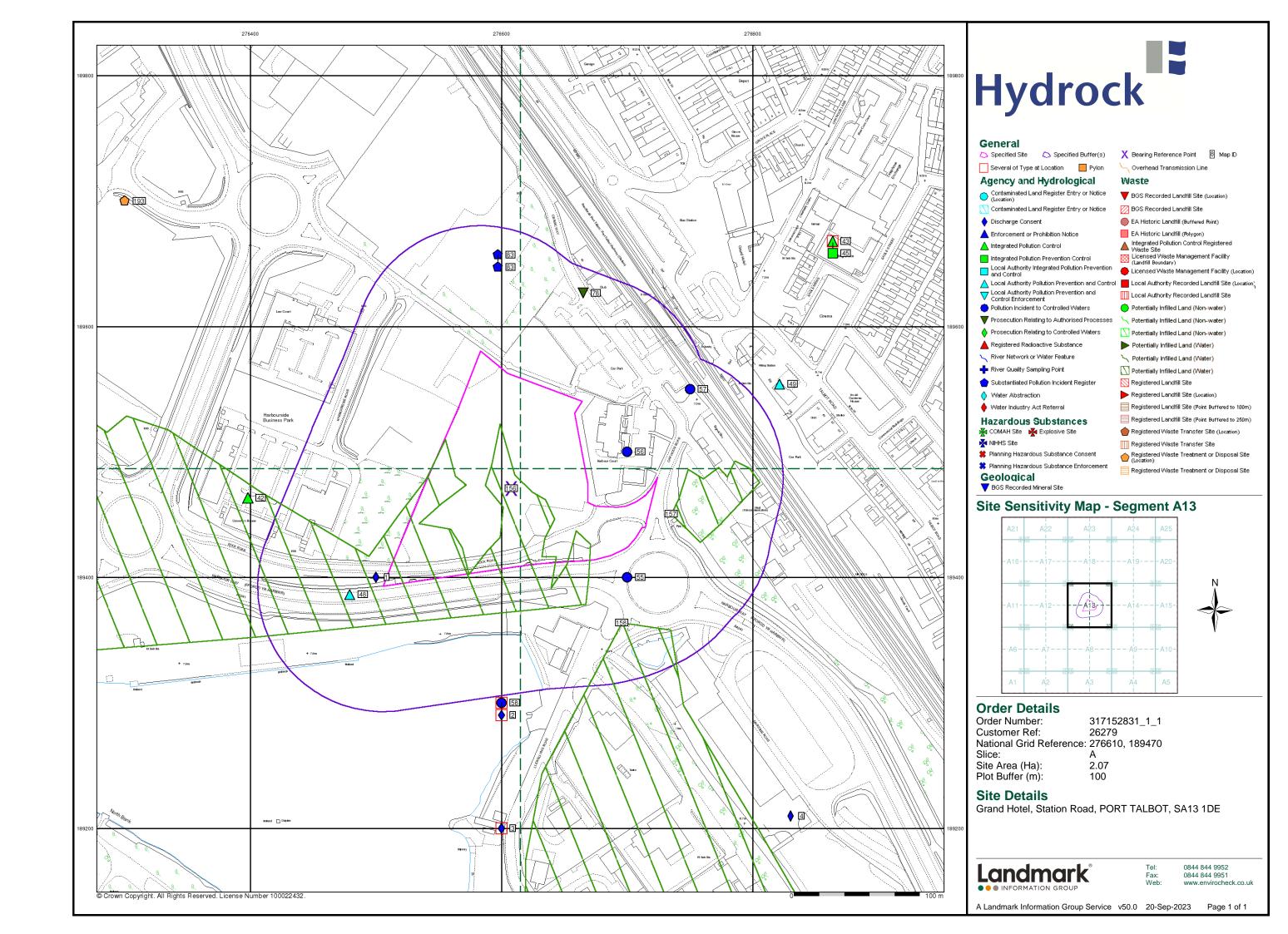
Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 102 of 104

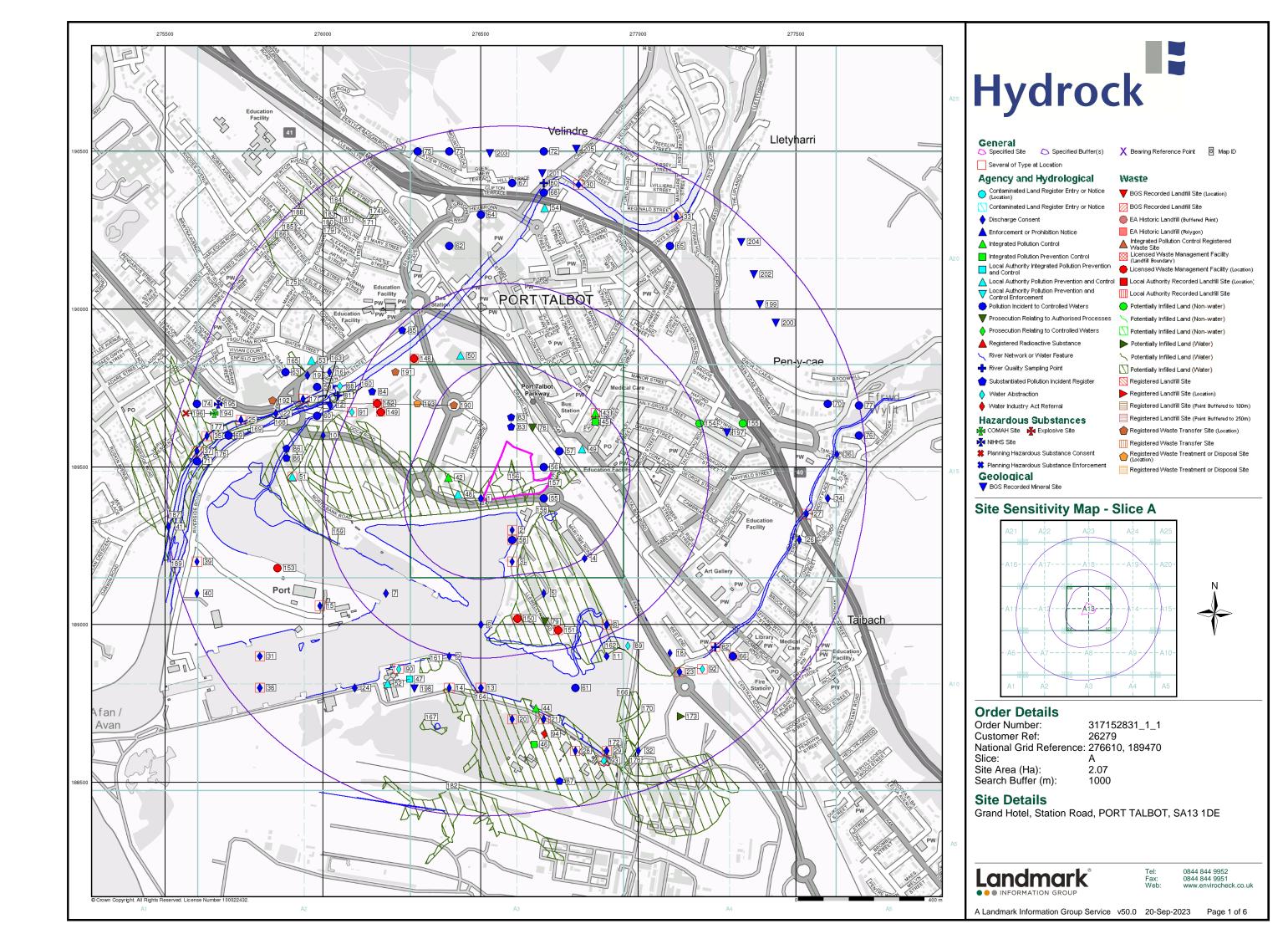
Data Suppliers

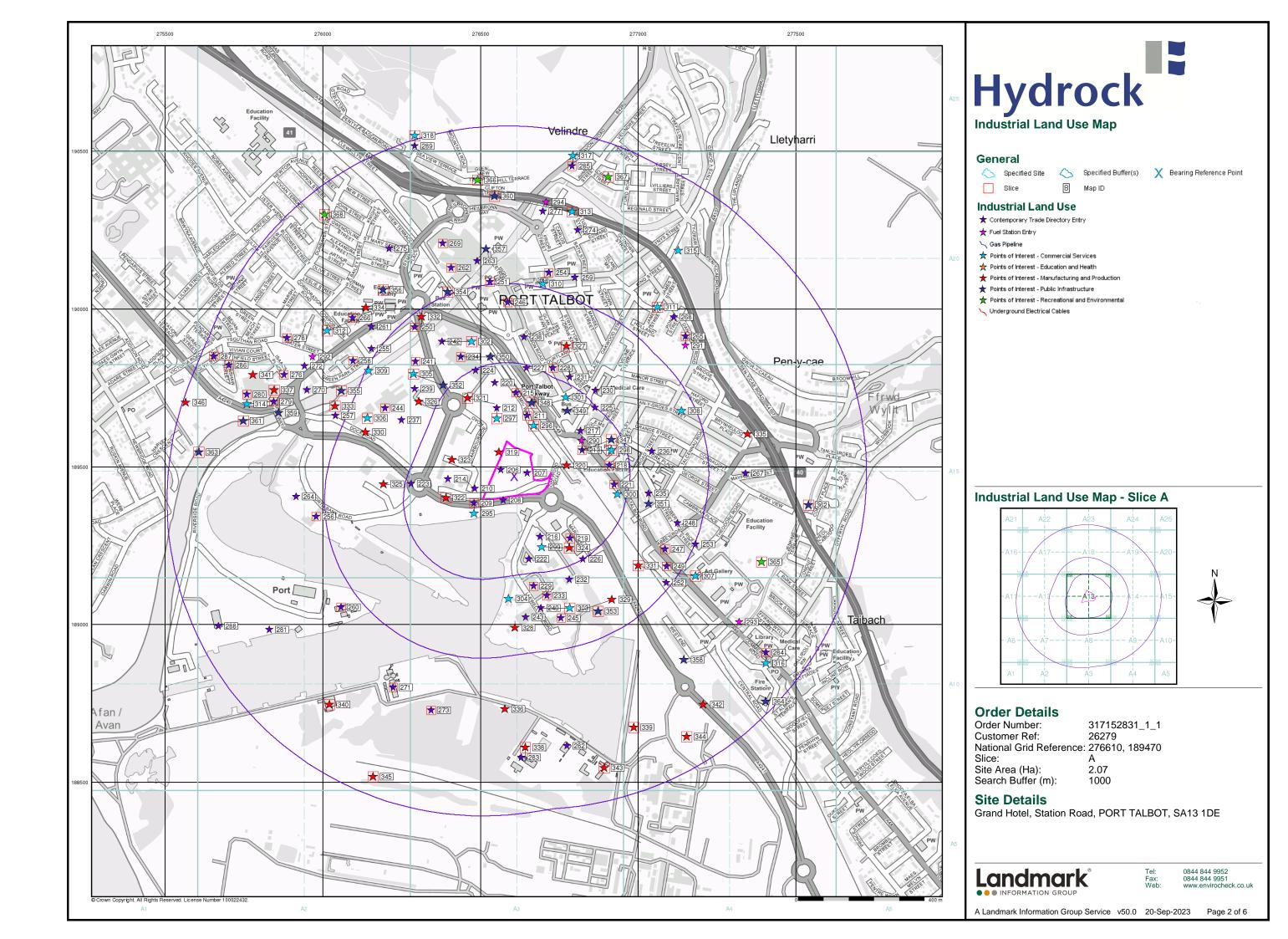
A selection of organisations who provide data within this report

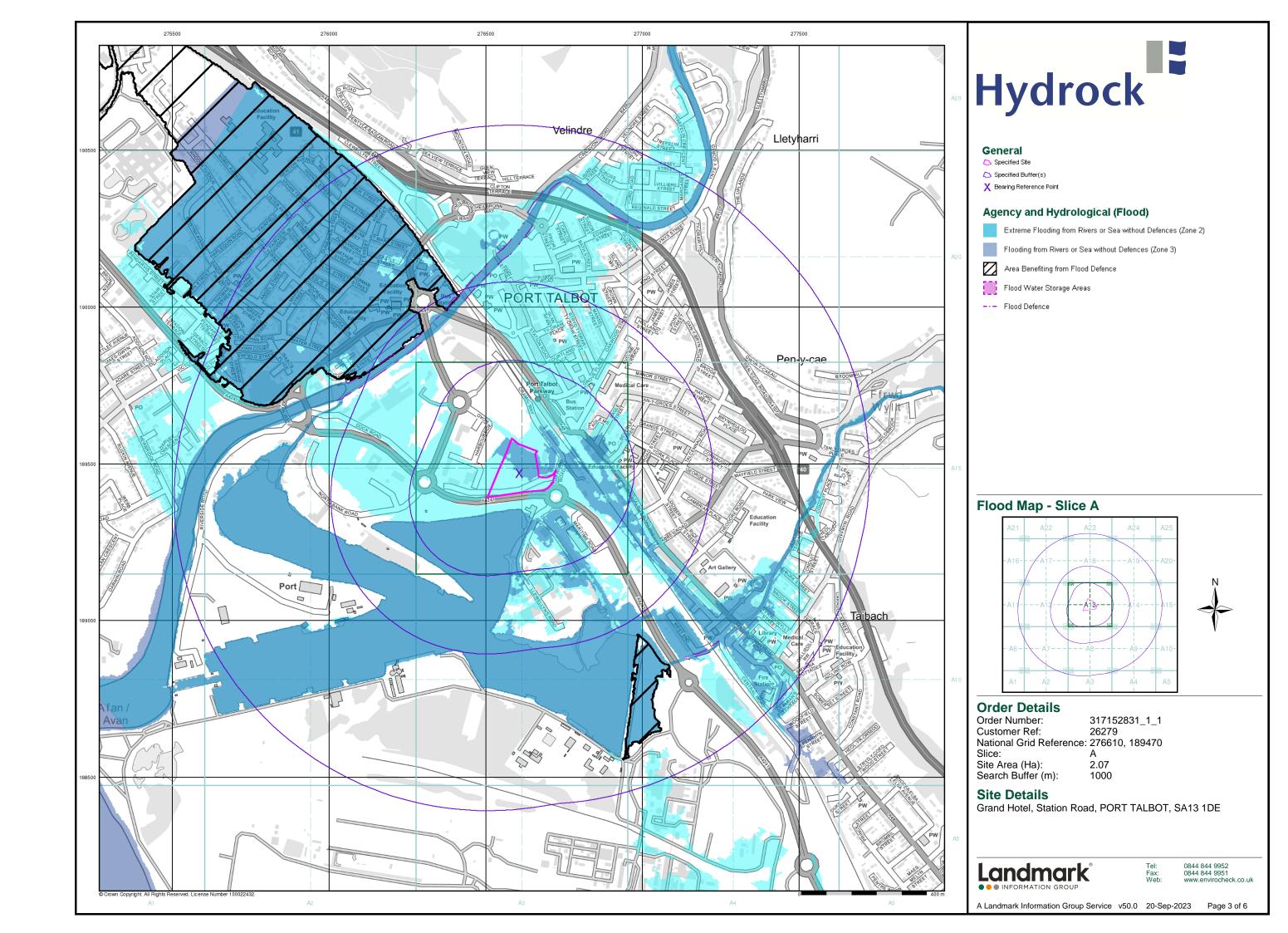
Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SEPA Scottish Environment Protection Agency
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE 댄스들의
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Stantec UK Ltd	ARUP Stantec

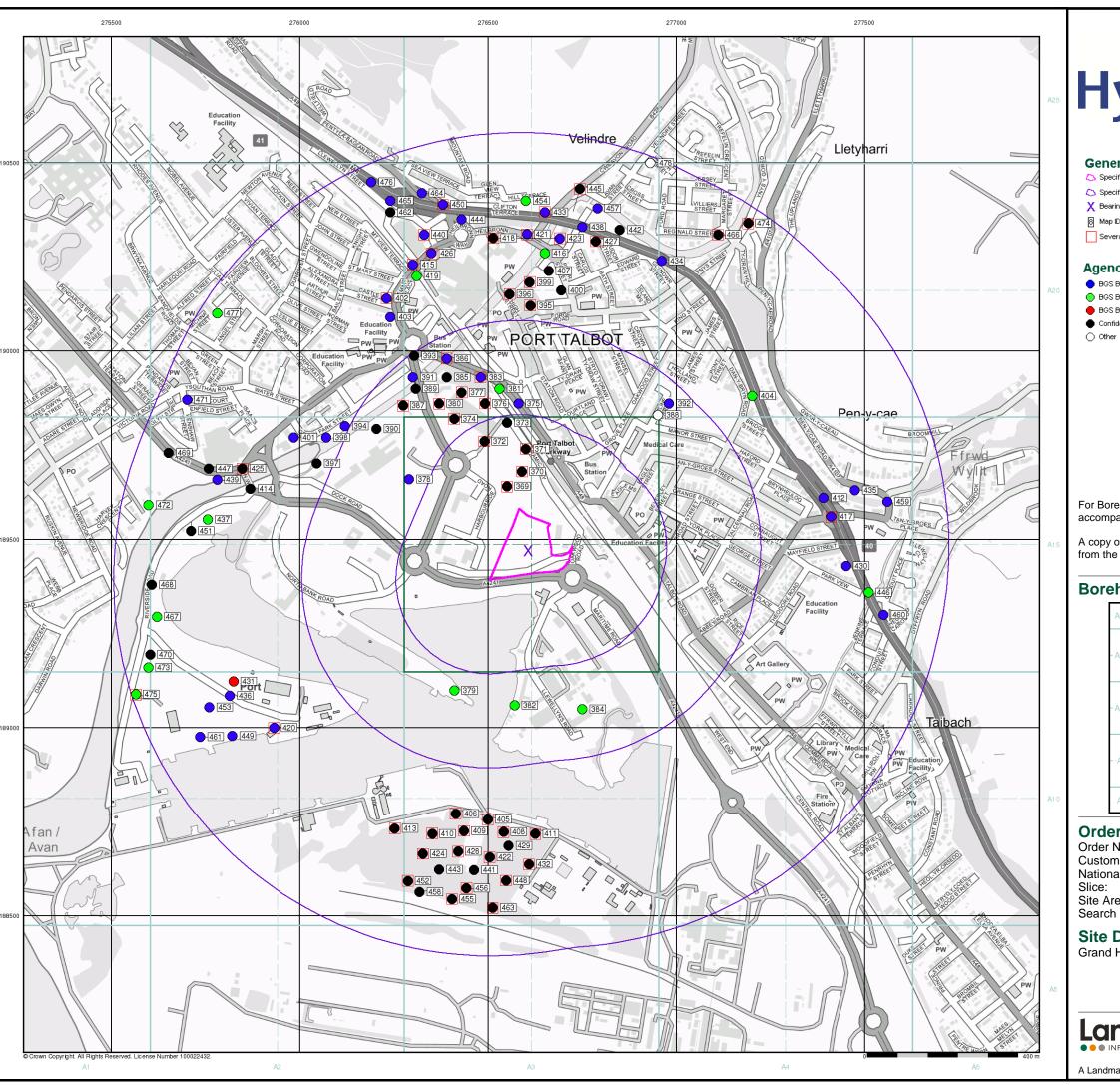
Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 103 of 104




Useful Contacts


Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Natural Resources Wales Ty Cambria, 29 Newport Road, Cardiff, CF24 0TP	Telephone: 0300 065 3000 Email: enquiries@naturalresourceswales.gov.uk
3	Environment Agency - National Customer Contact Centre (NCCC)	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
4	PO Box 544, Templeborough, Rotherham, S60 1BY Neath Port Talbot County Borough Council - Environmental Health Department Room 322, Neath Civic Centre, Neath, West Glamorgan, SA11 3QZ	Telephone: 01639 763333 Fax: 01693 763444 Website: www.neath-porttalbot.gov.uk
5	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 03456 05 05 05 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
6	Health and Safety Executive 5S.2 Redgrave Court, Merton Road, Bootle, L20 7HS	Website: www.hse.gov.uk
7	Neath Port Talbot County Borough Council - Planning Department Port Talbot Civic Centre, Port Talbot, SA13 1PJ	Telephone: 01639 763333 Fax: 01639 763444 Website: www.neath-porttalbot.gov.uk
8	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0345 762 6848 Fax: 01623 637 338 Email: groundstability@coal.gov.uk Website: www2.groundstability.com
9	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website: www.pointx.co.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk


Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.


Order Number: 317152831_1_1 Date: 20-Sep-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 104 of 104

Hydrock

General

Specified Buffer(s)

X Bearing Reference Point

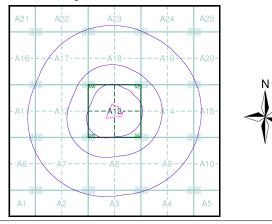
8 Map ID

Several of Type at Location

Agency and Hydrological (Boreholes)

BGS Borehole Depth 0 - 10m

BGS Borehole Depth 10 - 30m


BGS Borehole Depth 30m +

Confidential

For Borehole information please refer to the Borehole .csv file which

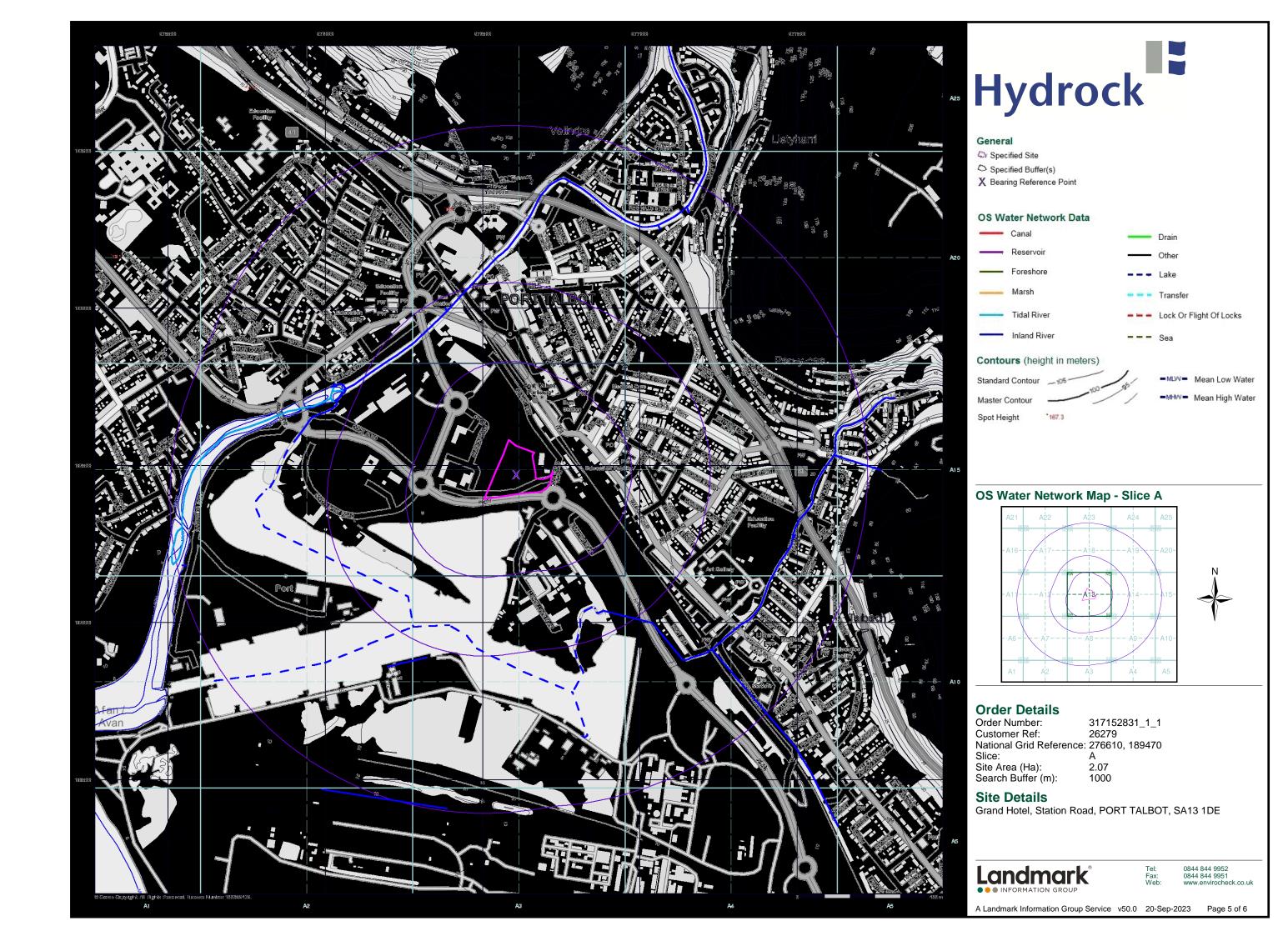
A copy of the BGS Borehole Ordering Form is available to download from the Support section of www.envirocheck.co.uk.

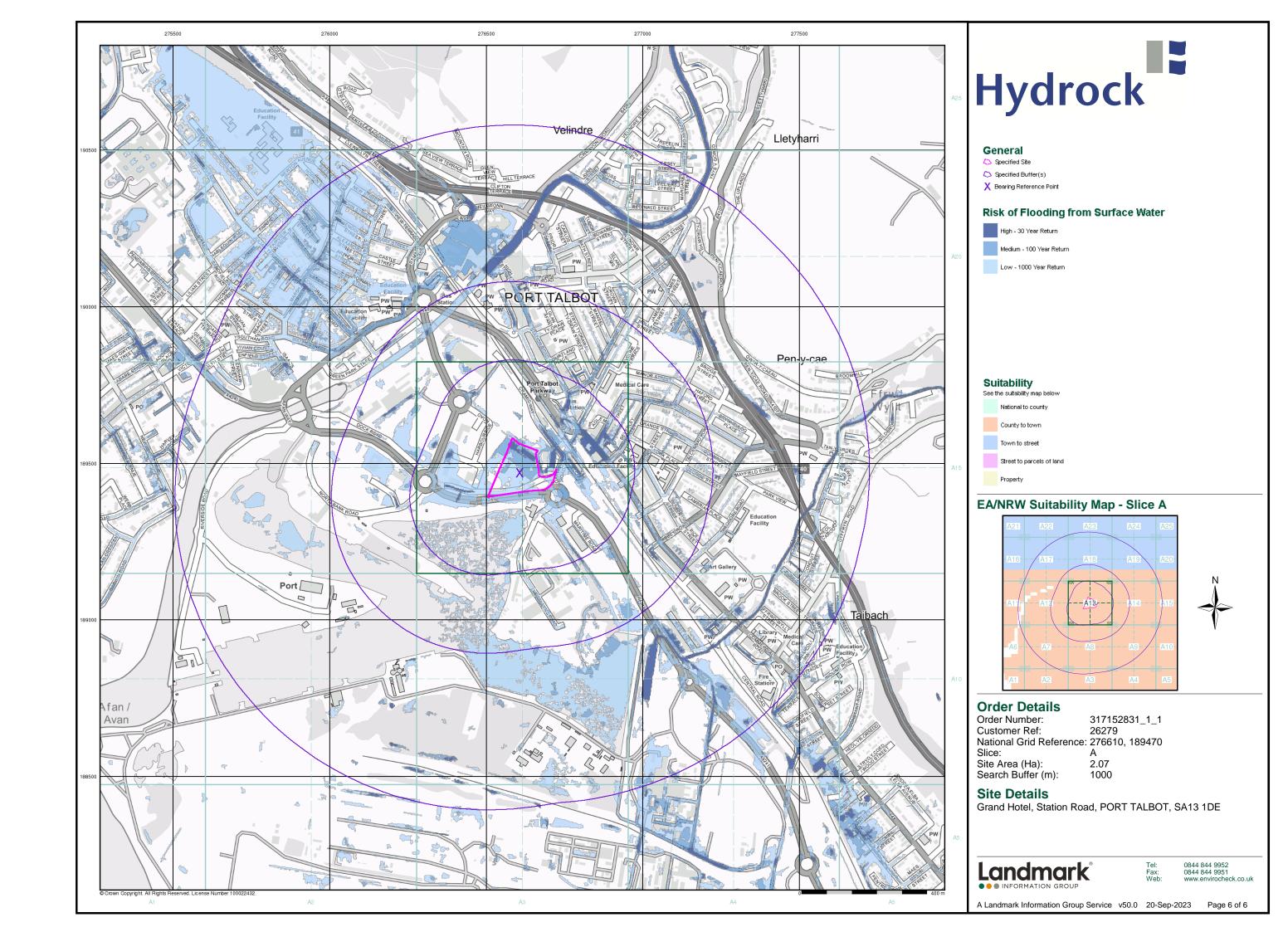
Borehole Map - Slice A

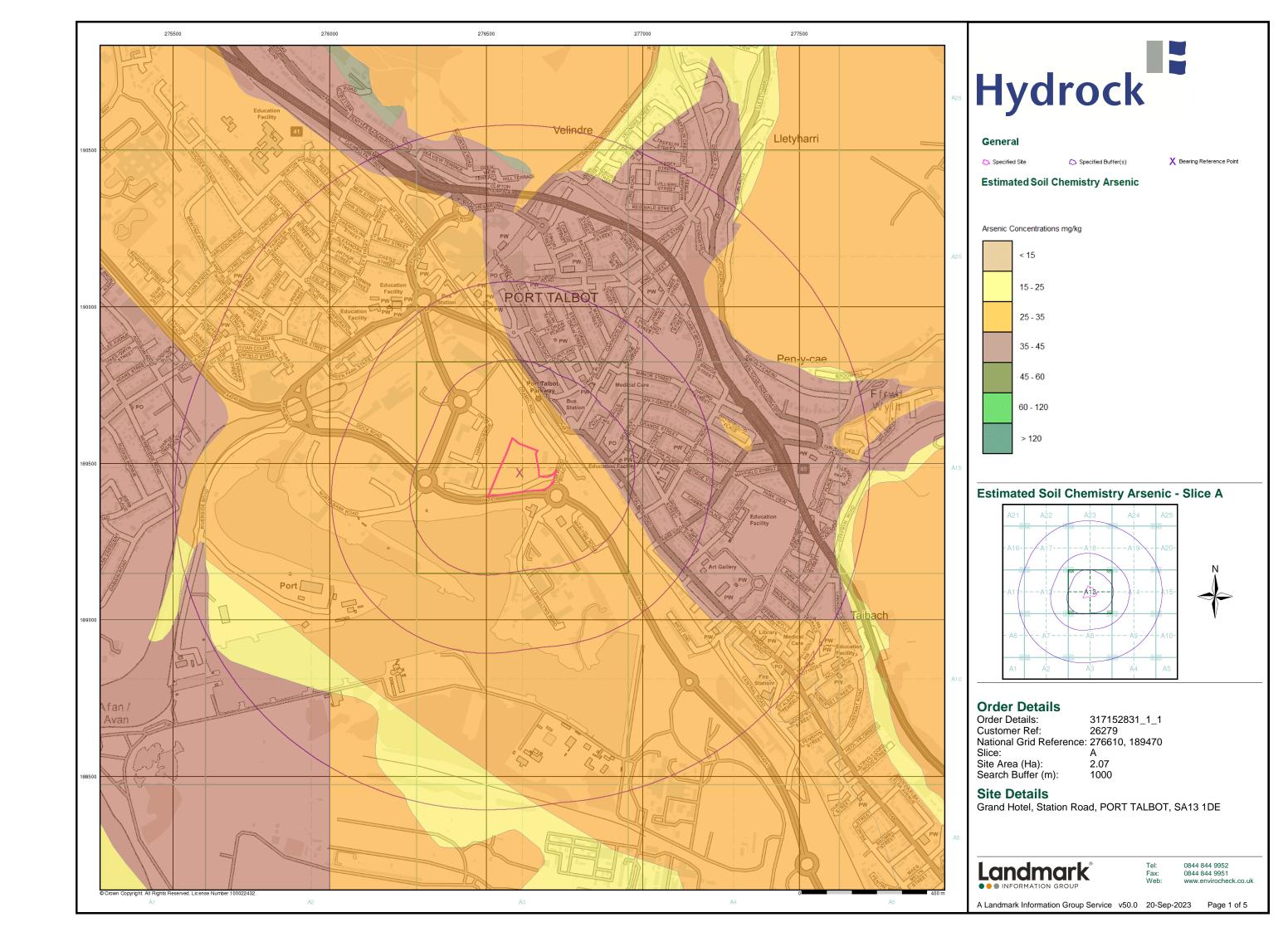
Order Details

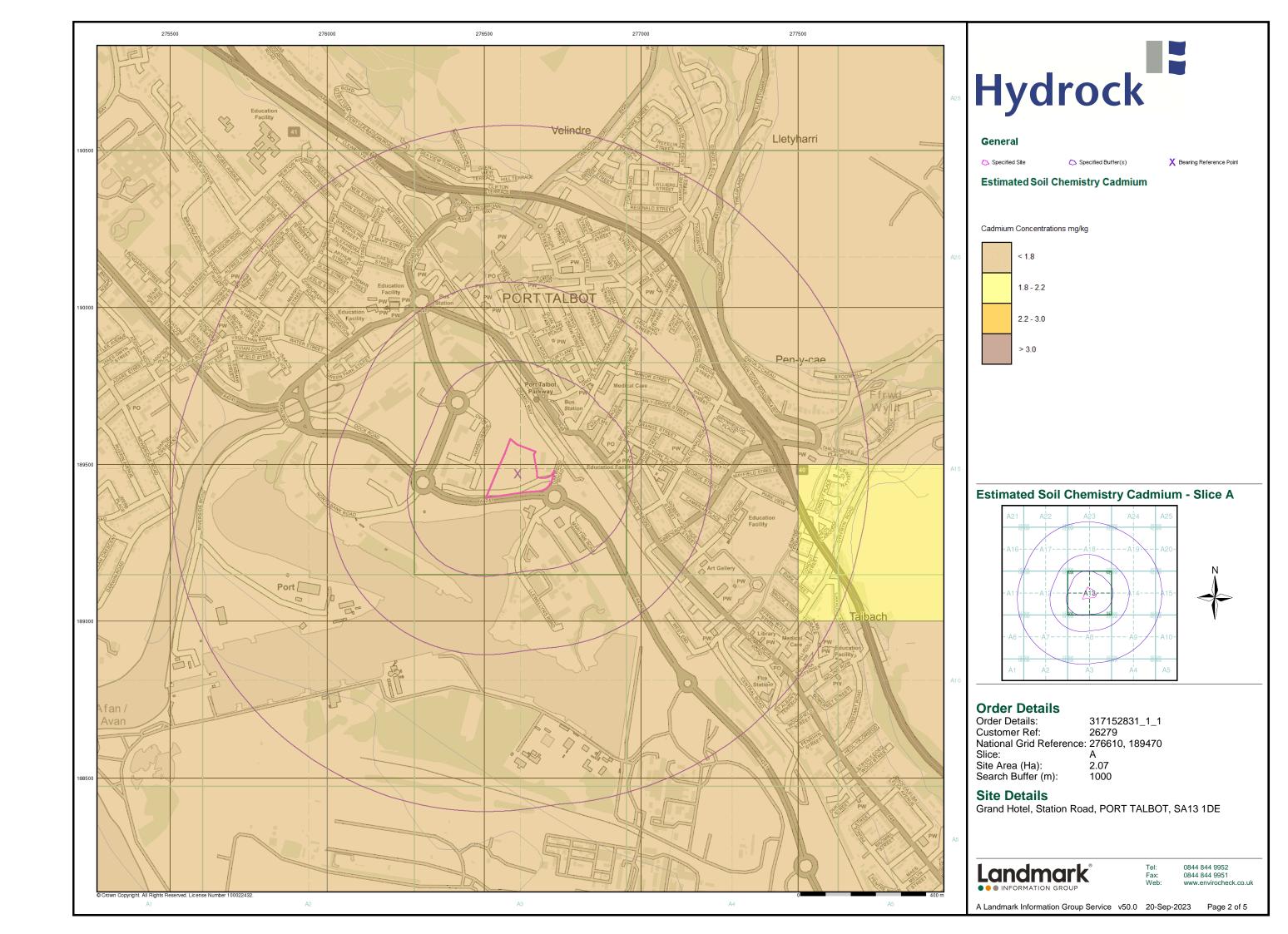
Order Number: 317152831_1_1 Customer Ref: National Grid Reference: 276610, 189470

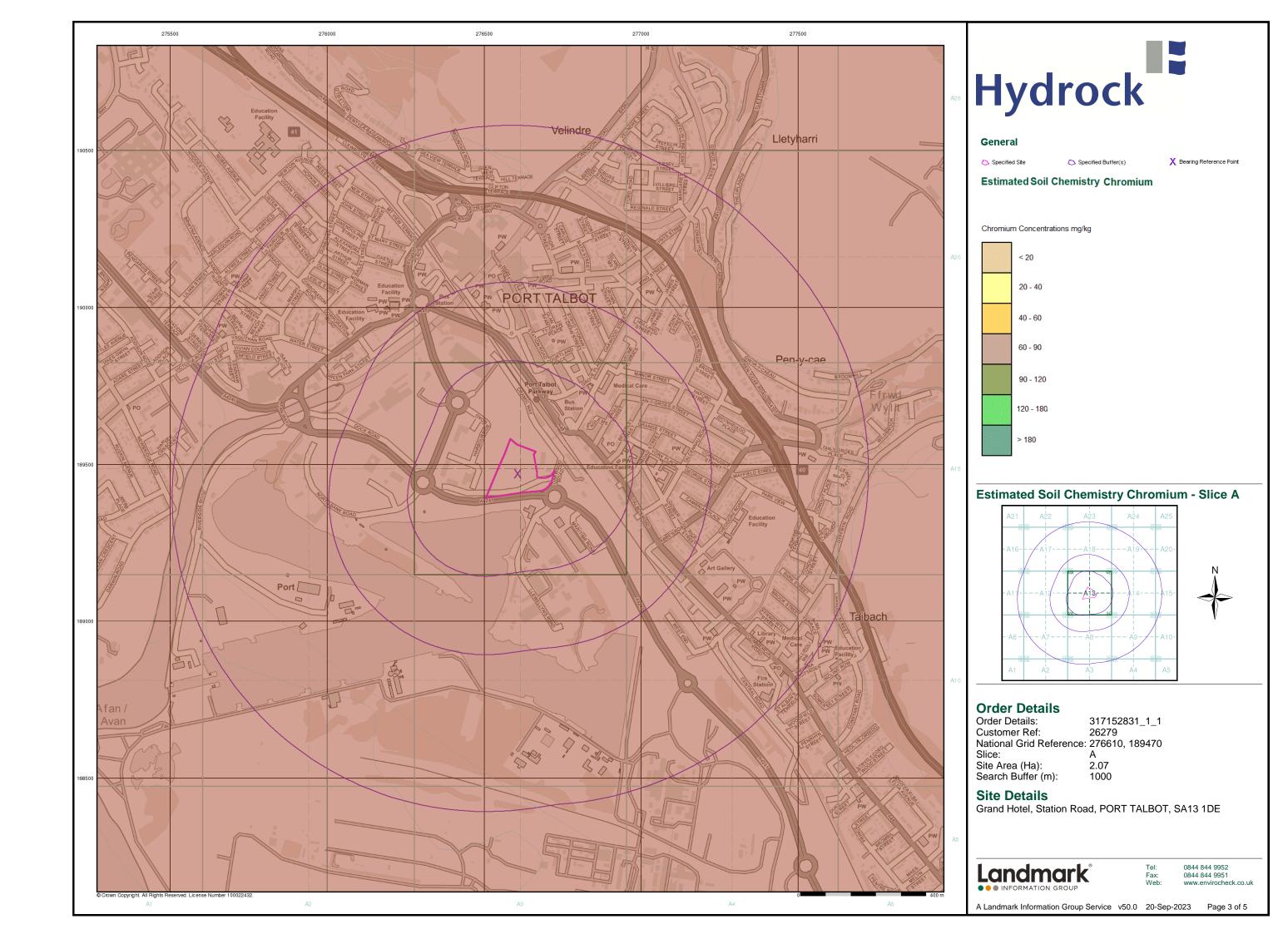
Site Area (Ha): Search Buffer (m): 2.07 1000

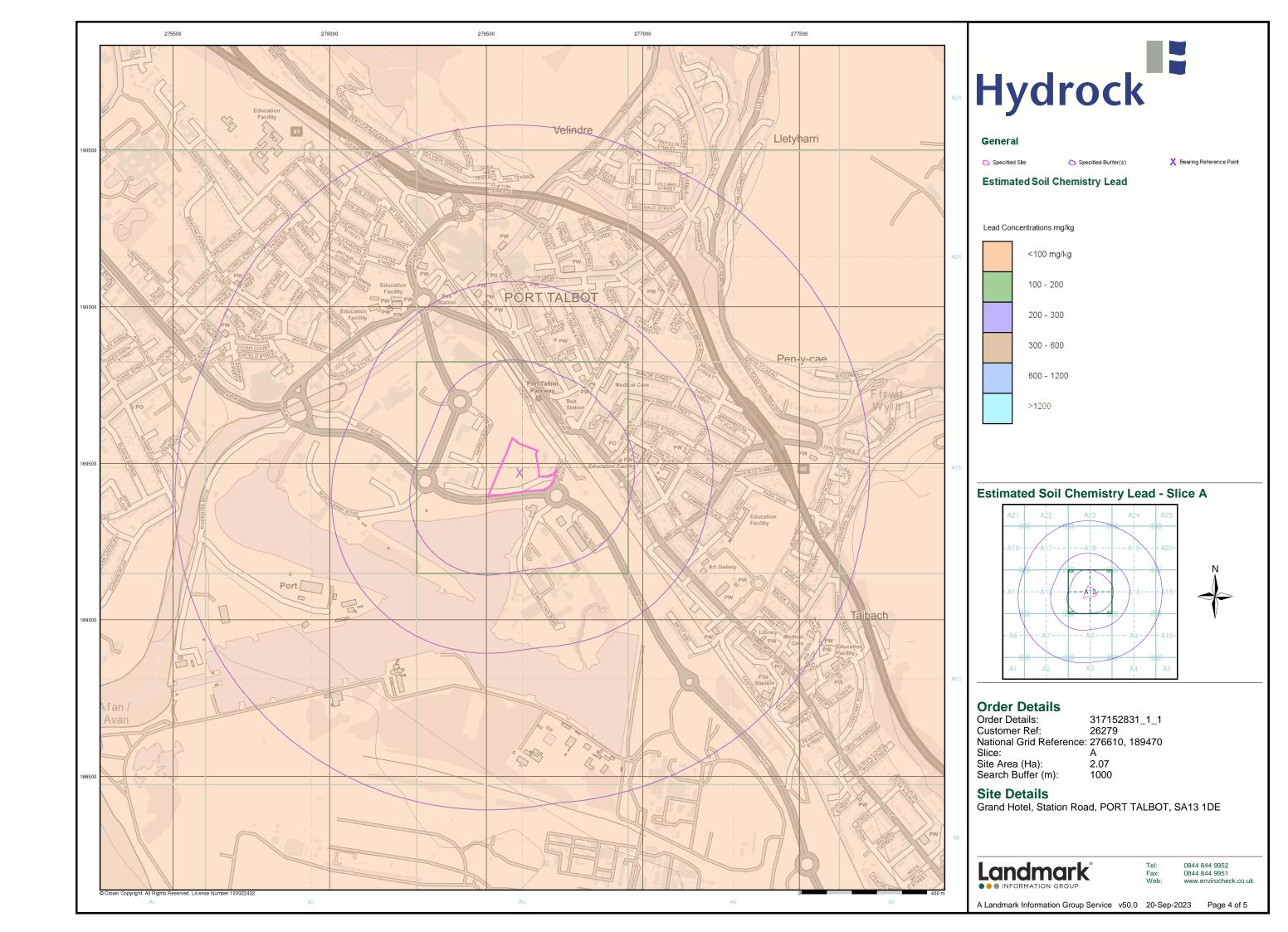

Site Details

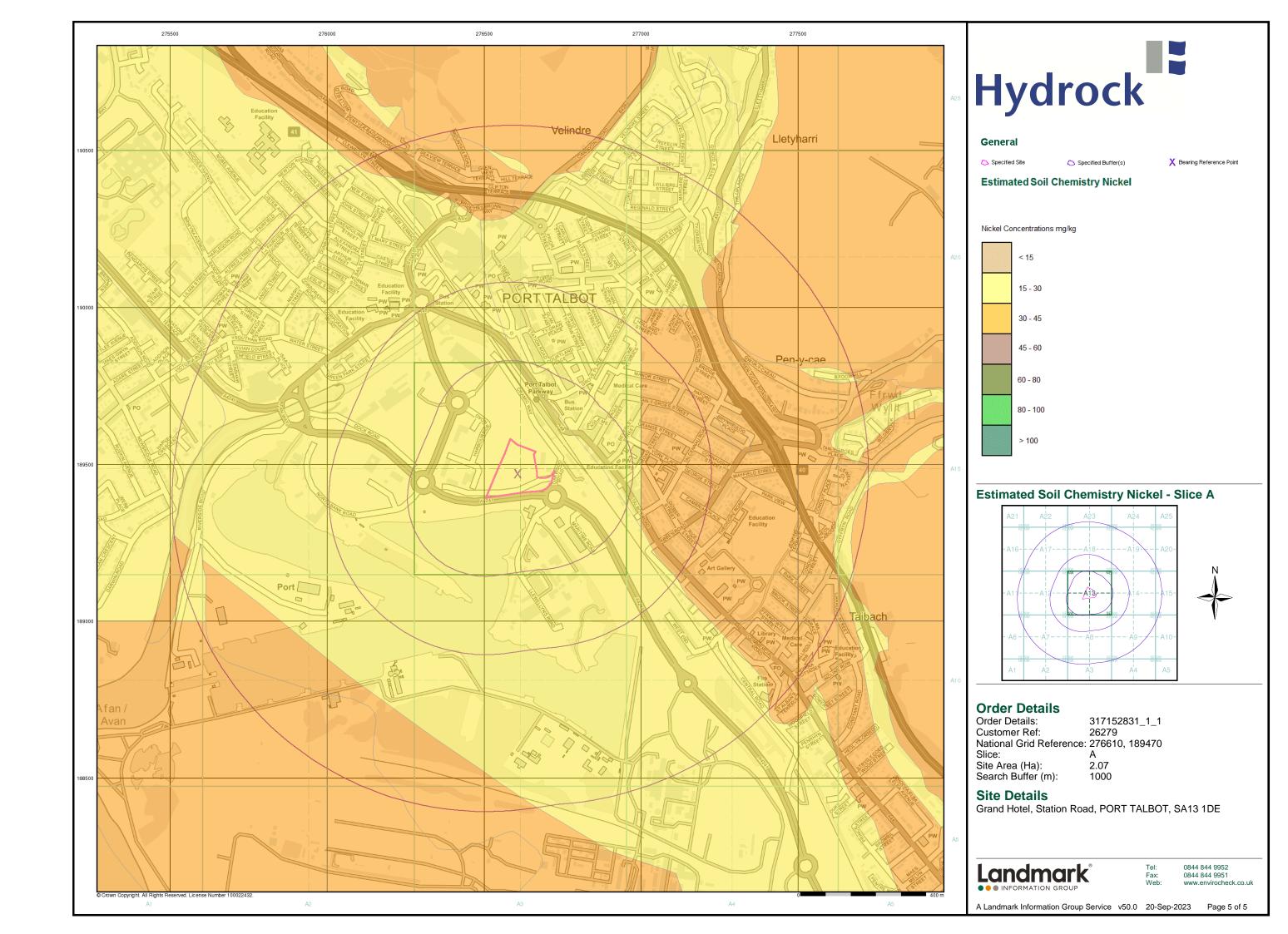

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

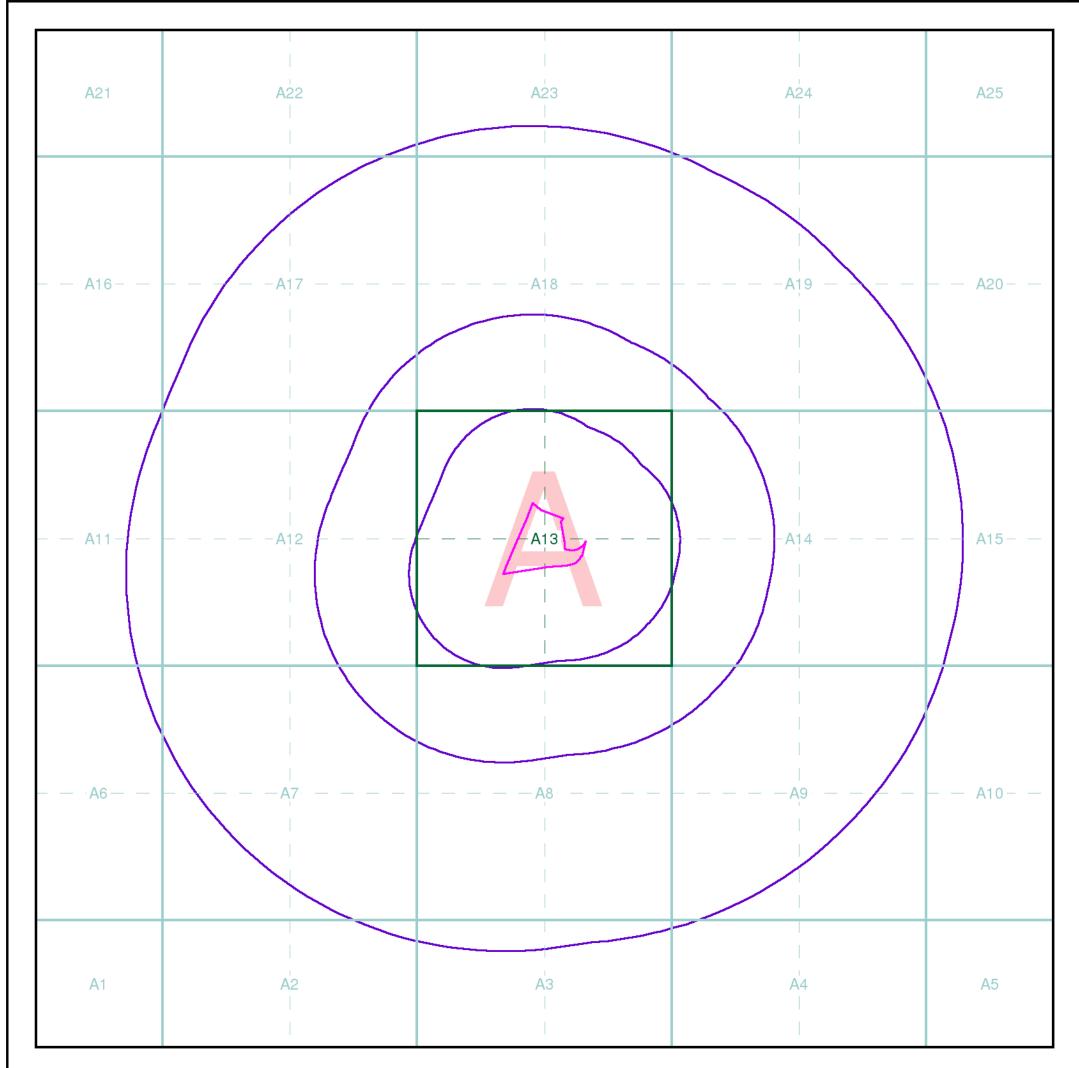

Landmark


0844 844 9952 0844 844 9951 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 20-Sep-2023 Page 4 of 6







Index Map

For ease of identification, your site and buffer have been split into Slices, Segments and Quadrants. These are illustrated on the Index Map opposite and explained further below.

Slice

Each slice represents a 1:10,000 plot area (2.7km x 2.7km) for your site and buffer. A large site and buffer may be made up of several slices (represented by a red outline), that are referenced by letters of the alphabet, starting from the bottom left corner of the slice "grid". This grid does not relate to National Grid lines but is designed to give best fit over the site and buffer.

Seamer

A segment represents a 1:2,500 plot area. Segments that have plot files associated with them are shown in dark green, others in light blue. These are numbered from the bottom left hand corner within each slice.

Quadrant

A quadrant is a quarter of a segment. These are labelled as NW, NE, SW, SE and are referenced in the datasheet to allow features to be quickly located on plots. Therefore a feature that has a quadrant reference of A7NW will be in Slice A, Segment 7 and the NW Quadrant.

A selection of organisations who provide data within this report:

Envirocheck reports are compiled from 136 different sources of data.

Client Details

Mr R Swayne, Hydrock Consultants, Over Court Barns, Over Lane, Almondsbury, Bristol, BS32 4DF

Order Details

Order Number: 317152831_1_1
Customer Ref: 26279
National Grid Reference: 276610, 189470
Site Area (Ha): 2.07

Search Buffer (m): 2.07

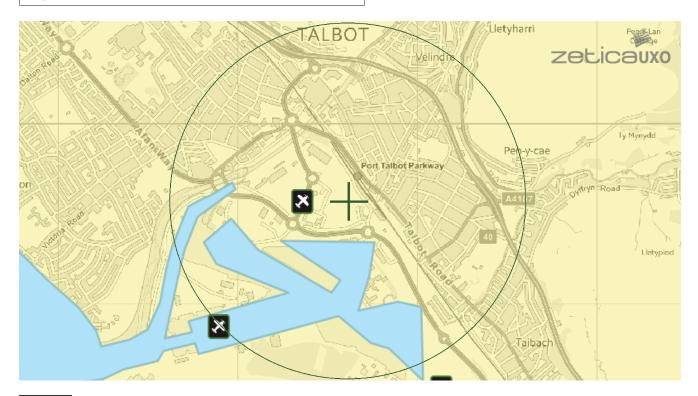
Site Details

Grand Hotel, Station Road, PORT TALBOT, SA13 1DE

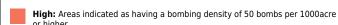
Full Terms and Conditions can be found on the following link: http://www.landmarkinfo.co.uk/Terms/Show/515

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 20-Sep-2023 Page 1 of 1


Zetica UXB risk maps

UNEXPLODED BOMB RISK MAP



SITE LOCATION

Map Centre: 276623,189572

LEGEND

Low: Areas indicated as having 15 bombs per 1000acre or less.

How to use your Unexploded Bomb (UXB) risk map?

The map indicates the potential for Unexploded Bombs (UXB) to be present as a result of World War Two (WWII) bombing.

You can incorporate the map into your preliminary risk assessment* for potential Unexploded Ordnance (UXO) for a site. Using this map, you can make an informed decision as to whether more in-depth detailed risk assessment* is necessary.

What do I do if my site is in a moderate or high risk area?

Generally, we recommend that a detailed UXO desk study and risk assessment is undertaken for sites in a moderate or high UXB risk area.

Similarly, if your site is near to a designated Luftwaffe target or bombing decoy then additional detailed research is recommended.

More often than not, this further detailed research will conclude that the potential for a significant UXO hazard to be present on your site is actually low.

Never plan site work or undertake a risk assessment using these maps alone. More detail is required, particularly where there may be a source of UXO from other military operations which are not reflected on these maps.

If my site is in a low risk area, do I need to do anything?

If both the map and other research confirms that there is a low potential for UXO to be present on your site then, subject to your own comfort and risk tolerance, works can proceed with no special precautions.

A low risk really means that there is no greater probability of encountering UXO than anywhere else in the UK.

If you are unsure whether other sources of UXO may be present, you can ask for one of our **pre-desk study assessments (PDSA)**

If I have any questions, who do I contact?

tel: **+44 (0) 1993 886682** email: **uxo@zetica.com**

web: www.zeticauxo.com

The information in this UXB risk map is derived from a number of sources and should be used in conjunction with the accompanying notes on our website: (https://zeticauxo.com/downloads-and-resources/risk-maps/)

Zetica cannot guarantee the accuracy or completeness of the information or data used and cannot accept any liability for any use of the maps. These maps can be used as part of a technical report or similar publication, subject to acknowledgment. The copyright remains with Zetica Ltd.

It is important to note that this map is not a UXO risk assessment and should not be reported as such when reproduced.

*Preliminary and detailed UXO risk assessments are advocated as good practice by industry guidance such as CIRIA C681 'Unexploded Ordnance (UXO), a guide for the construction industry'.

Reports prepared by others

Consultants Coal Mining Report

Grand Hotel, Station Road Port Talbot Neath Port Talbot SA13 1DE

Date of enquiry:
Date enquiry received:

Issue date:

20 September 202320 September 202320 September 2023

Our reference: 51003379055001 Your reference: 317152831_2

Consultants Coal Mining Report

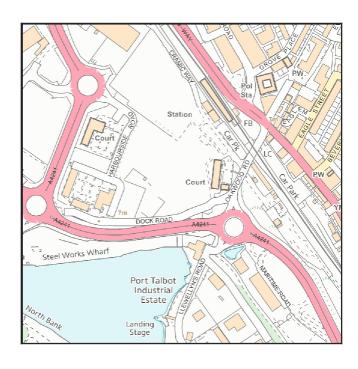
This report is based on and limited to the records held by the Coal Authority at the time the report was produced.

Client name

NLIS Hub

Enquiry address

Grand Hotel, Station Road Port Talbot Neath Port Talbot SA13 1DE


How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International)

200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG

www.groundstability.com

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2018. All rights reserved.

Ordnance Survey Licence number: 100020315

Section 1 - Mining activity and geology

Past underground mining

No past mining recorded.

Probable unrecorded shallow workings

None.

Spine roadways at shallow depth

No spine roadway recorded at shallow depth.

Mine entries

None recorded within 100 metres of the enquiry boundary.

Abandoned mine plan catalogue numbers

None available.

Outcrops

No outcrops recorded.

Geological faults, fissures and breaklines

Please refer to the 'Summary of findings' map (on separate sheet) for details of any geological faults, fissures or breaklines either within or intersecting the enquiry boundary.

Fault under or close to the property recorded.

Opencast mines

None recorded within 500 metres of the enquiry boundary.

Coal Authority managed tips

None recorded within 500 metres of the enquiry boundary.

Section 2 - Investigative or remedial activity

Please refer to the 'Summary of findings' map (on separate sheet) for details of any activity within the area of the site boundary.

Site investigations

None recorded within 50 metres of the enquiry boundary.

Remediated sites

None recorded within 50 metres of the enquiry boundary.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31 October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

None recorded within 500 metres of the enquiry boundary.

Mine water treatment schemes

None recorded within 500 metres of the enquiry boundary.

Section 3 - Licensing and future mining activity

Future underground mining

None recorded.

Coal mining licensing

None recorded within 200 metres of the enquiry boundary.

Court orders

None recorded.

Section 46 notices

No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

Withdrawal of support notices

The property is not in an area where a notice to withdraw support has been given.

The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.

Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Section 4 - Further information

Based on the responses in this report, no further information has been highlighted.

Future development

If development proposals are being considered, technical advice relating to both the investigation of coal and former coal mines and their treatment should be obtained before beginning work on site. All proposals should apply specialist engineering practice required for former mining areas. No development should be undertaken that intersects, disturbs or interferes with any coal or coal mines without first obtaining the permission of the Coal Authority.

MINE GAS: Please note, if there are no recorded instances of mine gas within 500m of the enquiry boundary, this does not mean that mine gas is not present within the vicinity. The Coal Authority Mine Gas data is limited to only those sites where a Mine Gas incident has been recorded. Developers should be aware that the investigation of coal seams, mine workings or mine entries may have the potential to generate and/or displace underground gases. Associated risks both to the development site and any neighbouring land or properties should be fully considered when undertaking any ground works. The need for effective measures to prevent gases migrating onto any land or into any properties, either during investigation or remediation work, or after development must also be assessed and properly addressed. In these instances, the Coal Authority recommends that a more detailed Gas Risk Assessment is undertaken by a competent assessor.

Section 5 - Data definitions

The datasets used in this report have limitations and assumptions within their results. For more guidance on the data and the results specific to the enquiry boundary, please **call us on 0345 762 6848** or **email us at groundstability@coal.gov.uk**.

Past underground coal mining

Details of all recorded underground mining relative to the enquiry boundary. Only past underground workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination, will be included.

Probable unrecorded shallow workings

Areas where the Coal Authority believes there to be unrecorded coal workings that exist at or close to the surface (less than 30 metres deep).

Spine roadways at shallow depth

Connecting roadways either, working to working, or, surface to working, both in-seam and cross measures that exist at or close to the surface (less than 30 metres deep), either within or within 10 metres of the enquiry boundary.

Mine entries

Details of any shaft or adit either within, or within 100 metres of the enquiry boundary including approximate location, brief treatment details where known, the mineral worked from the mine entry and conveyance details where the mine entry has previously been sold by the Authority or its predecessors British Coal or the National Coal Board.

Abandoned mine plan catalogue numbers

Plan numbers extracted from the abandoned mines catalogue containing details of coal and other mineral abandonment plans deposited via the Mines Inspectorate in accordance with the Coal Mines Regulation Act and Metalliferous Mines Regulation Act 1872. A maximum of 9 plan extents that intersect with the enquiry boundary will be included. This does not infer that the workings and/or mine entries shown on the abandonment plan will be relevant to the site/property boundary.

Outcrops

Details of seam outcrops will be included where the enquiry boundary intersects with a conjectured or actual seam outcrop location (derived by either the British Geological Survey or the Coal Authority) or intersects with a defined 50 metres buffer on the coal (dip) side of the outcrop. An indication of whether the Coal Authority believes the seam to be of sufficient thickness and/or quality to have been worked will also be included.

Geological faults, fissures and breaklines

Geological disturbances or fractures in the bedrock. Surface fault lines (British Geological Survey derived data) and fissures and breaklines (Coal Authority derived data) intersecting with the enquiry boundary will be included. In some circumstances faults, fissures or breaklines have been known to contribute to surface subsidence damage as a consequence of underground coal mining.

Opencast mines

Opencast coal sites from which coal has been removed in the past by opencast (surface) methods and where the enquiry boundary is within 500 metres of either the licence area, site boundary, excavation area (high wall) or coaling area.

Coal Authority managed tips

Locations of disused colliery tip sites owned and managed by the Coal Authority, located within 500 metres of the enquiry boundary.

Site investigations

Details of site investigations within 50 metres of the enquiry boundary where the Coal Authority has received information relating to coal mining risk investigation and/or remediation by third parties.

Remediated sites

Sites where the Coal Authority has undertaken remedial works either within or within 50 metres of the enquiry boundary following report of a hazard relating to coal mining under the Coal Authority's Emergency Surface Hazard Call Out procedures.

Coal mining subsidence

Details of alleged coal mining subsidence claims made since 31 October 1994 either within or within 50 metres of the enquiry boundary. Where the claim relates to the enquiry boundary confirmation of whether the claim was accepted, rejected or whether liability is still being determined will be given. Where the claim has been discharged, whether this was by repair, payment of compensation or a combination of both, the value of the claim, where known, will also be given.

Details of any current 'Stop Notice' deferring remedial works or repairs affecting the property/site, and if so the date of the notice.

Details of any request made to execute preventative works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991. If yes, whether any person withheld consent or failed to comply with any request to execute preventative works.

Mine gas

Reports of alleged mine gas emissions received by the Coal Authority, either within or within 500 metres of the enquiry boundary that subsequently required investigation and action by the Coal Authority to mitigate the effects of the mine gas emission. Please note, if there are no recorded instances of mine gas reported, this does not mean that mine gas is not present within the vicinity. The Coal Authority Mine Gas data is limited to only those sites where a Mine Gas incident has been recorded.

Mine water treatment schemes

Locations where the Coal Authority has constructed or operates assets that remove pollutants from mine water prior to the treated mine water being discharged into the receiving water body.

These schemes are part of the UK's strategy to meet the requirements of the Water Framework Directive. Schemes fall into 2 basic categories: Remedial – mitigating the impact of existing pollution or Preventative – preventing a future pollution incident.

Mine water treatment schemes generally consist of one or more primary settlement lagoons and one or more reed beds for secondary treatment. A small number are more specialised process treatment plants.

Future underground mining

Details of all planned underground mining relative to the enquiry boundary. Only those future workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination will be included.

Coal mining licensing

Details of all licenses issued by the Coal Authority either within or within 200 metres of the enquiry boundary in relation to the under taking of surface coal mining, underground coal mining or underground coal gasification.

Court orders

Orders in respect of the working of coal under the Mines (Working Facilities and Support) Acts of 1923 and 1966 or any statutory modification or amendment thereof.

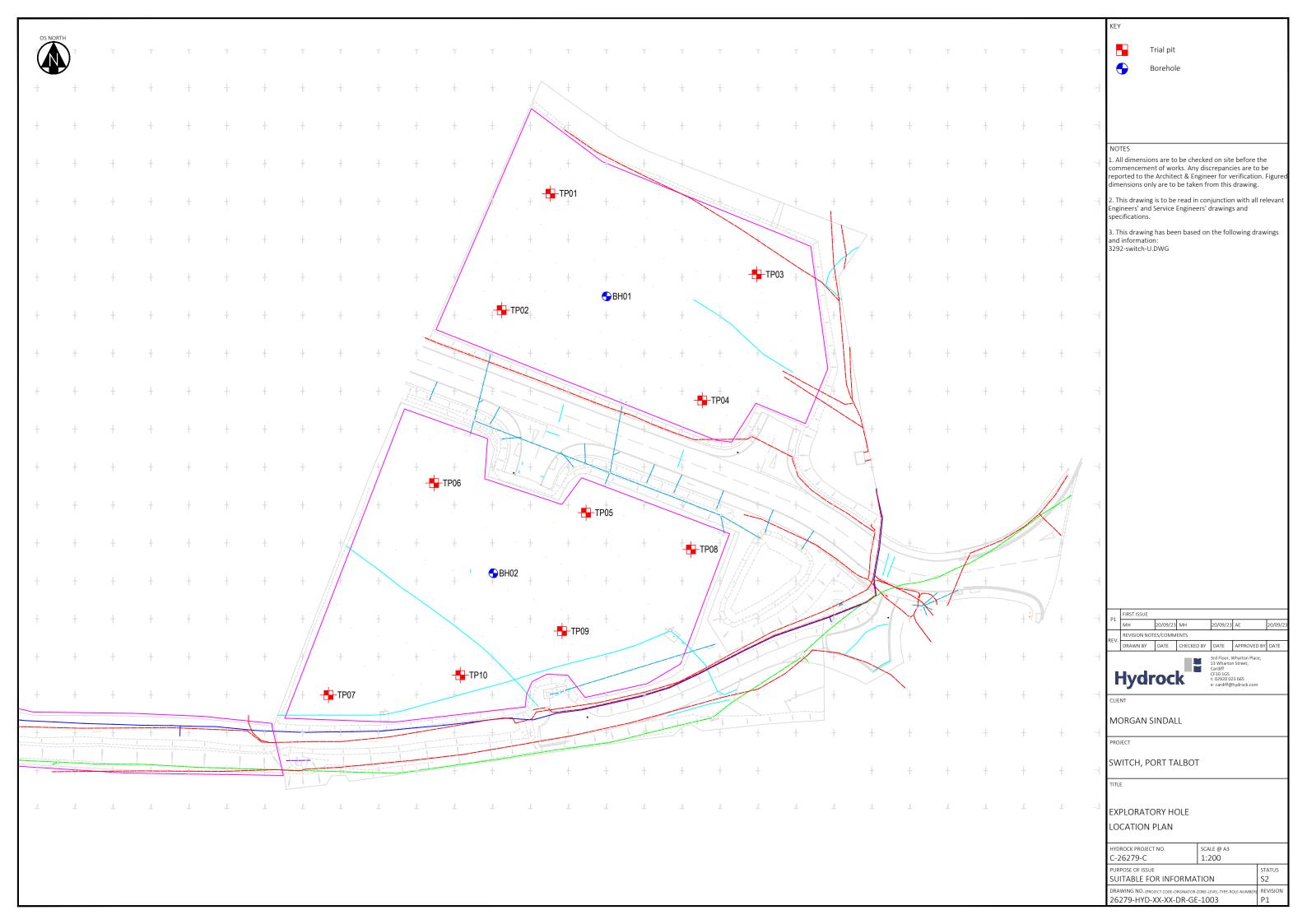
Section 46 notices

Notice of proposals relating to underground coal mining operations that have been given under section 46 of the Coal Mining Subsidence Act 1991.

Withdrawal of support notices

Published notices of entitlement to withdraw support and the date of the notice. Details of any revocation notice withdrawing the entitlement to withdraw support given under Section 41 of the Coal Industry Act 1994.

Payment to owners of former copyhold land


Relevant notices which may affect the property and any subsequent notice of retained interests in coal and coal mines, acceptance or rejection notices and whether any compensation has been paid to a claimant.

Appendix E Exploratory hole location plan, exploratory hole logs and photographs

Exploratory hole location plan

Exploratory hole logs

		•		Project: SWITCH	Trialpit No							
Hydro	ock ^{™i}					TP01						
riyuru	CK					Pa	ige I	No.	1 of	1		
Method: Trial	Pit			Date(s): 26/09/2023	Logged By: M	Н	Checked E			<u> </u>		
Client: Morga	n Sindall			Co-ords: 276585.28, 189552.05	Stability: Stab	le.	Dimensior 3.00r			s: S	cale:	
Hydrock Proje	ect No: 26	6279		Ground Level: 7.42m OD	Plant: JCB 3C	X	0.60		0.00111]	1:25	
Sa	amples / Tes	sts	Water-	Stratum Descr	ription			€_	Thickness (m)	- O	pue	
Depth (m)	Туре	Results	Strikes	Brownish red slightly silty sandy, subangular to a		GRAVEL with		Depth mbgl	Thic (m)	Level m OD	Legend	
0.10 0.10	B ES			low cobble content. Gravel comprised of limestor brick. Sand is fine to coarse. Cobble are subangu (MADE GROUND)	ne, sandstone, concre			0.20	(0.20)	7.22		
0.30 0.35	ES B			Dark grey silty sandy, subangular to angular fine content. Gravel comprised of limestone, sandstor Sand is fine to coarse. Cobble are subangular bri to 10cm.	ne, concrete, asphalt	t, slag and brick			(0.55)			
0.60 0.65	B ES			(MADE GROUND) at 0.65m possible asbestos fabric.			-					
				Dark grey to black silty sandy, subangular to ang cobble content. Gravel comprised of limestone, s brick. Sand is fine to coarse. Cobble are subanguodour. (MADE GROUND)	andstone, concrete,	asphalt, slag ar	v . nd	0.75		6.67		
1.20	ES						-					
1.70	ES						2 -		(1.65)			
2.30	ES		•	Dark brownish grey slightly sandy rounded fine to	o coarse GRAVEL of	sandstone with		2.40	(0.10)	5.02		
				Dark brownish grey slightly sandy rounded fine to low cobble content. Sand is fine to coarse. Cobbl mm. (ALLUVIAL FAN DEPOSITS) at 2.40m groundwater inflow. Base of Excavation a	es are rounded of sa		а	2.50	(0.10)	4.92		

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine excavated to 2.50m bgl. 3. Groundwater strike at 2.40m bgl. 4. Trial pit walls stable throughout excavation. 5. Backfilled with arisings.

		-		Project: SWITCH		7	Trialpi			
Hydro	ck						TP(1	
Method: Trial				Date(s): 26/09/2023	_ogged By: Ml	T	ge No. Check			Н
Client: Morga				Co. ords: 276572.44, 180521.34	Stability: Unsta	able	Dimer			cale:
Hydrock Proje		 6279			oelow 2.40m b Plant: JCB 3C		0.70m	3.20m	╗ .	1:25
	amples / Tes		Water-					ssət		۰
Depth (m)	Туре	Results	Strikes	Stratum Descrip			Depth	Thickness (m)	Level m OD	Legend
0.15 0.20	ES B			Brownish grey slightly silty sandy, subangular to an low cobble content. Gravel comprised of limestone brick. Sand is fine to coarse. Cobble are subangula (MADE GROUND)	e, sandstone, concre ar brick.	ete, asphalt, and		(0.30)	7.13	
0.40 0.50 0.75	B ES B		•	Dark grey silty sandy, subangular to angular fine to content. Gravel comprised of limestone, sandstone Sand is fine to coarse. Cobble are subangular brick odour. (MADE GROUND) at 2.40m groundwater inflow.	e, concrete, asphalt,	, slag and brick.	1-	(2.50)		
2.50	ES			Firm grey silty slightly sandy CLAY. Sand is fine to	coarse		2.80		4.63	
2.90 2.90	D ES			(TIDAL FLAT DEPOSITS)	coarse.		3.00	(0.20)	4.43	
3.10	В			Dark brownish grey slightly sandy rounded fine to do low cobble content. Sand is fine to coarse. Cobbles mm. (ALLUVIAL FAN DEPOSITS) Base of Excavation at 3	s are rounded of sa		a ³	(0.30)	4.13	
							-			

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine excavated to 3.30m bgl. 3. Groundwater strike at 2.40m bgl. 4. Trial pit walls unstable below 2.40m bgl. 5. Backfilled with arisings.

Project: SWITCH								TP03						
Hydro	OCK					Pa	Page No. 1 of 1							
Method: Tria	l Pit			Date(s): 26/09/2023	Logged By: M		Check			Н				
Client: Morga	n Sindall			Co-ords: 276639.66, 189530.78	Stability: Stab	le.	Dimensions 8.00m			cale:				
Hydrock Proj	ect No: 26	6279		Ground Level: 7.46m OD	Plant: JCB 3C	×	0.70m [8.00m		1:25				
S	amples / Te	sts	Water-	Stratum Desc	cription		£.	Thickness (m)	- Q	Legend				
Depth (m)	Туре	Results	Strikes	Brownish red slightly silty sandy, subangular to	angular fine to coarse	GRAVEL, with	Depth	E E	Level m OD	Leg				
0.20	В			low cobble content. Gravel comprised of limesto brick. Sand is fine to coarse. Cobble are subang (MADE GROUND)	gular brick.		0.30	(0.30)	7.16					
0.40 0.40	B ES			Firm reddish brown silty slightly gravelly CLAY. subangular fine to coarse concrete, sandstone at (MADE GROUND) Medium strong light grey CONCRETE. Underla	and limestone.		0.50	(0.20)	6.96					
				(MADE GROUND)			-	(0.25)						
0.80 0.85	ES B			Brownish grey slightly silty sandy, subangular to low cobble content. Gravel comprised of limesto brick. Sand is fine to coarse. Cobble are subang (MADE GROUND)	one, sandstone, concre		i -	(0.25)	6.71					
				Dark grey silty sandy, subangular to angular fine content. Gravel comprised of limestone, sandst Sand is fine to coarse. Cobble are subangular b (MADE GROUND)	one, concrete, asphalt		1.00		6.40					
1.40 1.50	ES B						-							
							-	(1.50)						
			_	at 2.20m groundwater inflow.			2 -							
2.40	ES													
2.55 2.60	ES B			Firm grey silty slightly sandy slightly gravelly CL (TIDAL FLAT DEPOSITS)	AY. Sand is fine to coa	arse.	2.50	(0.20)	4.96					
2.00	5			Dark brownish grey slightly sandy rounded fine				(0.40)	4.76					
				low cobble content. Sand is fine to coarse. Cobl. mm(ALLUVIAL FAN DEPOSITS)	bles are rounded of sa	·	- A		4.00					
							-							
							-							
							-							
							-							
							4 -							
							1							
							-							

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine excavated to 2.80m bgl. 3. Groundwater strike at 2.20m bgl. 4. Trial pit walls stable throughout excavation. 5. Backfilled with arisings.

L. J.	الل _ي ال			Project: SWITCH			Trialpit No TP04					
Hydro	CK					Pag	ge No		· 1			
/lethod: Trial	l Pit			Date(s): 27/09/2023	Logged By: AT	T.	Checked By			Н		
Client: Morga	n Sindall			Co-ords: 276625.31, 189497.56	Stability: Stabl	e.	Dime	nsion 3.00m		cale:		
łydrock Proje	ect No: 26	6279		Ground Level: 7.41m OD	Plant: JCB 3C	X	0.60m	3.0011		1:25		
Depth (m)	amples / Tes	sts Results	Water- Strikes	Stratum Desc	cription		Depth	Thickness (m)	Level m OD	Legend		
0.10 - 0.40 0.20 0.30	B ES D	Results		Dark blackish brown sandy angular to subangul brick asphalt limestone and slag with a low cobl Cobbles are subangular of concrete up 100mm (MADE GROUND) at 0.40m bgl: slow water seepage.	ble content. Sand is fin		<u>a</u> <u>a</u>	(0.60)	E Le	- Fe		
0.70 - 1.00 0.70 - 1.00	B B			between 0.50m-0.60m bgl: clayey. Dark brown and blackish brown sandy slightly of coarse GRAVEL of limestone brick concrete gramedium cobble content. Sand is fine to coarse masonry wall up to 190mm. (MADE GROUND)	anite and slag with rare	glass and a	0.60	(0.50)	6.81			
1.00 1.00 1.20 1.20 1.20 - 1.40 1.20 - 1.40	D ES B B			Dark grey and brown sandy slightly clayey fine occasional cinders with a low cobbles content. sangular to subangular up to 190mm. (MADE GROUND) from 1.40m bgl: brown.			1.10	(0.50)	6.31			
1.80	ES D			Dark blackish brown sandy subangular to subrowith rare shell fragments and a moderate hydro (MADE GROUND)			1.60	(0.50)	5.81			
2.00	ES			Firm greyish brown slightly sandy slightly grave	lly CLAY with a slight h	ydrocarbon	2.10	(0.10)	5.31			
			•	odour. Sand is fine to coarse. Gravel is subrour sandstone. (TIDAL FLAT DEPOSITS) Dark brownish grey slightly sandy rounded fine low cobble content slight hydrocarbon odour an Cobbles are rounded of sandstone up to 200 m	to coarse GRAVEL of d an oily sheen. Sand m.	sandstone with		(0.50)	5.21 4.71			
				Base of Excavation	at 2.70m		3 -					

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 2.70m bgl. 3. Groundwater strike at 2.60m bgl rising to 2.40m bgl. 4. Trial pit walls stable throughout excavation. 5. Backfilled with arisings.

	, II			Project: SWITCH		ı	TP05					
Hydro	CK					Pa	ge No. 1 of 1					
/lethod: Trial	Pit			Date(s): 27/09/2023	Logged By: AT		Check			H		
Client: Morgai				Co-ords: 276594.68, 189467.97	Stability: Stabl		Dimensions			cale:		
lydrock Proje		279		Ground Level: 7.49m OD	Plant: JCB 3C	Х	0.70m		7 1	1:25		
Sa	mples / Tes	ts	Water-	Stratum Description			_	Thickness (m)		Pu		
Depth (m)	Туре	Results	Strikes	MADE GROUND. Brown and greyish brown sa	•	ular fine to coars	Depti	(m)	Level m OD	Legend		
0.10 - 0.40 0.10 - 0.40 0.20 0.30	B B ES D			GRAVEL of brick concrete limestone ceramic fr cobble content. Sand is fine to coarse. Cobbles up to 120mm (MADE GROUND) from 0.0-0.10m bgl: brown.	agments slag and clink	er with a low	-	(0.70)				
0.60	ES			Dada blaskich bereits and allebha danses be			0.70		6.79			
0.80 - 1.00	В			Dark blackish brown sandy slightly clayey suba GRAVEL of slag sandstone limestone and conc (MADE GROUND)		ine to coarse	-					
1.00	D ES						1-	(1.25)				
2.00 2.00 2.00 - 2.50	D ES B		•	Black slightly sandy silty subangular to subroun a low cobble content. Sand is fine to coarse. C slag up to 170mm. (MADE GROUND)	nded fine to coarse GR. Cobbles are subrounde	AVEL of slag wit d to rounded of	1.95	(0.75)	5.54			
				Greyish brown slightly gravelly silty fine to coars	se SAND. Gravel is sul	bangular to	2.70		4.79			
2.80 2.80	D ES			subrounded fine to coarse of sandstone. (TIDAL FLAT DEPOSITS)			2.90	(0.20)	4.59	* * * * ×		
2.80 - 2.90	В			Base of Excavation	n at 2.90m		4					

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 2.90m bgl. 3. Groundwater strike at 2.20m bgl. 4. Trial pit walls stable throughout excavation. 5. Backfilled with arisings.

, II			Project: SWITCH			Trialpit No TP06					
CK								1			
Pit			Date(s): 27/09/2023	Logged By: Al					H		
n Sindall			Co-ords: 276554.62, 189475.78	Stability: Stab	le.			s: S	cale:		
ect No: 262	279		Ground Level: 7.48m OD	Plant: JCB 3C	X	0.70m	3.00111] .	1:25		
amples / Test	ts	Water-	Stratum Des	cription		£ _	kness	- O	pue		
Type	Results	Strikes			f brick concrete	Depl	Thic (m)	Leve m O	Puegend		
ES D			slag clinker and ceramic fragments with a medi	ium cobble content. Sa			(0.45)				
D ES B			limestone concrete slag mudstone and brick. S (MADE GROUND)	and is fine to coarse.		0.45	(0.30)	6.73			
B D ES						1 -	(0.45)				
В			organic odour. Gravel is angular to subangular (MADE GROUND)	fine to coarse of sands		1.20		6.28			
D ES							(1.00)				
			Blackish brown sandy slightly clayey angular to	subrounded GRAVEL	of slag sandston	2 - 2.20		5.28			
D ES B		_				i	(0.50)				
D ES			Grey mottled orangish brown very clayey fine to (TIDAL FLAT DEPOSITS)	o coarse SAND.		-	(0.30)	4.78			
			Base of Excavation	n at 3.00m		4 -		4.48	2002		
	Type B ES D ES B B D ES D D ES B D ES D D ES B D D ES B D ES D D ES B D D ES D D D ES B D D D ES B E E E E E E E E E E E E	Pit In Sindall Lect No: 26279 Imples / Tests Type Results B ES D D ES B B B B D ES B B D ES B ES B	Pit n Sindall ect No: 26279 amples / Tests	Pit Date(s): 27/09/2023 In Sindall Co-ords: 276554.62, 189475.78 Bot No: 26279 Ground Level: 7.48m OD Implies / Tests Water- Type Results Strikes Stratum Des B Greyish brown sandy angular to subangular in slag clinker and ceramic fragments with a medicoarse. Cobbles are angular to subangular of (MADE GROUND) Dark greyish brown sandy clayey angular to sulimestone concrete slag mudstone and brick. S (MADE GROUND) Blackish brown sandy slightly clayey angular to slag and limestone with a strong hydrocarbon of (MADE GROUND) Test Strikes Stratum Des Blackish brown sandy slightly clayey angular to sulimestone with a strong hydrocarbon of (MADE GROUND) Test Stratum Des Blackish brown sandy slightly clayey angular to subangular (MADE GROUND) Test Stratum Des Blackish brown sandy slightly clayey angular to subangular to subangular (MADE GROUND) Test Stratum Des Test Stratum Des Blackish brown sandy slightly clayey angular to subangular	Pit Date(s): 27/09/2023 Logged By: AT In Sindall Co-ords: 276554.62, 189475.78 Stability: Stability	Pit Date(s): 27/09/2023 Logged By: AT Consider Straight Date(s): 27/09/2023 Logged By: AT Consider Straight Date(s): 27/09/2023 Stability: Stable. Co-ords: 27/05/24.62, 189475.78 Stability: Stable. Ground Level: 7.48m OD Plant: JCB 3CX Strikes Stratum Description B Stratum Description Greyish brown sandy angular to subangular fine to coarse GRAVEL of brick concrete slag clinks and ceramic fragments with a medium cobble content. Sand is fine to coarse. Cobbles are angular to subangular fine to coarse GRAVEL of linestone concrete slag mudstone and brick. Sand is fine to coarse. (MADE GROUND) Dark greyish brown sandy clayey angular to subangular fine to coarse. (MADE GROUND) B B B B B B B B B B B B B B B B B B B	Pit Date(s): 27/09/2023 Logged By: AT Check In Sindall Co-ords: 276554.62, 189475.78 Stability: Stable. Dimer Cot No: 26279 Ground Level: 7.48m OD Plant: JCB 3CX 0.70m Samples / Tests Strikes Stratum Description Description Stratum Description Stratum Description Descr	Pit Date(s): 27/09/2023 Logged By: AT Checked B: In Sindall Co-ords: 276554.62, 189475.78 Stability: Stable. Dimension: 3.00m and 1.00m pitch to 26279 Ground Level: 7.48m OD Plant: JCB 3CX 0.77m Strikes Water-Type Results Water-Type Results Strikes Stratum Description Strikes Stratum Description Greysh brown sandy angular to subangular fine to coarse GRAVEL of brick concrete sing clinker and ceramic fragments with a medium cobbie content. Sand is fine to coarse. Cobbies are angular to subangular fine to coarse GRAVEL of University Coarse. Cobbies are angular to subangular fine to coarse GRAVEL of University Coarse. Cobbies are angular to subangular fine to coarse. GRAVEL of University Coarse. Cobbies are angular to subangular fine to coarse. GRAVEL of University Coarse. Cobbies are angular to subangular fine to coarse GRAVEL of University Coarse. Cobbies are angular to subangular fine to coarse. GRAVEL of University Coarse. Coarse Coarse. (MADE GROUND) Bilackish brown sandy slightly clayey angular to subangular fine to coarse GRAVEL of University Coarse (MADE GROUND) Fellowish brown becoming brown slightly gravely fine to coarse GRAVEL of University Coarse (GRAVEL of Siag sandstone and are quart with a strong hydrocarbon odour and oily sheen. Sand is fine to coarse. Coabies are subrounded of Siag. (MADE GROUND) Bilackish brown sandy slightly clayey angular to subrounded GRAVEL of slag sandstone and are quart with a strong hydrocarbon odour and oily sheen. Sand is fine to coarse. Coabies are subrounded of Siag. (MADE GROUND) Bilackish brown sandy slightly clayey angular to subrounded GRAVEL of slag sandstone and are quart with a strong hydrocarbon odour and oily sheen. Sand is fine to coarse. Coabies are subrounded of Siag. (MADE GROUND)	Pit Date(s): 27/09/2023 Logged By: AT Checked By: Mn sindall Co-ords: 276554.62, 189475.78 Stability: Stable. Dimensions: Stock No: 26279 Ground Level: 7.48m OD Plant: JCB 3CX Stratum Description Plant: JCB 3CX Plant: J		

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 3.00m bgl. 3. Groundwater strike at 2.30 bgl. 4. Trial pit walls stable throughout excavation. 5. Backfilled with arisings.

Project: SWITCH								TD07					
Hydro	ock					TP07							
				D (/) 07/02/2222			ge No.			=			
lethod: Trial				Date(s): 27/09/2023	Logged By: AT		Check Dimen			H cale:			
lient: Morga				Co-ords: 276526.81, 189419.91	Stability: Stabl	·.	3.1		.10m				
lydrock Proje				Ground Level: 7.48m OD	Plant: JCB 3C	Х	0.60m	s,	Ц,	1:25			
Depth (m)	amples / Te	sts Results	Water- Strikes	Stratum Desc	ription		Depth mbgl	Thickness (m)	Level m OD	Legend			
0.10 - 0.30 0.10 - 0.30 0.20 0.20	B B D ES			Brown very sandy angular to subangular fine to a quartz brick slag and breeze block. Sand is fine to (MADE GROUND)		sphalt concrete	-	(0.40)	3 5				
0.45 - 0.65 0.50 0.50	B D ES			Stiff reddish brown slightly sandy slightly gravelly is subangular fine to coarse of mudstone. (MADE GROUND)	y CLAY. Sand is fine t	to coarse. Grave		(0.35)	7.08				
0.90 - 1.20 1.00 1.00	B D ES			Dark brownish grey sandy angular to subangular and concrete with a low cobble content. Sand is concrete. (MADE GROUND)			of	(0.85)	6.73				
1.90 - 2.20 2.00 2.00	B D ES			Dark brown very sandy slightly clayey angular to slag concrete and brick with a medium cobble cc 250mm. Sand is fine to coarse. Cobbles are sub (MADE GROUND)	ontent and rare boulde			(0.60)	5.88				
2.20 - 2.50 2.30 2.30 - 2.50	B ES B		•	Dark grey subangular fine to coarse GRAVEL an fine to coarse. (MADE GROUND)	nd subrounded cobble	s of slag. Sand	2.20 is - - 2.50	(0.30)	5.28				
2.60	D			Soft to firm brown silty slightly sandy CLAY. (TIDAL FLAT DEPOSITS)			-	(0.40)					
3.00 3.00 3.00 - 3.30	D ES B			Dark grey sandy subrounded to rounded fine to a strong hydrocarbon odour and bright oily sheen. (ALLUVIAL FAN DEPOSITS) below 3.0m bgl: oily sheen on water surface Base of Excavation	Sand is fine to coarse		3.30	(0.40)	4.58				
							4-						

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 2.70m bgl. 3. Groundwater strike at 2.30 bgl. 4. Trial pit walls stable throughout excavation. 5. Backfilled with arisings.

Hydro	ck			Project: SWITCH		-	Trialp TP			
ijaic	CIN					Pa	ge No	. 1 of	1	
Method: Trial	Pit				Logged By: A		Checl			
Client: Morga	n Sindall				Stability: Unstable below 2.30m.	able	Dime	nsion 3.20m		cale:
Hydrock Proje	ect No: 26	6279		Ground Level: 7.47m OD	Plant: JCB 3C	X	0.60m		_	1:25
	amples / Te		Water- Strikes	Stratum Descr	iption		th.	Thickness (m)	D G	Legend
Depth (m)	Туре	Results	Otilico	Reddish brown sandy clayey angular to subangul	lar fine to coarse GR	AVEL of	- De	ĒĒ	Level m OD	Ĕ.
0.10 - 0.30 0.20 0.20	B D ES			limestone. Sand is fine to coarse. (MADE GROUND)			0.38	(0.38)	7.09	
0.50 0.50 - 1.00	ES B			Dark blackish brown very sandy angular to suban brick limestone and concrete with a low cobble co Sand is fine to coarse. Cobbles are subangular of (MADE GROUND)	ontent and a slight hy		g -			
1.00 1.00	D ES			at 1.00m bgl: seepage.			1 -			
1.50 1.50 - 2.00 1.50 - 2.00	D B B						2 -	(1.92)		
2.50 2.50 2.50 - 3.00	D ES B		▼	Greyish brown sandy slightly silty subrounded to sandstone with a low cobble content and a mild h coarse. Cobbles are subrounded of sandstone. (ALLUVIAL FAN DEPOSITS)			2.30	(0.70)	5.17	
				Base of Excavation a	i 3.00m		4 -		4.47	

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 3.00m bgl. 3. Groundwater strike at 2.30 bgl. 4. Pit walls unstable below 2.30m bgl. 5. Trial pit collapsing to 2.70m bgl. 6.Backfilled with arisings.

	II			Project: SWITCH			TP09					
Hydro	ck						je No.		1			
/lethod: Trial	l Pit			Date(s): 29/09/2023	Logged By: A1		Check			—— Н		
Client: Morga				Co-ords: 276588.36, 189346.77	Stability: Unsta	able	Dimensions			cale:		
lydrock Proje		6279		Ground Level: 7.45m OD	below 2.60m below		0.60m			1:25		
Sa	amples / Tes	sts	Water-	Ctratum Dog	Stratum Description			Thickness (m)	Level m OD			
Depth (m)	Туре	Results	Strikes		·					Legend		
0.10 - 0.40 0.20	B ES			Reddish brown becoming brownish grey sandy coarse GRAVEL of limestone brick concrete ar fine to coarse. Cobbles are subangular of conc (MADE GROUND)	nd slag with a low cobbl		is -	(0.60)				
0.50 0.50 0.90 - 1.40 0.90 - 1.40 1.00 1.00	D ES B B D ES			Dark blackish grey very sandy slightly clayey s GRAVEL of brick sandstone slag and quartz wi coarse. Cobbles are angular to subangular of b (MADE GROUND) at 0.60m bgl: rapid water ingress.	ith a low cobble content		0.60		6.85			
1.90 - 2.40 2.00	B D						2 -	(2.10)				
			•	at 2.60m bgl: oily sheen on ground water.			2.70		4.75			
2.80 - 3.00 3.00 3.00	B D ES			Dark brownish grey sandy slightly clayey subar of sandstone with a low cobble content. Sand i sandstone. (ALLUVIAL FAN DEPOSITS) from 2.70m bgl: cast pipe fragments and reference of the same sand reference of the same same same same same same same sam	s fine to coarse. Cobbl	o coarse GRAVE es are rounded (L	(0.60)				
				Base of Excavatio	n at 3.30m		4-					

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 3.30m bgl. 3. Groundwater strike at 2.60m bgl. 4. Pit walls unstable below 2.60m bgl. 5. Backfilled with arisings.

	. J. II.			Project: SWITCH			rialpit TP1					
Hydro	ck						i Fi ge No.		1			
lethod: Trial	Pit			Date(s): 29/09/2023	Logged By: E\		Check			H		
				Co-ords: 276561.54, 189425.15								
lydrock Proje	ect No: 26	6279		Ground Level: 7.46m OD	Plant: JCB 3C	X	0.60m	3.00m 1:25				
Sa	amples / Te	sts	Water-	Stratum Desc	cription		£ _	Thickness (m)	- Q	pue		
Depth (m)	Туре	Results	Strikes	MADE GROUND dark greyish brown very sand	·	o subrounded	Depth	(m)	Level m OD	Puegend		
0.10 - 0.40 0.20 0.20	B D ES			GRAVEL of brick slag concrete and sandstone to coarse. Cobbles are angular of brick and con (MADE GROUND)	with a low cobble conte			(0.46)				
0.40 - 0.60 0.50 0.50	B D ES			at 0.44m bgl: slight seepage. Dark blackish brown slightly sandy very gravelly coarse. Gravel is angular to subrounded fine to			0.46 d 0.60	(0.14)	7.00 6.86			
0.70 - 1.00 0.70 - 1.00 0.70 - 1.00 0.85 1.00	B B B D			slag. (MADE GROUND) Dark grey very sandy slightly silty subangular to brick concrete slag ceramic fragments and sand cobble content and rare boulders. Sand is fine t concrete. Boulders are subangular of brick. (MADE GROUND)	dstone with rare metal	and wood a low	1 -					
1.70 - 2.00 2.10 2.10	B D ES		_	from 1.70m bgl: blackish brown and ashy.			2 -	(1.90)				
2.60 2.60 - 2.90	ES B			Firm greyish brown mottled yellowish brown slig rootlets. Sand is fine to medium. (ALLUVIAL FAN DEPOSITS)	ohtly sandy CLAY with	occasional	2.50	(0.60)	4.96			
				Base of Excavation	at 3.10m		4 -		4.36			

General Remarks:

1. Location GPR cleared by Rock Surveying Ltd and CAT & Genny. 2. Machine dug to 3.10m bgl. 3. Groundwater strike at 2.20m bgl. 4. Pit walls unstable below 2.60m bgl. 5. Backfilled with arisings.

Hydı	rock	:		Project: SWITCH		В	Н	le N		
				Data(s): 27/00/2022 20/00/2022 Laurad Du EW	Pa	Ť		. 1 0		
	Cable Percus			Date(s): 27/09/2023 - 28/09/2023 Logged By: EW					: CJA	1
	rgan Sindall			Co-ords: 276600.08, 189524.97 Checked By: MH		Flu				
нуагоск Р	Project No: 2			Ground Level: 7.38m OD				: 1:	50	
Depth (m)	Samples / 1	Results	Water- Strikes	Stratum Description	epth	mbgl	(F)	Level m OD	Legend	Instrum- entation / Backfill
0.00 - 0.20 0.20	B ES			Dark brown slightly sandy slightly clayey angular to subangular fine to coarse GRAVEL of brick concrete slag and clinker. Sand is fine to coarse. (MADE GROUND)		(0	.50)			W
0.50 0.50 - 1.00	ES B			Dark greyish brown sandy slightly silty angular to subrounded fine to coarse GRAVEL of brick and sandstone. Sand is fine to coarse. (MADE GROUND)		- 1	.50)	6.88		
1.00	SPT	N=46 (3,8,15,10,11,10)		Dark blackish brown sandy clayey angular to subrounded fine to coarse GRAVEL		00		6.38		
1.00 - 1.20 1.10 1.20 - 1.70	B ES B			sandstone and slag. (MADE GROUND)			F0)			
2.00	SPT	N=41			2	(1	.50)			
2.00	ES	(5,3,3,12,10,16)		from 2.00m bgl: strong hydrocarbon odour.	=					
2.00 - 2.50 2.50 - 3.00	B B			Dense greyish black sandy subrounded to rounded fine to coarse GRAVEL of	2.5	50	_	4.88		
				being gleyish black samy subrounded to rounded line to coarse GRAVEL of sandstone. Sand is fine to coarse. (ALLUVIAL FAN DEPOSITS)	1	(0	.50)			
3.00	SPT	N=47		at 2.50m bgl: mild hydrocarbon odour. Dense blackish brown sandy subangular to subrounded fine to coarse GRAVEL of	3 3.0 of .	00		4.38		
3.00 3.00 - 3.50	ES B	(6,8,11,10,12,14)		sandstone with a low cobble content. Sand is fine to coarse. Cobbles are rounde of sandstone.						
3.50 - 4.00	В			(ALLUVIAL FAN DEPOSITS)						
4.00	SPT	50/231mm (8,12,14,14,18,4)			4 -					
4.00 - 4.50	В	(0,12,17,14,10,4)			1					
4.50 - 5.00	В			from 4.50m bgl: greyish brown and no hydrocarbon odour.						
5.00	SPT	50/150mm			5 -					
5.00 - 5.50	В	(25,20,30)]	(4	.60)			
5.50 5.50 - 6.30	ES B				-					
5.50 - 6.50	В				6 -					
6.30	SPT	50/225mm								
6.30 - 6.70	В	(4,14,14,16,20)]					
7.00 - 7.60	В				7 -					
					1					
7.60	SPT	N=54		End of Borehole at 7.60m	7.6	60		-0.22		
		(5,6,8,12,16,18)								
					8 -					
					1					
					1					
					9 -					
					1					
					1					
					-					
				1-	10 -					
Rig Date Dando 27/09 Dando 27/09 Dando 28/09 Dando 28/09	Time Borehole	SS and Observation Casing Casing Depth (m) Diam.(mm) Depth Diam.(mm) Depth Diam.(mm) Diam.(mm)	0 13	Chiselling Chiselling Chiselling Chiselling Chiselling Chiselling Chiselling Chiselling Colour Colour	nspec vater s istalled	tion p strike d with	oit h at 2 n res	and o 2.50m spons	dug to bgl. 4	1.20m
Daniu0 28/09	1300 /.00	7.00 150 2.0								
		emplate v3			Logge	d in gen	eral a	ccordan	ce with BS	5930:2015

Hydr	ock			Project: SWITCH		E	ЗН			
Method: Ca		noion		Deta(a): 28/00/2022 20/00/2023 Lagrand By: EM		Ť). 1 c		
				Date(s): 28/09/2023 - 29/09/2023 Logged By: EV		+			CJA	
Client: Mor	-			Co-ords: 276570.24, 189452.01 Checked By: N	ІП	+	lush			
Hydrock Pr				Ground Level: 7.41m OD				: 1:	50	
	Samples / T		Water- Strikes	Stratum Description	1	g Lu	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
Depth (m) 0.00 - 0.20	Type B	Results	> 00	Light grey sandy slightly silty angular to subangular fine to coarse GRAVEL	. of	2 5	ΕŒ	a E	<u> </u>	lns ent
0.20	ES			concrete sandstone and slag with a low cobble content. Sand is fine to coa Cobbles are subangular to subrounded of concrete and slag.	rse.					
0.50 0.50 - 0.80	ES B			(MADE GROUND)]					
0.80 - 1.20	В				1					
1.00	ES			from 1.0m bgl: blackish brown.	1 -					
1.20	SPT	50/210mm (14,11,14,18,18)			1		(2.60)			
1.20 - 1.70	В]					<u>:</u> H
1.70 - 2.00	В				-					
2.00	SPT	N=41 (4,7,9,10,10,12)		from 2.0m bgl: slightly clayey.	2 -					<u>.</u> ⊢
2.00 - 2.50	В	(7,1,3,10,10,12)			1					
2.60 - 3.20	В					.60		4.81		
2.80	ES			Stiff dark greyish brown slightly sandy slightly gravelly CLAY. Sand is fine to Gravel is subangular to subrounded fine to medium of sandstone.	coarse					
3.00	SPT	N=36		(TIDAL FLAT DEPOSITS)	3 -		(1.00)			
3.20 - 3.65	D	(2,4,6,10,11,9)			-		(1.00)			
3.60 - 4.00	В					.60		3.81		
3.70	ES			Dense light brownish grey sandy silty subangular to subrounded fine to coa GRAVEL of sandstone with a low cobble content. Sand is fine to coarse. Co					. × .	
4.00	SPT	N=45		are rounded of sandstone up to 120mm. (ALLUVIAL FAN DEPOSITS)	4 -				χ. Χ. 	
4.00 - 4.50	В	(2,6,9,10,12,14)			1				, ×,	
4.50 - 5.10	В]				×. ×	
									× ×	
5.00	SPT	50/123mm			5 -				×, ×,	
5.10 - 5.50	В	(6,14,25,25)			1				× ×	
5.60 - 6.20	В				1				×	
					-				× ^ ×	H
					6 -		(4.90)		×	
6.20	SPT	50/150mm (10,15,22,28)			1					
6.20 - 6.70	В				1				×	
]				, ×	
7.00 7.70	6				7 -				, ×,	
7.20 - 7.70	В]				χ. ×. ̂.	
7.70	SPT	50/400			‡				, Χ',	
		50/190mm (10,15,19,18,13)]				× ×	
7.70 - 8.30	В				8 -				× ×	
8.30	SPT	50/225mm (8,14,15,15,20)]	.50		-1.09	× ×	
		(5,11,15,15,25)		End of Borehole at 8.50m		1.50		-1.05		
					1					
					9 -					
					1					
					1					
					, 1					
	D*	o and Ohre ") 	Chicalling General Remarks:	10 -					
 	Darahala	s and Observati		1. Position GPR cleared						
Rig Date Dando 28/09	Time Borehole Depth (m) 1600 2.00	Casing Casing Wa Depth (m) Diam.(mm) Depth 2.00 150	ier F n (m) 7	pe (colour) (m) (m) (HH:MM) bgl prior to drilling. 3. Gro	oundwater	strik	e at 2	2.60m	bgl. 4	
Dando 29/09 Dando 29/09	0730 2.00 1630 8.30	2.00 150 2.00 150 8.30 150 2.3	30	5.40 5.60 00:30 50mm dual monitoring with between 1.00m - 2.00m a					e zon	es
	k Cable Percussion Te				Logge	ed in g	general a	ccordan	e with BS	5930:2015

Appendix F Geotechnical test results and geotechnical plots

Geotechnical laboratory test results

This report has been checked and approved by:

Contract Number: 68911

Client Ref: 26279 Date Received: 05-10-2023
Client PO: PO29483 Date Completed: 26-10-2023
Report Date: 26-10-2023

Client: Hydrock Limited

Hydrock First Floor 5 Castlebridge

5-19 Cowbridge Road East

Cardiff CF11 9AB

Tel: 02920 023665 Mob: 07392 081090

Brendan EvansOffice Administrator

Contract Title: Switch

For the attention of: Matthew Holbourn

Test Description	Qty
Samples Received - @ Non Accredited Test	51
Moisture Content BS 1377:1990 - Part 2: 3.2 - * UKAS	2
4 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	2
PSD Wet Sieve method BS 1377:1990 - Part 2 : 9.2 - * UKAS	20
Determination of the Swelling Potential of Fill Material (Slag Expansion Test 7 day test) BR 481 - Part B - Appendix B	8
Disposal of samples for job	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of GEO Site & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.

Approved Signatories:

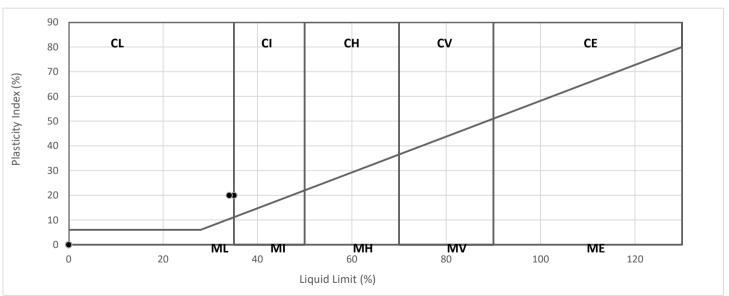
Brendan Evans (Office Administrator) - Darren Bourne (Quality Senior Technician) - Paul Evans (Director) Richard John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) Wayne Honey (Human Resources/ Health and Safety Manager)

GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX	
GEOTECHNICAL SITE & TESTING LABORATORIES	(BS 1377:1990 - Part 2 : 4.3 & 5.3)	
Contract Number	68911	
Project Name	Switch	
Date Tested	11/10/2023	
	DESCRIPTIONS	

Sample/Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
TP02	5	В	2.90	-		Brown/grey fine to medium gravelly silty CLAY
TP03	5	В	2.60	-		Brown/grey fine to medium gravelly silty CLAY
		'		-		
				-		
				-		
	<u> </u>			-		
				-		
		'		-		
	'	'		-		
	'	'		-		
	<u> </u>	'		-		
	'	<u> </u>		-		
	'	'	<u> </u>	-		
	'	<u> </u>		-		
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	<u> </u>	
	'	<u> </u>	<u> </u>	-	1	

Operator

Aaron Hodge

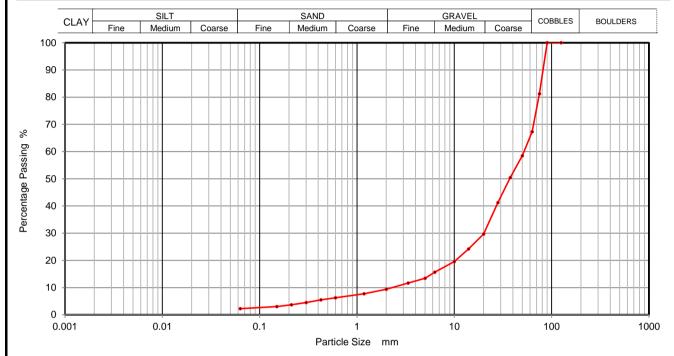

GEOTECHNICAL SITE & TESTING LABORATORIES	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.3 & 5.3)	
Contract Number	68911	
Project Name	Switch	
Date Tested	11/10/2023	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
TP02	5	В	2.90	-		12	35	15	20	68	CL/I Low/Inter. Plasticity
TP03	5	В	2.60	-		12	34	14	20	71	CL Low Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Symbols: NP : Non Plastic # : Liquid

: Liquid Limit and Plastic Limit Wet Sieved PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION

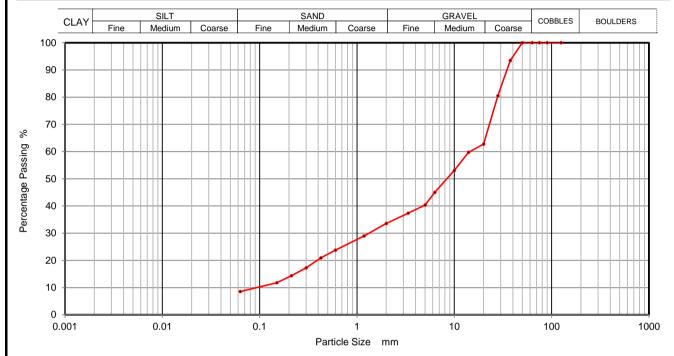
BS 5930:2015+A1:2020



Operator

Aaron Hodge

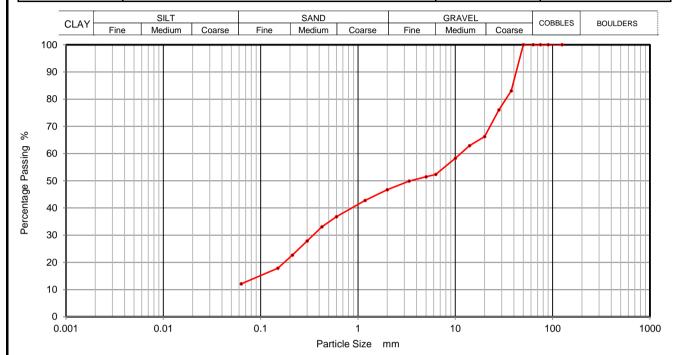
O GSTL	PARTICLE SIZE DISTRIBUTION	Contract Number	68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH01
Project Name	Switch	Sample No.	1
Soil Description	Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.00
	(with cobbles)	Depth Base	0.20
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	81					
63	67					
50	58					
37.5	50					
28	41					
20	30					
14	24					
10	20					
6.3	16					
5	13					
3.35	12					
2	9					
1.18	8					
0.6	6					
0.425	5					
0.3	5					
0.212	4					
0.15	3]				
0.063	2					

Sample Proportions	% dry mass
Cobbles	33
Gravel	58
Sand	7
Silt and Clay	2

Preparation and testing in accordance with BS1377 unless noted below

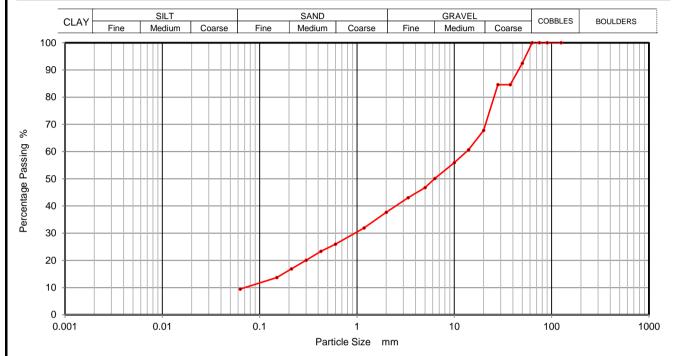
O GSTL	PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	BH01
Project Name	Switch	Sample No.	2
On the Department of the Depar	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.50
Soil Description	Blown sitty/clayey line to coarse sainty line to coarse GRAVEL	Depth Base	1.00
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	81		
20	63		
14	60		
10	53		
6.3	45		
5	40		
3.35	37		
2	34		
1.18	29		
0.6	24		
0.425	21		
0.3	17		
0.212	14]	
0.15	12]	
0.063	9		

Sample Proportions	% dry mass
Cobbles	0
Gravel	66
Sand	25
Silt and Clay	9

Preparation and testing in accordance with BS1377 unless noted below

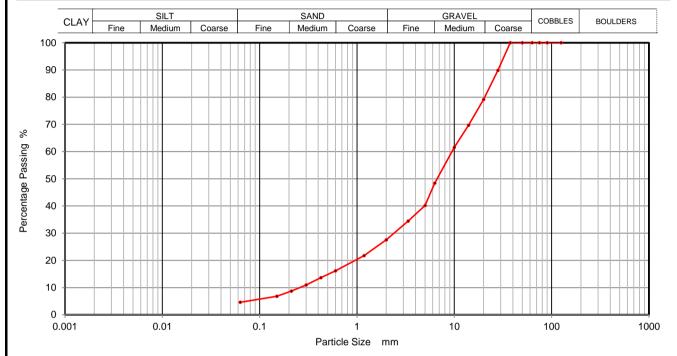
O GSTL	PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	BH02
Project Name	Switch	Sample No.	1
Coll Provide in the Control of the C	Depth Top	0.00	
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Base	0.20
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	83		
28	76		
20	66		
14	63		
10	58		
6.3	52		
5	51		
3.35	50		
2	47		
1.18	43		
0.6	37		
0.425	33		
0.3	28		
0.212	23]	
0.15	18]	
0.063	12		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	53	
Sand	35	
Silt and Clay	12	

Preparation and testing in accordance with BS1377 unless noted below

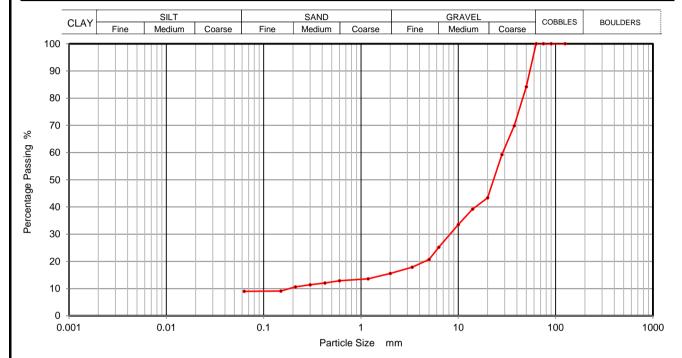
O GSTL	PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	BH02
Project Name	Switch	Sample No.	2
Ocil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.50
Soil Description	Brown silty/clayey line to coarse sainty line to coarse GRAVEL	Depth Base	0.80
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	92		
37.5	85		
28	85		
20	68		
14	61		
10	56		
6.3	50		
5	47		
3.35	43		
2	38		
1.18	32		
0.6	26		
0.425	23		
0.3	20		
0.212	17		
0.15	14]	
0.063	9		

Sample Proportions	% dry mass
Cobbles	0
Gravel	62
Sand	29
Silt and Clay	9

Preparation and testing in accordance with BS1377 unless noted below

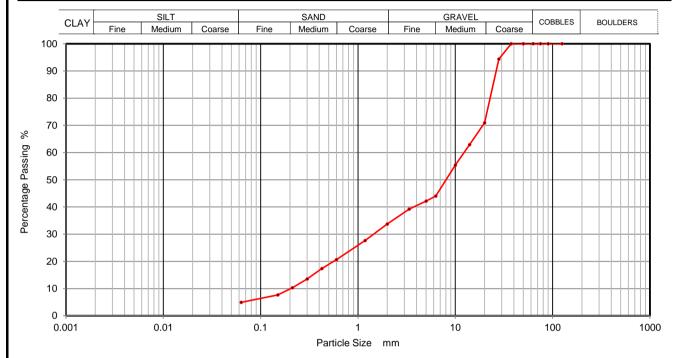
GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP01	
Project Name	Switch	Sample No.	3
Soil Description	O I D I I I I I I I I I I I I I I I I I		0.60
Soil Description Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL		Depth Base	
Date Tested	19/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	90		
20	79		
14	70		
10	62		
6.3	48		
5	40		
3.35	34		
2	28		
1.18	22		
0.6	16		
0.425	14		
0.3	11		_
0.212	9		
0.15	7		
0.063	5		

Sample Proportions	% dry mass
Cobbles	0
Gravel	72
Sand	23
Silt and Clay	5

Preparation and testing in accordance with BS1377 unless noted below

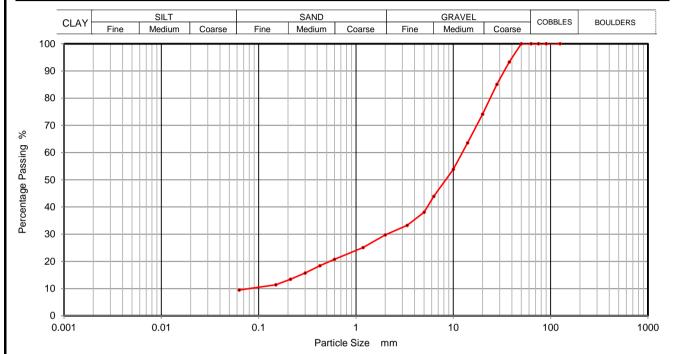
⊘ GSTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		68911
			TP01
Project Name	Switch	Sample No.	1
		Depth Top	0.10
Soil Description	Soil Description Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL		
Date Tested	16/10/2023	Sample Type	В


Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	84		
37.5	70		
28	59		
20	43		
14	39		
10	34		
6.3	25		
5	21		
3.35	18		
2	16		
1.18	14		
0.6	13		
0.425	12		
0.3	11		_
0.212	11]	
0.15	9		
0.063	9	1	

Sample Proportions	% dry mass
Cobbles	0
Gravel	84
Sand	7
Silt and Clay	9

Preparation and testing in accordance with BS1377 unless noted below

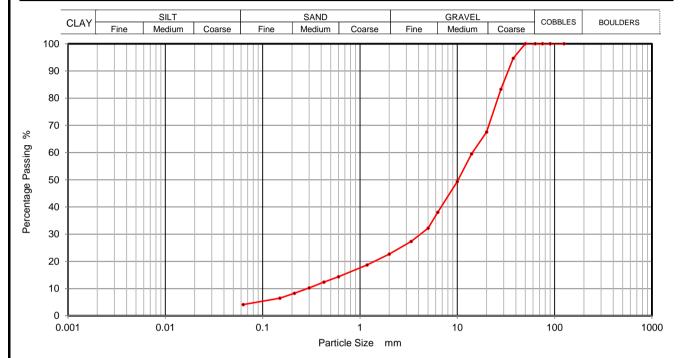
O GSTL	PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	TP02
Project Name	Switch	Sample No.	1
Sail Description	Soil Description Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL		0.20
3011 Description			
Date Tested	19/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	94		
20	71		
14	63		
10	55		
6.3	44		
5	42		
3.35	39		
2	34		
1.18	28		
0.6	21		
0.425	17		
0.3	14		
0.212	10		
0.15	8		
0.063	5		

Sample Proportions	% dry mass
Cobbles	0
Gravel	66
Sand	29
Silt and Clay	5

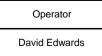
Preparation and testing in accordance with BS1377 unless noted below

O GSTL	PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	TP02
Project Name	Switch	Sample No.	3
Sail Description	Soil Description Brown/grey silty/clayey fine to coarse sandy fine to coarse GRAVEL		0.75
Soil Description			
Date Tested	16/10/2023	Sample Type	В

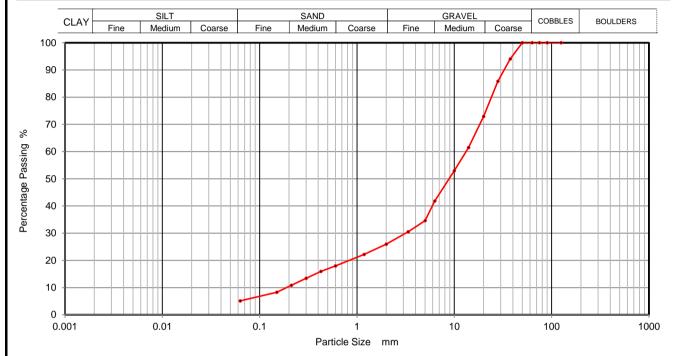

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	85		
20	74		
14	64		
10	54		
6.3	44		
5	38		
3.35	33		
2	30		
1.18	25		
0.6	21		
0.425	18		
0.3	16		
0.212	13		
0.15	11]	
0.063	9		

Sample Proportions	% dry mass
Cobbles	0
Gravel	70
Sand	21
Silt and Clay	9

Preparation and testing in accordance with BS1377 unless noted below

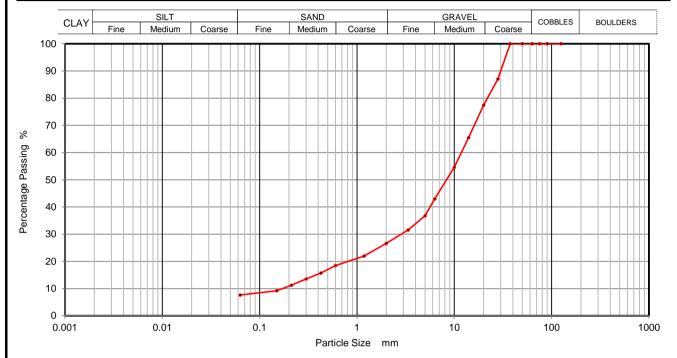

G GSTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		68911
GEOTECHNICAL SITE & TESTING LABORATORIES			TP03
Project Name	Switch	Sample No.	2
Soil Description	Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.40
Soli Description	ption Brown slightly slity/clayey line to coarse sandy line to coarse GRAVEL		
Date Tested	16/10/2023	Sample Type	В

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	95		
28	83		
20	68		
14	59		
10	49		
6.3	38		
5	32		
3.35	27		
2	23		
1.18	19		
0.6	14		
0.425	12		
0.3	10		
0.212	8		
0.15	6		
0.063	4		


Sample Proportions	% dry mass
Cobbles	0
Gravel	77
Sand	19
Silt and Clay	4

Preparation and testing in accordance with BS1377 unless noted below

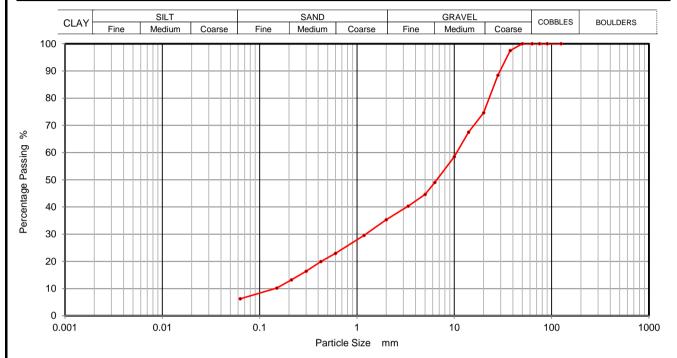
GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP03	
Project Name	Switch	Sample No.	3
Soil Description	Coll Provide the Charles of the Char		0.85
Soil Description Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL		Depth Base	
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	94		
28	86		
20	73		
14	61		
10	53		
6.3	42		
5	35		
3.35	30		
2	26		
1.18	22		
0.6	18		
0.425	16		
0.3	13		
0.212	11		
0.15	8]	
0.063	5		

Sample Proportions	% dry mass
Cobbles	0
Gravel	74
Sand	21
Silt and Clay	5

Preparation and testing in accordance with BS1377 unless noted below

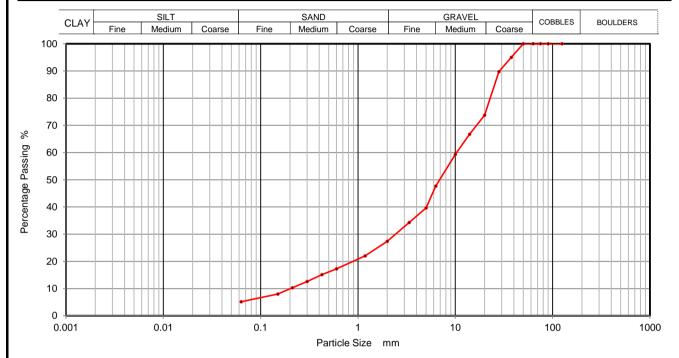
GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP04	
Project Name	Switch	Sample No.	4
Ocil Decembring	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.70
Soil Description	Blown sitty/clayey line to coarse sainty line to coarse GRAVEL	Depth Base	1.00
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	87		
20	77		
14	65		
10	55		
6.3	43		
5	37		
3.35	32		
2	27		
1.18	22		
0.6	18		
0.425	16		
0.3	14		
0.212	11		
0.15	9]	
0.063	8		

Sample Proportions	% dry mass
Cobbles	0
Gravel	73
Sand	19
Silt and Clay	8

Preparation and testing in accordance with BS1377 unless noted below

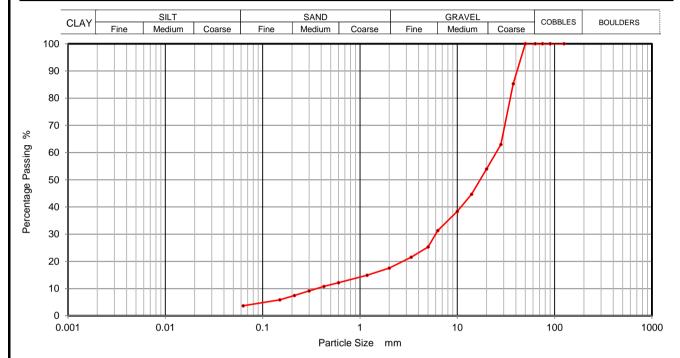
GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	TP04
Project Name	Switch	Sample No.	2
Ocil December	Drawn eilte delevere fine to consend of incite and consend CDAVEL	Depth Top	0.20
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Base	0.40
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	97		
28	88		
20	75		
14	68		
10	58		
6.3	49		
5	45		
3.35	40		
2	35		
1.18	30		
0.6	23		
0.425	20		
0.3	16		
0.212	13]	
0.15	10]	
0.063	6		

Sample Proportions	% dry mass
Cobbles	0
Gravel	65
Sand	29
Silt and Clay	6

Preparation and testing in accordance with BS1377 unless noted below

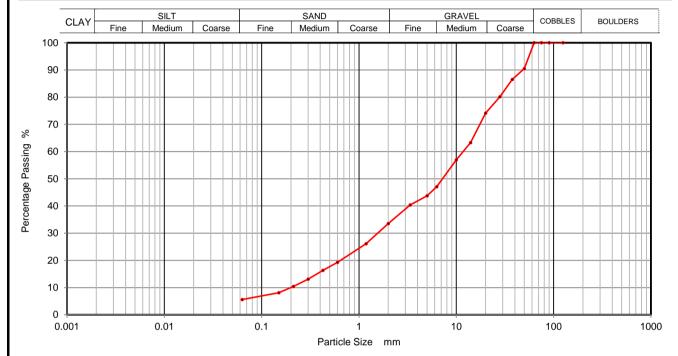
GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP04	
Project Name	Switch	Sample No.	7
Onli December the	Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.20
Soil Description		Depth Base	1.40
Date Tested	16/10/2023	Sample Type	В


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	95		
28	90		
20	74		
14	67		
10	59		
6.3	48		
5	40		
3.35	34		
2	27		
1.18	22		
0.6	17		
0.425	15		
0.3	13		
0.212	10		
0.15	8		
0.063	5		

Sample Proportions	% dry mass
Cobbles	0
Gravel	73
Sand	22
Silt and Clay	5

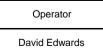
Preparation and testing in accordance with BS1377 unless noted below

GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP05	
Project Name	Switch	Sample No.	5
Soil Description Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL		Depth Top	0.80
		Depth Base	1.00
Date Tested	16/10/2023	Sample Type	В

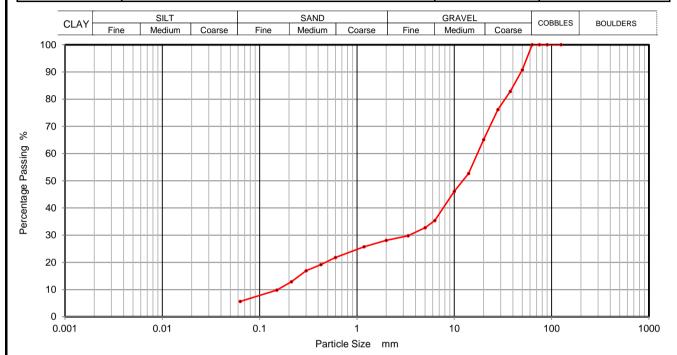

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	85		
28	63		
20	54		
14	45		
10	38		
6.3	31		
5	25		
3.35	22		
2	18		
1.18	15		
0.6	12		
0.425	11		
0.3	9		
0.212	7]	
0.15	6]	
0.063	4		

Sample Proportions	% dry mass
Cobbles	0
Gravel	82
Sand	14
Silt and Clay	4

Preparation and testing in accordance with BS1377 unless noted below


O GSTL	GCTI PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 13/7 Part 2:1990	Borehole/Pit No.	TP05
Project Name	Switch	Sample No.	2
Orli Danaristian Danaristian (CRAVE)	Depth Top	0.10	
Soil Description Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL		Depth Base	0.40
Date Tested	16/10/2023	Sample Type	В

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	90		
37.5	87		
28	80		
20	74		
14	63		
10	57		
6.3	47		
5	44		
3.35	40		
2	34		
1.18	26		
0.6	19		
0.425	16		
0.3	13		
0.212	10		
0.15	8		
0.063	6		

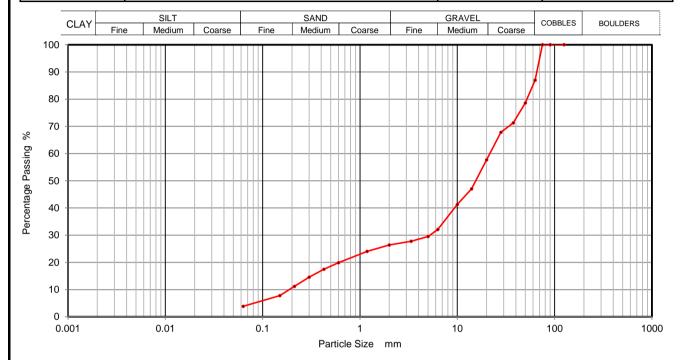

Sample Proportions	% dry mass
Cobbles	0
Gravel	66
Sand	28
Silt and Clay	6

Preparation and testing in accordance with BS1377 unless noted below

GSTL	PARTICLE SIZE DISTRIBUTION		68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	TP06
Project Name	Switch	Sample No.	3
Oction and the second of the s	Depth Top	0.50	
Soil Description Brown silty/clayey fine to coarse sandy fine to coarse		Depth Base	0.70
Date Tested	16/10/2023	Sample Type	В

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	83		
28	76		
20	65		
14	53		
10	46		
6.3	35		
5	33		
3.35	30		
2	28		
1.18	26		
0.6	22		
0.425	19		
0.3	17		
0.212	13		
0.15	10]	
0.063	6		

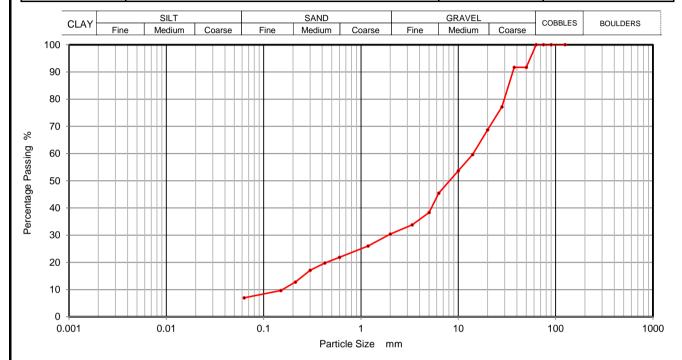
Sample Proportions	% dry mass
Cobbles	0
Gravel	72
Sand	22
Silt and Clay	6


Preparation and testing in accordance with BS1377 unless noted below

Operator David Edwards

2788

GSTL PARTICLE SIZE DISTRIBUTION		Contract Number	68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	TP06
Project Name	Switch	Sample No.	7
Soil Description	Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.80
(with cobbles)		Depth Base	1.00
Date Tested	16/10/2023	Sample Type	В


Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	87		
50	79		
37.5	71		
28	68		
20	58		
14	47		
10	41		
6.3	32		
5	30		
3.35	28		
2	26		
1.18	24		
0.6	20		
0.425	17		
0.3	15		
0.212	11		
0.15	8		
0.063	4		

Sample Proportions	% dry mass
Cobbles	13
Gravel	61
Sand	22
Silt and Clay	4

Preparation and testing in accordance with BS1377 unless noted below

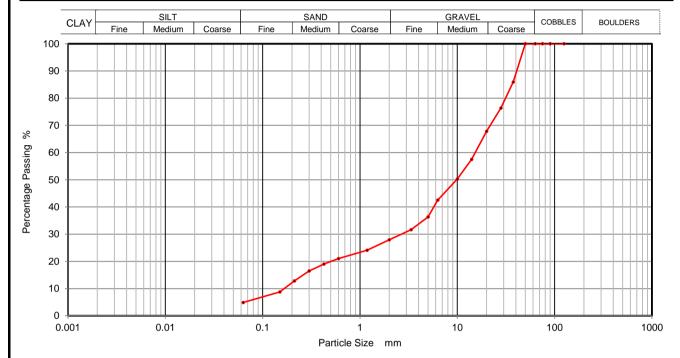

GEOTECHNICAL SITE & TESTING LABORATORIES	PARTICLE SIZE DISTRIBUTION	Contract Number	68911
	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP07
Project Name	Switch	Sample No.	2
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.10
	brown sitty/clayey line to coarse sandy line to coarse GRAVEL	Depth Base	0.30
Date Tested	16/10/2023	Sample Type	В

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	92		
37.5	92		
28	77		
20	69		
14	60		
10	54		
6.3	45		
5	38		
3.35	34		
2	30		
1.18	26		
0.6	22		
0.425	20		
0.3	17		
0.212	13]	
0.15	10]	
0.063	7		

Sample Proportions	% dry mass
Cobbles	0
Gravel	70
Sand	23
Silt and Clay	7

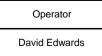
Preparation and testing in accordance with BS1377 unless noted below

BS 1377 Part 2:	PARTICLE SIZE DISTRIBUTION	Contract Number	68911
	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP07
Project Name	Switch	Sample No.	7
Soil Description	Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.90
	brown slightly slity/clayey line to coalse salidy line to coalse GRAVEL	Depth Base 1.20	1.20
Date Tested	16/10/2023	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	89		
28	73		
20	62		
14	54		
10	48		
6.3	40		
5	33		
3.35	29		
2	26		
1.18	22		
0.6	19		
0.425	18		
0.3	16		
0.212	12		
0.15	8]	
0.063	5		

Sample Proportions	% dry mass
Cobbles	0
Gravel	74
Sand	21
Silt and Clay	5

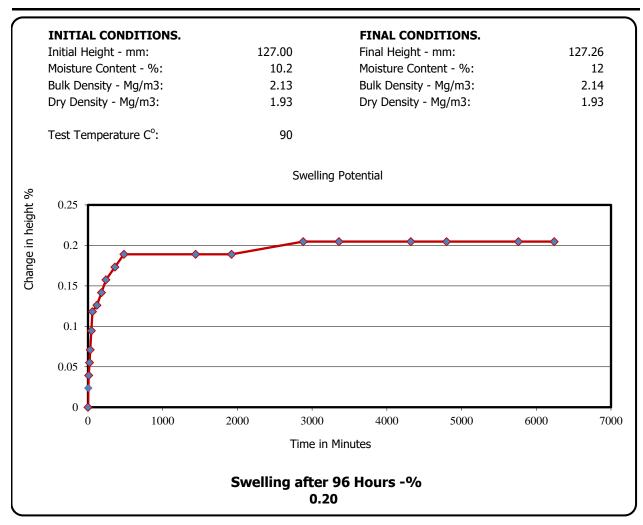
Preparation and testing in accordance with BS1377 unless noted below


O GSTL	PARTICLE SIZE DISTRIBUTION	Contract Number	68911
GEOTECHNICAL SITE & TESTING LABORATORIES	BS 1377 Part 2:1990	Borehole/Pit No.	TP09
Project Name	Switch	Sample No.	1
Soil Description	Brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.10
	Brown slightly slity/dayey line to coarse sarity line to coarse GRAVEL	Depth Base	0.40
Date Tested	16/10/2023	Sample Type	В

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	86		
28	76		
20	68		
14	57		
10	50		
6.3	43		
5	36		
3.35	32		
2	28		
1.18	24		
0.6	21		
0.425	19		
0.3	16		
0.212	13]	
0.15	9]	
0.063	5		

Sample Proportions	% dry mass
Cobbles	0
Gravel	72
Sand	23
Silt and Clay	5

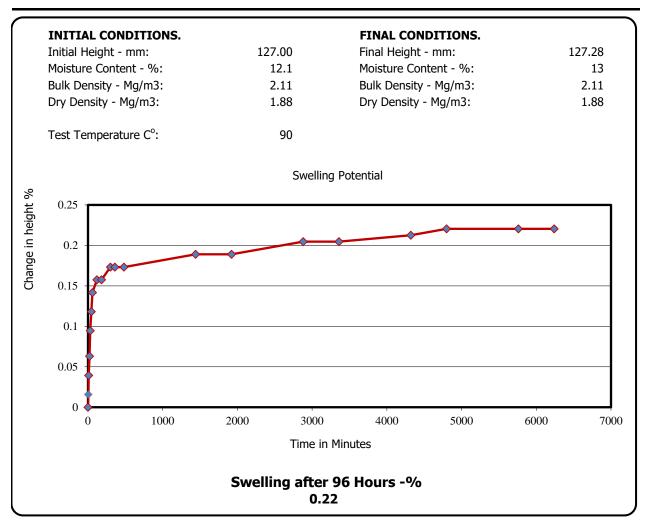
Preparation and testing in accordance with BS1377 unless noted below



Client: Hydrock Limited

Client ref: 26279 **Project Name:** Switch **Contract Number:** 68911 **Date Test Started:** 16/10/23 BH/TP: TP01 **Sample Number:** 3 Depth (m): 0.60 **Sample Type:** В **Operator:** DE

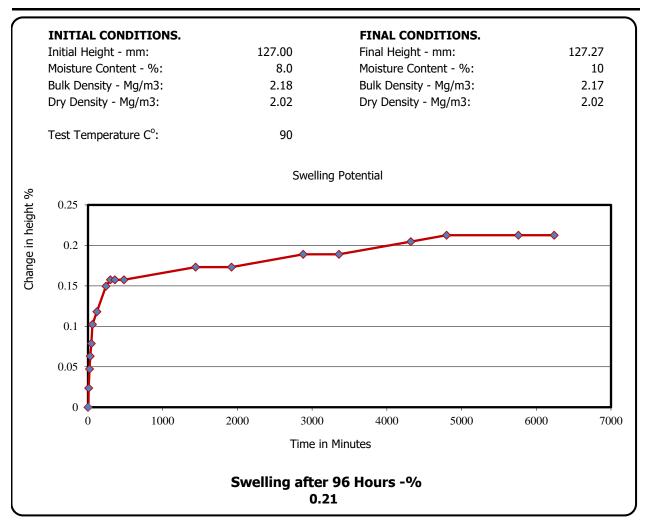
Description: Brown slightly silty/clayey fine to coarse SRAVEL


For and behalf of GEO Site & Testing Services Ltd

Client: Hydrock Limited

Client ref: 26279 **Project Name:** Switch **Contract Number:** 68911 **Date Test Started:** 16/10/23 BH/TP: TP02 **Sample Number:** 3 Depth (m): 0.75 **Sample Type:** В **Operator:** DE

Description: Brown/grey silty/clayey fine to coarse sandy fine to coarse GRAVEL


For and behalf of GEO Site & Testing Services Ltd

Client: Hydrock Limited

Client ref: 26279 **Project Name:** Switch **Contract Number:** 68911 **Date Test Started:** 16/10/23 BH/TP: TP03 **Sample Number:** 3 Depth (m): 0.85 **Sample Type:** В **Operator:** DE

Description: Brown slightly silty/clayey fine to coarse SRAVEL

For and behalf of GEO Site & Testing Services Ltd

Client: Hydrock Limited

 Client ref:
 26279

 Project Name:
 Switch

 Contract Number:
 68911

 Date Test Started:
 16/10/23

 BH/TP:
 TP04

 Sample Number:
 5

 Depth (m):
 0.70 - 1.0

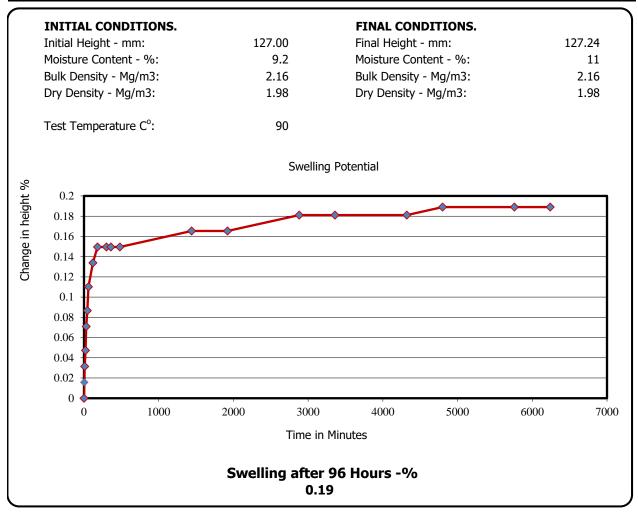
 Depth (m):
 0.70 - 1.0

 Sample Type:
 B

 Operator:
 DE

Description: Made Ground

For and behalf of GEO Site & Testing Services Ltd


Client: Hydrock Limited

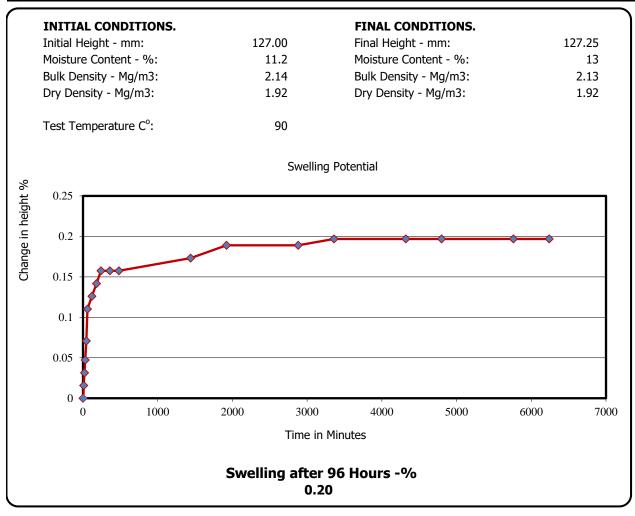
Client ref: 26279
Project Name: Switch
Contract Number: 68911
Date Test Started: 16/10/23
BH/TP: TP06
Sample Number: 3

Depth (m): 0.50 - 0.70

Sample Type: B **Operator:** DE

Description: Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL

For and behalf of GEO Site & Testing Services Ltd


Client: Hydrock Limited

Client ref: 26279
Project Name: Switch
Contract Number: 68911
Date Test Started: 16/10/23
BH/TP: TP07
Sample Number: 8

Depth (m): 0.90 - 1.20

Sample Type: B **Operator:** DE

Description: Brown slightly silty/clayey fine to coarse SRAVEL

For and behalf of GEO Site & Testing Services Ltd

Client: Hydrock Limited

 Client ref:
 26279

 Project Name:
 Switch

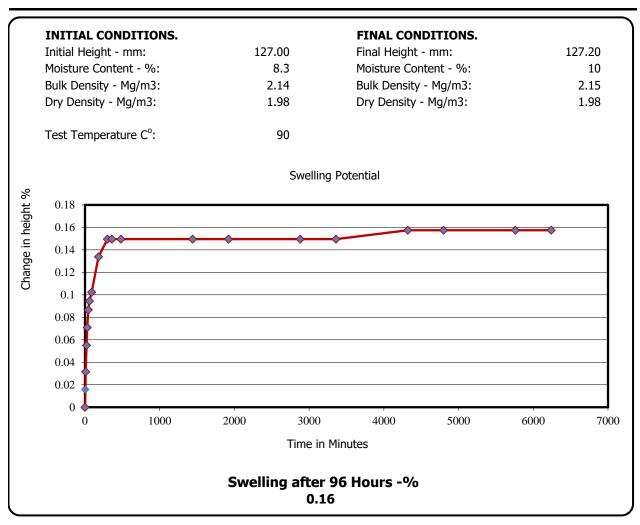
 Contract Number:
 68911

 Date Test Started:
 16/10/23

 BH/TP:
 TP08

 Sample Number:
 6

 Depth (m):
 1.50 - 2.0


Sample Type:

Operator:

B

DE

Description: Made Ground

For and behalf of GEO Site & Testing Services Ltd

Client: Hydrock Limited

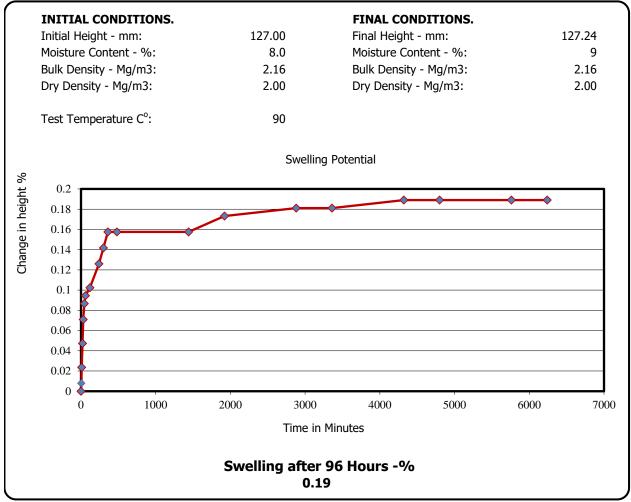
 Client ref:
 26279

 Project Name:
 Switch

 Contract Number:
 68911

 Date Test Started:
 16/10/23

 BH/TP:
 TP10


 Sample Number:
 7

 Depth (m):
 0.70 - 1.0

 Sample Type:
 B

Operator: DE **Description:** Made Ground

-		
		_

For and behalf of GEO Site & Testing Services Ltd

Geotechnical plots

organ Sindall			I to which this assessment applies
roject		Made Ground	
WITCH, Port Talbot		4	
ob number <mark>26279</mark>			
	aggracaiya	around	
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
Soil data			
Oon data			
			Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of tests	27	27	0
No. tests in 20% data set	5	5	•
No. tests with suspected pyrite	J	1	
	420 6022	· · · · · · · · · · · · · · · · · · ·	
Maximum value	430.6823	2.7	
Mean of highest two values	365	2	
Mean of highest 20%	300	1	
Characteristic Value	300	0.9	
			Mg not required
	[no pyrite]	[pyrite suspected]	
DS Class	DS-1	DS-3	_
			-
If pyrite suspected, D	S Class limited to	DS-3	_
Is pyrite assumed to	ho procent?	Adopted DS Class	= DS-1
is pyrite assumed to	be present:	Auopteu Do Class	= 03-1
Water date			
Water data			
	(Adjusted) soluble	Soluble	
	(Adjusted) soluble		
	sulfate	magnesium	
Characteristic Value	sulfate (mg/l)	magnesium	
Characteristic Value (Maximum Level)	sulfate	magnesium (mg/l)	
(Maximum Level)	sulfate (mg/l) 13.4273	magnesium (mg/l) 0	
	sulfate (mg/l)	magnesium (mg/l) 0	
(Maximum Level) DS Class	sulfate (mg/l) 13.4273	magnesium (mg/l) 0	
(Maximum Level)	sulfate (mg/l) 13.4273	magnesium (mg/l) 0	
(Maximum Level) DS Class	sulfate (mg/l) 13.4273 DS-1	magnesium (mg/l) 0 Mg not required	
(Maximum Level) DS Class PH data Number of tests	sulfate (mg/l) 13.4273 DS-1	magnesium (mg/l) 0 Mg not required Water	
(Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	sulfate (mg/l) 13.4273 DS-1 Soil 27 5	magnesium (mg/l) 0 Mg not required Water 3 1	
(Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3	magnesium (mg/l) 0 Mg not required Water 3 1 7.0	
(Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3 7.6	magnesium (mg/l) 0 Mg not required Water 3 1 7.0 7.0	
(Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3	magnesium (mg/l) 0 Mg not required Water 3 1 7.0	
(Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3 7.6	magnesium (mg/l) 0 Mg not required Water 3 1 7.0 7.0	
(Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3 7.6 7.6	magnesium (mg/l) 0 Mg not required Water 3 1 7.0 7.0	
Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3 7.6 7.6 7.0	magnesium (mg/l) 0 Mg not required Water 3 1 7.0 7.0	ACEC Class design value
Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.5 DS Class desig	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3 7.6 7.6 7.0 0 n value	magnesium (mg/l) 0 Mg not required Water 3 1 7.0 7.0 7.0	Brownfield
Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.5	sulfate (mg/l) 13.4273 DS-1 Soil 27 5 7.3 7.6 7.6 7.0 0 n value	magnesium (mg/l) 0 Mg not required Water 3 1 7.0 7.0	

Appendix G Site monitoring data and ground gas risk assessment

Site monitoring data

Site: SWITCH, Port Talbot

Job number: C - 26279

Notes on site weather conditions: 5.10.23 - Wet and overcast. 20.10.23 - Raining and wet. 6.11.23 - Overcast and wet.

Gas analyser:

Equipment check OK: Y

Client: Morgan Sindall

Service in date: \overline{Y} Calibration check OK: \overline{Y}

Name of person monitoring: CJ Associates

Notes: LEL = lower explosive limit = 5%v/v. * where the flow is less than the limit of detection of the instrument, the detection limit is reported. GSVs are rounded to 3 places.

							Notes: I	.EL =	lower ex	plosive l	imit = 59	%v/v. * v	where th	e flow i	s less th	an the li	mit of d	etectior	n of the i	nstrume	nt, the de	etection li	mit is rep	ported. GSVs are rounded to 3 places.
Monitorin	g round			Borehole	details		Pr	essur	e and flo	w					Gas c	oncentra	ations					G	SV	Local conditions
Date	Time	Borehole	Single or dual gas	p 9	D denotes dry hole Depth to water or depth of hole if dry (m)	Volume of headspace in BH (well pipie & filter pack) (m³)	Atmospheric pressure (hPa)	Atm pressure falling / rising / steady	Relative BH pressure (hPa)	Gas flow [*] (l/hr)	Gas flow* (absolute value) (l/hr)	VOC (as ppm using PID)		H₄ v/v) Stead		EH ₄ LEL) Stead		O ₂ //v) Stead		Stead	Other Gases PID	Gas Screening Value (CH ₄) (I/hr)	Gas Screening Value (CO ₂) (I/hr)	Notes on condition of borehole and surrounding ground
							Max. in	dividu	al values:		1.1	•	<u>. – </u>	4.4				0.2	<u> </u>	20.8	0.0	0.0264		
							Min. ii	ndividu	ıal values:		0.2			0.0				0.0		0.3	0.0	0	0	Summary statistics for this monitoring period.
									W	orst-case	GSVs bas	ed on max	k. individu	al flow ar	nd max. ir	ndividual	conc. ove	r the dur	ation of th	is table:		0.0484	0.0022	
05/10/23	11:30	BH01A	D	3.50-5.50	2.14	0.00798	1024	S	0.34	0.5	0.5	0	0	0			0.2	0.2	20.7	20.7		0	0.001	
20/10/23	11:30	BH01A	D	3.50-5.50	2.1	0.00783	999	S	-0.10	0.7	0.7	1.5	0	0			0.2	0.2	20	20		0	0.0014	
06/11/23	10:30	BH01A	D	3.50-5.50	1.84	0.00686	1000	R	-0.10	0.5	0.5	1.3	0	0			0.2	0.2	20.8	20.8		0	0.001	
05/10/23	11:30	BH01B	D	1.00-2.00	1.76	0.00657	1024	S	0.02	0.4	0.4	0	4.2	4.2			0	0	0.3	0.3		0.0168	0	
20/10/23	11:30	BH01B	D	1.00-2.00	1.76	0.00657	999	S	0.00	0.6	0.6	1.3	4.4	4.4	_		0	0	0.3	0.3		0.0264	0	
06/11/23	10:30	BH01B	D	1.00-2.00	1.76	0.00657	1000	R	-0.10	0.4	0.4	1.1	3.8	3.8			0	0	0.4	0.4		0.0152	0	
05/10/23	11:30	BH02A	D	3.60-6.00	2.14	0.00798	1024	S	0.02	0.4	0.4	0	0.2	0.2			0.2	0.2	18.2	18.2		0.0008	0.0008	
20/10/23	11:30	BH02A	D	3.60-6.00	2.07	0.00772	999	S	0.03	0.4	0.4	2.2	0.2	0.2			0.2	0.2	18.2	18.2		0.0008	0.0008	
06/11/23	10:30	BH02A	D	3.60-6.00	1.85	0.00690	999	R	-0.10	1.1	1.1	2.4	0.4	0.4			0.1	0.1	15.1	15.1		0.0044	0.0011	
05/10/23	11:30	BH02B	D	1.00-2.00	1.84	0.00686	1024	S	2.67	0.2	0.2	0	1.5	1.5	_		0	0	1.9	1.9		0.003	0	
20/10/23	11:30	BH02B	D	1.00-2.00	1.84	0.00686	999	S	-0.02	0.2	0.2	2.4	1.7	1.7	_		0	0	2.2	2.2		0.0034	0	
06/11/23	10:30	BH02B	D	1.00-2.00	1.84	0.00686	999	R	-5	-0.7	0.7	2.1	0.8	0.8			0.1	0.1	0.4	0.4		0.0056	0.0007	
													1											
													+											
													-											
													+											
													†											
															1							1	1	

GAS AND GROUNDWATER MONITORING RESULTS

Project: Switch, Port Talbot

Client: Hydrock

Time of start of visit: 11:30 Barometric pressure start of visit (mb): 1024

Job no: 2072250

Time of end of visit: 13:30 Barometric pressure end of visit (mb): 1024

Date: 05.10.23
Visit no.: 1

CJASSOCIATES

Serial no. of analyser: G508232

Barometric pressure in preceding 24hrs (mb): 1020

Remarks: Steady state value are taken when there is no change for 1

minute. All measurements taken from the current ground level.

Weather conditions: Overcast Ground conditions: Wet

Monitoring Poir	nt	Methane (% vol) CH ₄	Carbon Dioxide (% vol) CO ₂	Hydrogen Sulphide (ppm) H ₂ S	Oxygen (% vol) O ₂	Carbon Monoxide (ppm) CO	PID (ppm)	Free Phase Product (mm)	Gas flow average (I/hr)	Borehole Pressure (Pa)	Water Depth (mbgl)	Remarks	Base Depths (mbgl)
Ambient:		0.0	0.0	0	20.9	0	0.0						
BH01A	Peak	0.0	0.2	0	20.7	19	0.0	NONE	0.50	1024.00	2.14		5.48
BHUTA	Steady	0.0	0.2	0	20.7	17	0.0	NONE	0.50	1024.00	2.14		5.46
BH01B	Peak	4.2	0.0	0	0.4	0	0.0	NONE	0.40	1024.00	1.76		1.77
БПИТБ	Steady	4.2	0.0	0	0.3	0	0.0	NONE	0.40	1024.00	1.76		1.77
BH02A	Peak	0.2	0.2	0.0	18.2	2.0	0.0	NONE	0.40	1024.00	2.14		8.14
БПОZА	Steady	0.2	0.2	0.0	18.2	2.0	0.0	NONE	0.40	1024.00	2.14		0.14
BH02B	Peak	1.5	0	0	1.9	3	0.0	NONE	0.20	1024.00	1.84		1.85
DI102B	Steady	1.5	0	0	1.9	3	0.0	NONE	0.20	1024.00	1.04		1.00

GAS AND GROUNDWATER MONITORING RESULTS

Project: Switch, Port Talbot

Client: Hydrock Time of start of visit: Hydrock Job no: 2072250 Date: 20.10.23

Barometric pressure start of visit (mb): 999
Barometric pressure end of visit (mb): 999

Visit no.: 2

Serial no. of analyser:

G508232

Barometric pressure in preceding 24hrs (mb): 997

13:30

Remarks: Steady state value are taken when there is no change for 1

minute. All measurements taken from the current ground level.

Weather conditions: Raining Ground conditions: Wet

Time of end of visit:

Monitoring Point		Methane (% vol) CH ₄	Carbon Dioxide (% vol) CO ₂	Hydrogen Sulphide (ppm) H ₂ S	Oxygen (% vol) O ₂	Carbon Monoxide (ppm) CO	PID (ppm)	Free Phase Product (mm)	Gas flow average (I/hr)	Borehole Pressure (Pa)	Water Depth (mbgl)	Remarks	Base Depths (mbgl)
Ambient:		0.0	0.0	0	20.9	0	0.0						
BH01A	Peak	0.0	0.2	0	20.0	11	4.5	NONE	0.70	999.00	2.10		5.48
	Steady	0.0	0.2	0	20.0	11	1.5	NONE	0.70	999.00	2.10		5.48
BH01B	Peak	4.4	0.0	0	0.5	0	1.3	NONE	0.60	999.00	1.76		1.77
ВПОТВ	Steady	4.4	0.0	0	0.3	0	1.5	NONE	0.00	999.00	1.76		1.77
BH02A	Peak	0.2	0.2	0	18.2	2	2.2	NONE	0.40	999.00	2.07		8.14
BHUZA	Steady	0.2	0.2	0	18.2	2	2.2	NONE	0.40	999.00	2.07		0.14
BH02B	Peak	1.7	0.0	0	2.2	2	2.4	NONE	0.20	999.00	1.84		1.85
Ы 102Б	Steady	1.7	0.0	0	2.2	2	2.4	NONE	0.20	555.00	1.04		1.65

GAS AND GROUNDWATER MONITORING RESULTS

Project: Switch, Port Talbot

Client: Hydrock

Job no: 2072250

Date: 06.11.23

Serial no. of analyser:

CJAssociates

Time of start of visit: Time of end of visit: 10:30 12:30 Barometric pressure start of visit (mb): Barometric pressure end of visit (mb): 999

1000

Visit no.: 3

G508232

Barometric pressure in preceding 24hrs (mb): 985

Remarks: Steady state value are taken when there is no change for 1

minute. All measurements taken from the current ground level.

Weather conditions: Overcast Ground conditions: Wet

Monitoring Point		Methane (% vol) CH ₄	Carbon Dioxide (% vol)	Hydrogen Sulphide (ppm) H ₂ S	Oxygen (% vol) O ₂	Carbon Monoxide (ppm) CO	PID (ppm)	Free Phase Product (mm)	Gas flow average (I/hr)	Borehole Pressure (Pa)	Water Depth (mbgl)	Remarks	Base Depths (mbgl)
Ambient:		0.0	0.0	0	20.9	0	0.0						
BH01A	Peak	0.0	0.2	0	20.8	8	1.3	NONE	0.50	1000.00	1.84		5.50
BHUTA	Steady	0.0	0.2	0	20.8	8	1.3	NONE	0.50	1000.00	1.04		5.50
BH01B	Peak	3.8	0.0	0	0.6	0	1.1	NONE	0.40	1000.00	1.76		1.77
БПОТБ	Steady	3.8	0.0	0	0.4	0	1.1	NONE	0.40	1000.00	1.76		1.77
BH02A	Peak	0.4	0.1	0	15.1	2	2.4	NONE	1.10	999.00	1.85		8.16
БПОZА	Steady	0.4	0.1	0	15.1	2	2.4	NONE	1.10	999.00	1.65		0.10
BH02B	Peak	0.8	0.1	0	0.7	0	2.1	NONE	-0.70	999.00	1.84		1.85
ВП02В	Steady	0.8	0.1	0	0.4	0	2.1	NONE	-0.70	999.00	1.04		1.65

Appendix H Contamination test results and GQRA

Contamination test results

Gareth Chugg Hydrock Lobb Shipton Plympton Plymouth PL7 5BP

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 23-12154

Site Reference: SWITCH, Port Talbot

Project / Job Ref: C-26279

Order No: None Supplied

Sample Receipt Date: 28/09/2023

Sample Scheduled Date: 28/09/2023

Report Issue Number: 4

Reporting Date: 14/11/2023

Authorised by:

5.62

Steve Knight

Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Reason for reissue:-

Correction of leachate metals LOD's

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP01	TP01	TP01	TP01
Project / Job Ref: C-26279	Additional Refs	ES102	ES103	ES104	ES105	ES105
Order No: None Supplied	Depth (m)	0.30	0.65	1.20	1.70	1.70
Reporting Date: 14/11/2023	DETS Sample No	677413	677414	677415	677416	677417

Determinand	Unit	RL	Accreditation				(n)	
Asbestos Screen (S)	N/a	N/a	ISO17025	Detected		Detected		
Sample Matrix ^(S)	Material Type	N/a	NONE	Chrysotile		Chrysotile		
Sample Matrix (=)	мацепат туре	IN/d		bundles present	b	undles present		
Asbestos Type (S)	PLM Result	N/a	ISO17025	Chrysotile		Chrysotile		
pH	pH Units	N/a	MCERTS	10.7		8.6	9.1	
Free Cyanide	mg/kg	< 1	NONE	< 1		< 1		
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	3380			1455	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.34			0.15	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	223			199	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.22			0.20	
Total Sulphur	%	< 0.02	NONE	0.13			0.08	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.047		0.056		
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	< 0.5			7.5	
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	< 0.05			0.75	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	38			33	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	19.1			16.6	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	3			< 3	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	1.6			< 1.5	
Arsenic (As)	mg/kg	< 2	MCERTS	14		23		
Beryllium (Be)	mg/kg	< 0.5	MCERTS	1.2		1.3		
W/S Boron	mg/kg	< 1	NONE	< 1		< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.6		1.3		
Chromium (III)	mg/kg	< 2	NONE	118		98		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	91		177		
Lead (Pb)	mg/kg	< 3	MCERTS	141		167		
W/S Magnesium	mg/l	< 0.1	NONE	0.3			1.2	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	19		43		
Selenium (Se)	mg/kg	< 2	MCERTS	< 2		< 2		
Vanadium (V)	mg/kg	< 1	MCERTS	146		161		
Zinc (Zn)	mg/kg	< 3	MCERTS	228		537		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		< 2		

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate						
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02	TP02	TP02	TP02	TP02
Project / Job Ref: C-26279	Additional Refs	ES101	ES103	ES104	ES104	ES105
Order No: None Supplied	Depth (m)	0.15	1.60	2.50	2.50	2.90
Reporting Date: 14/11/2023	DETS Sample No	677418	677419	677420	677421	677422

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025		Not Detected		Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE				
Asbestos Type (S)	PLM Result	N/a	ISO17025				
pH	pH Units	N/a	MCERTS	10.2	9.5	9.8	7.7
Free Cyanide	mg/kg	< 1	NONE		< 1		< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	2986		2332	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.30		0.23	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	278		130	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.28		0.13	
Total Sulphur	%	< 0.02	NONE	0.13		0.12	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS		0.049		0.025
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	< 0.5		< 0.5	
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	< 0.05		< 0.05	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	30		51	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	14.8		25.7	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	4		< 3	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2		< 1.5	
Arsenic (As)	mg/kg	< 2	MCERTS		12		13
Beryllium (Be)	mg/kg	< 0.5	MCERTS		0.8		< 0.5
W/S Boron	mg/kg	< 1	NONE		< 1		1.2
Cadmium (Cd)	mg/kg	< 0.2	MCERTS		0.5		< 0.2
Chromium (III)	mg/kg	< 2	NONE		250		28
Chromium (hexavalent)	mg/kg	< 2	NONE		< 2		< 2
Copper (Cu)	mg/kg	< 4	MCERTS		51		13
Lead (Pb)	mg/kg	< 3	MCERTS		76		35
W/S Magnesium	mg/l	< 0.1	NONE	0.7		0.7	
Mercury (Hg)	mg/kg	< 1	MCERTS		< 1		< 1
Nickel (Ni)	mg/kg	< 3	MCERTS		16		12
Selenium (Se)	mg/kg	< 2	MCERTS		< 2		< 2
Vanadium (V)	mg/kg	< 1	MCERTS		479		45 51
Zinc (Zn)	mg/kg	< 3	MCERTS		119		51
Total Phenols (monohydric)	mg/kg	< 2	NONE		< 2		< 2

Soil Analysis Certificate						
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03	TP03	TP03	TP03	TP04
Project / Job Ref: C-26279	Additional Refs	ES101	ES103	ES104	ES105	ES101
Order No: None Supplied	Depth (m)	0.40	1.40	2.40	2.55	0.20
Reporting Date: 14/11/2023	DETS Sample No	677423	677424	677425	677426	677427

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	7.7	9.0	7.3	6.9	11.0
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	1009		9625		
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.10		0.96		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	411		44		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.41		0.04		
Total Sulphur	%	< 0.02	NONE	0.05		0.20		
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.011	0.052	0.080	0.014	0.030
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	3.3		< 0.5		
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	0.33		< 0.05		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	29		25		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	14.3		12.3		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	< 3		5		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	< 1.5		2.6		
Arsenic (As)	mg/kg	< 2	MCERTS	6	13	7	9	10
Beryllium (Be)	mg/kg	< 0.5	MCERTS	1	2	< 0.5	0.7	1.1
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.6	0.6	< 0.2	0.4
Chromium (III)	mg/kg	< 2	NONE	25	175	36	11	210
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	15	62	16	19	35
Lead (Pb)	mg/kg	< 3	MCERTS	21	1880	48000	1630	622
W/S Magnesium	mg/l	< 0.1	NONE	22		8.6		
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	21	16	6	11	10
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Vanadium (V)	mg/kg	< 1	MCERTS	36	317	158	19	288
Zinc (Zn)	mg/kg	< 3	MCERTS	68	160	479	63	107
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Soil Analysis Certificate						
DETS Report No: 23-12154	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04	TP04	TP04	TP04	TP04
Project / Job Ref: C-26279	Additional Refs	D1	ES103	D3	ES104	ES104
Order No: None Supplied	Depth (m)	0.30	1.00	1.00	1.20	1.20
Reporting Date: 14/11/2023	DETS Sample No	677428	677429	677430	677431	677432

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025		Not Detected			
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	10.7	9.9	9.9	9.7	
Free Cyanide	mg/kg	< 1	NONE		< 1			
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	2263		2632	2036	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.23		0.26	0.20	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	53		220	127	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.05		0.22	0.13	
Total Sulphur	%	< 0.02	NONE	0.09		0.11	0.09	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS		0.020			
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	< 0.5		< 0.5	< 0.5	
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	< 0.05		< 0.05	< 0.05	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	21		40	36	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	10.3		20.2	17.8	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	< 3		4	4	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	< 1.5		2.2	1.8	
Arsenic (As)	mg/kg	< 2	MCERTS		8			
Beryllium (Be)	mg/kg	< 0.5	MCERTS		< 0.5			
W/S Boron	mg/kg	< 1	NONE		< 1			
Cadmium (Cd)	mg/kg	< 0.2	MCERTS		0.4			
Chromium (III)	mg/kg	< 2	NONE		284			
Chromium (hexavalent)	mg/kg	< 2	NONE		< 2			
Copper (Cu)	mg/kg	< 4	MCERTS		36			
Lead (Pb)	mg/kg	< 3	MCERTS		109			
W/S Magnesium	mg/l	< 0.1	NONE	< 0.1		0.7	0.5	
Mercury (Hg)	mg/kg	< 1	MCERTS		< 1			
Nickel (Ni)	mg/kg	< 3	MCERTS		12			
Selenium (Se)	mg/kg	< 2	MCERTS		< 2			
Vanadium (V)	mg/kg	< 1	MCERTS		247			
Zinc (Zn)	mg/kg	< 3	MCERTS		93			
Total Phenols (monohydric)	mg/kg	< 2	NONE		< 2			

Soil Analysis Certificate												
DETS Report No: 23-12154	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23						
Hydrock	Time Sampled	None Supplied										
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04	TP04	TP04	BH01	TP05						
Project / Job Ref: C-26279	Additional Refs	D6	ES105	D9	ES101	ES101						
Order No: None Supplied	Depth (m)	1.20	1.80	2.00	0.20	0.20						
Reporting Date: 14/11/2023	DETS Sample No	677433	677434	677435	677436	677437						

Determinand	Unit	RL	Accreditation			(n)		
Asbestos Screen (S)	N/a	N/a	ISO17025		Not Detected		Not Detected	Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	9.9	8.7	9.4	10.6	10.6
Free Cyanide	mg/kg	< 1	NONE		< 1		< 1	< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	2200		984		
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.22		0.10		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	132		84		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.13		0.08		
Total Sulphur	%	< 0.02	NONE	0.10		0.07		
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS		0.079		0.032	0.037
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	< 0.5		7.6		
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	< 0.05		0.76		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	50		37		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	24.8		18.3		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	4		4		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2.2		2.1		
Arsenic (As)	mg/kg	< 2	MCERTS		21		9	17
Beryllium (Be)	mg/kg	< 0.5	MCERTS		0.6		1.3	1.3
W/S Boron	mg/kg	< 1	NONE		< 1		< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS		0.5		0.3	0.7
Chromium (III)	mg/kg	< 2	NONE		187		25	79
Chromium (hexavalent)	mg/kg	< 2	NONE		< 2		< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS		58		19	82
Lead (Pb)	mg/kg	< 3	MCERTS		255		83	98
W/S Magnesium	mg/l	< 0.1	NONE	0.7		1.3		
Mercury (Hg)	mg/kg	< 1	MCERTS		< 1		< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS		15		7	12
Selenium (Se)	mg/kg	< 2	MCERTS		< 2		< 2	< 2
Vanadium (V)	mg/kg	< 1	MCERTS		188		30	109
Zinc (Zn)	mg/kg	< 3	MCERTS		107		88	156
Total Phenols (monohydric)	mg/kg	< 2	NONE		< 2		< 2	< 2

Soil Analysis Certificate											
DETS Report No: 23-12154	Date Sampled	27/09/23									
Hydrock	Time Sampled	None Supplied									
Site Reference: SWITCH, Port Talbot	TP / BH No	TP05									
·											
Project / Job Ref: C-26279	Additional Refs	D3									
Order No: None Supplied	Depth (m)	0.30									
Reporting Date: 14/11/2023	DETS Sample No	677438									

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025				
Sample Matrix ^(S)	Material Type	N/a	NONE				
Asbestos Type (S)	PLM Result	N/a	ISO17025				
pH	pH Units	N/a	MCERTS	10.4			
Free Cyanide	mg/kg	< 1	NONE				
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	3561			
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.36			
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	173			
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.17			
Total Sulphur	%	< 0.02	NONE	0.14			
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS				
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	< 0.5			
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	< 0.05			
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	26			
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	12.8			
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	4			
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2.1			
Arsenic (As)	mg/kg	< 2	MCERTS				
Beryllium (Be)	mg/kg	< 0.5	MCERTS				
W/S Boron	mg/kg	< 1	NONE				
Cadmium (Cd)	mg/kg	< 0.2	MCERTS				
Chromium (III)	mg/kg	< 2	NONE				
Chromium (hexavalent)	mg/kg	< 2	NONE				
Copper (Cu)	mg/kg	< 4	MCERTS				
Lead (Pb)	mg/kg	< 3	MCERTS				
W/S Magnesium	mg/l	< 0.1	NONE	0.4			
Mercury (Hg)	mg/kg	< 1	MCERTS				
Nickel (Ni)	mg/kg	< 3	MCERTS				
Selenium (Se)	mg/kg	< 2	MCERTS				
Vanadium (V)	mg/kg	< 1	MCERTS				
Zinc (Zn)	mg/kg	< 3	MCERTS				
Total Phenols (monohydric)	mg/kg	< 2	NONE			duiad an an anaistead an	

Soil Analysis Certificate - Speciated PAHs											
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23					
Hydrock	Time Sampled	None Supplied									
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP01	TP02	TP02	TP03					
Project / Job Ref: C-26279	Additional Refs	ES102	ES104	ES103	ES105	ES101					
Order No: None Supplied	Depth (m)	0.30	1.20	1.60	2.90	0.40					
Reporting Date: 14/11/2023	DETS Sample No	677413	677415	677419	677422	677423					

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	0.45	0.61	9.62	2.20	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	0.18	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	0.39	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	1.07	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.77	5.81	1.03	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	0.26	1.18	0.32	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	1.69	5.80	1.67	< 0.1	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	1.46	3.93	1.23	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	1.13	2.72	0.99	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	1.24	2.57	1.01	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.21	2.44	1.04	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.33	0.92	0.34	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.81	1.82	0.67	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.55	0.98	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.35	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.57	0.82	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	10.5	31.6	17.9	2.2	< 1.6

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03	TP03	TP03	TP04	TP04
Project / Job Ref: C-26279	Additional Refs	ES103	ES104	ES105	ES101	ES103
Order No: None Supplied	Depth (m)	1.40	2.40	2.55	0.20	1.00
Reporting Date: 14/11/2023	DETS Sample No	677424	677425	677426	677427	677429

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	0.14	< 0.1	< 0.1	0.27	0.16
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.14
Phenanthrene	mg/kg	< 0.1	MCERTS	0.45	< 0.1	< 0.1	0.52	1.66
Anthracene	mg/kg	< 0.1	MCERTS	0.15	< 0.1	< 0.1	< 0.1	0.61
Fluoranthene	mg/kg	< 0.1	MCERTS	0.88	< 0.1	< 0.1	1.35	4.93
Pyrene	mg/kg	< 0.1	MCERTS	0.71	< 0.1	< 0.1	1.20	3.81
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.57	< 0.1	< 0.1	0.81	2.98
Chrysene	mg/kg	< 0.1	MCERTS	0.62	< 0.1	< 0.1	0.92	2.82
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.70	< 0.1	< 0.1	0.79	2.92
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.24	< 0.1	< 0.1	0.26	0.80
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.52	< 0.1	< 0.1	0.69	2.11
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.37	< 0.1	< 0.1	< 0.1	1.41
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.49
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.31	< 0.1	< 0.1	< 0.1	1.05
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	5.7	< 1.6	< 1.6	6.8	25.9

Soil Analysis Certificate - Speciated PAHs												
DETS Report No: 23-12154	Date Sampled	27/09/23	27/09/23	27/09/23								
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied								
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04	BH01	TP05								
Project / Job Ref: C-26279	Additional Refs	ES105	ES101	ES101								
Order No: None Supplied	Depth (m)	1.80	0.20	0.20								
Reporting Date: 14/11/2023	DETS Sample No	677434	677436	677437		·						

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	19.80	< 0.1	0.25		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	0.35	< 0.1	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	0.32	< 0.1	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	4.75	< 0.1	1.60		
Anthracene	mg/kg	< 0.1	MCERTS	0.87	< 0.1	0.56		
Fluoranthene	mg/kg	< 0.1	MCERTS	8.64	0.86	2.33		
Pyrene	mg/kg	< 0.1	MCERTS	5.83	0.77	1.94		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	4.81	0.71	1.61		
Chrysene	mg/kg	< 0.1	MCERTS	5.38	0.66	1.42		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	5.16	0.67	1.45		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	1.35	0.36	0.54		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	3.17	0.70	1.13		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	2.10	< 0.1	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.79	< 0.1	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	1.43	< 0.1	< 0.1	_	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	64.7	4.7	12.8	_	

Soil Analysis Certificate - TPH LQM Bande	Soil Analysis Certificate - TPH LQM Banded											
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23						
Hydrock	Time Sampled	None Supplied										
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP01	TP02	TP02	TP02						
Project / Job Ref: C-26279	Additional Refs	ES104	ES105	ES103	ES104	ES105						
Order No: None Supplied	Depth (m)	1.20	1.70	1.60	2.50	2.90						
Reporting Date: 14/11/2023	DETS Sample No	677415	677416	677419	677420	677422						

Determinand	Unit	RL	Accreditation		(n)			
Aliphatic >C5 - C6 : HS_1D_MS_AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS_1D_MS_AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	13	9	8
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	18	11	7
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	5	18	10	< 3
Aliphatic >C16 - C35 : EH CU 1D AL	mg/kg	< 10	MCERTS	58	83	58	56	< 10
Aliphatic >C35 - C44 : EH_CU_1D_AL	mg/kg	< 10	NONE	< 10	< 10	20	15	< 10
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	58	88	126	101	< 30
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	0.02	0.10	0.71	0.55	12.60
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	0.23	0.23	0.07
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	4	< 2	10	6	15
Aromatic >C10 - C12 : EH CU 1D AR	mg/kg	< 2	MCERTS	4	3	13	9	16
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	6	10	8	5	2
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	33	78	8	9	< 3
Aromatic >C21 - C35 : EH CU 1D AR	mg/kg	< 10	MCERTS	52	125	12	< 10	< 10
Aromatic >C35 - C44 : EH CU 1D AR	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	99	216	52	< 30	46
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 60	NONE	157	304	178	130	61

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - TPH LQM Banded									
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	27/09/23	27/09/23	27/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03	TP03	TP04	TP04	TP04			
Project / Job Ref: C-26279	Additional Refs	ES103	ES105	ES103	ES104	ES105			
Order No: None Supplied	Depth (m)	1.40	2.55	1.00	1.20	1.80			
Reporting Date: 14/11/2023	DETS Sample No	677424	677426	677429	677431	677434			

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6 : HS 1D MS AL		< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS_1D_MS_AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	27
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	42
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	5	8
Aliphatic >C16 - C35 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	54	< 10
Aliphatic >C35 - C44 : EH_CU_1D_AL	mg/kg	< 10	NONE	< 10	< 10	< 10	10	< 10
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	< 30	< 30	< 30	69	77
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	0.06	< 0.01	0.01	< 0.01	0.12
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	4	48
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	2	5	73
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	3	9
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	< 3	< 3	20	20	40
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	< 10	< 10	29	29	65
Aromatic >C35 - C44 : EH CU 1D AR	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	< 30	< 30	51	60	236
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 60	NONE	< 60	< 60	< 60	129	313

Soil Analysis Certificate - BTEX / MTBE									
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP01	TP02	TP02	TP02			
Project / Job Ref: C-26279	Additional Refs	ES104	ES105	ES103	ES104	ES105			
Order No: None Supplied	Depth (m)	1.20	1.70	1.60	2.50	2.90			
Reporting Date: 14/11/2023	DETS Sample No	677415	677416	677419	677420	677422			

Determinand	Unit	RL	Accreditation		(n)			
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	20	100	714	546	12591
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	229	234	74
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	55	62	681
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	3	< 2	511	302	1051
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	174	142	191
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - BTEX / MTBE									
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	27/09/23	27/09/23	27/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03	TP03	TP04	TP04	TP04			
Project / Job Ref: C-26279	Additional Refs	ES103	ES105	ES103	ES104	ES105			
Order No: None Supplied	Depth (m)	1.40	2.55	1.00	1.20	1.80			
Reporting Date: 14/11/2023	DETS Sample No	677424	677426	677429	677431	677434			

Determinand	Unit	RL	Accreditation					
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	61	6	11	9	119
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	10	< 5	< 5	< 5	36
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	71
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	7	< 2	3	< 2	114
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	35
MTBE: HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - Volatile Organic Compounds (VOC)									
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP02	TP02	TP03	TP03			
Project / Job Ref: C-26279	Additional Refs	ES104	ES103	ES105	ES103	ES105			
Order No: None Supplied	Depth (m)	1.20	1.60	2.90	1.40	2.55			
Reporting Date: 14/11/2023	DETS Sample No	677415	677419	677422	677424	677426			

Reporting Date: 14/11/2	023	DI	ETS Sample No	677415	677419	677422	677424	677426
Determinand	Unit	RL	Accreditation					
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Vinvl Chloride	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloromethane	ug/kg ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Chloroethane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 10	< 10	
Bromomethane	ug/kg ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Trichlorofluoromethane	ug/kg ug/kg	< 5	MCERTS	< 10 < 5	< 10 < 5	< 10 < 5	< 10	
1,1-Dichloroethene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
MTBE	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	20	714	12590	61	6
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	229	74	10	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	55	681	< 2	< 2
m,p-Xylene	ug/kg	< 2	MCERTS	3	511	1051	7	< 2
o-Xylene	ug/kg	< 2	MCERTS	< 2	174	191	< 2	< 2
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	14	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	107	51	< 5	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	77	98		
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		< 5
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
	5/ 5/							

Soil Analysis Certificate - Volatile Organic Compounds (VOC)									
DETS Report No: 23-12154	Date Sampled	27/09/23	27/09/23						
Hydrock	Time Sampled	None Supplied	None Supplied						
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04	TP04						
Project / Job Ref: C-26279	Additional Refs	ES103	ES105						
Order No: None Supplied	Depth (m)	1.00	1.80						
Reporting Date: 14/11/2023	DETS Sample No	677429	677434						

Determinand	Unit	RL	Accreditation			
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	
1,1-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	11	119	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	36	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	71	
m,p-Xylene	ug/kg	< 2	MCERTS	3	114	
o-Xylene	ug/kg	< 2	MCERTS	< 2	35	
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	160	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	152	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	
,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01
Project / Job Ref: C-26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.20
Reporting Date: 14/11/2023	DETS Sample No	677415

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02
Project / Job Ref: C-26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.60
Reporting Date: 14/11/2023	DETS Sample No	677419

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.90
Reporting Date: 14/11/2023	DETS Sample No	677 4 22

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03
Project / Job Ref: C-26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.40
Reporting Date: 14/11/2023	DETS Sample No	677424

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.55
Reporting Date: 14/11/2023	DETS Sample No	677426

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04
Project / Job Ref: C-26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 14/11/2023	DETS Sample No	677429

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	1.80
Reporting Date: 14/11/2023	DETS Sample No	677434

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)								
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23		
Hydrock	Time Sampled	None Supplied						
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP02	TP02	TP03	TP03		
Project / Job Ref: C-26279	Additional Refs	ES104	ES103	ES105	ES103	ES105		
Order No: None Supplied	Depth (m)	1.20	1.60	2.90	1.40	2.55		
Reporting Date: 14/11/2023	DETS Sample No	677415	677419	677422	677424	677426		

Determinand	Unit	RL	Accreditation					
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
2,4,5-Trichlorophenol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	0.2	0.8	< 0.1	< 0.1	< 0.1
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline	mg/kg	< 0.15	NONE	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	mg/kg	< 0.1	MCERTS	0.4	0.3	< 0.1	0.1	< 0.1
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	mg/kg	< 0.1	ISO17025	0.4	0.2	< 0.1	< 0.1	< 0.1
bis(2-ethylhexyl)phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)								
DETS Report No: 23-12154	Date Sampled	27/09/23	27/09/23					
Hydrock	Time Sampled	None Supplied	None Supplied					
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04	TP04					
Project / Job Ref: C-26279	Additional Refs	ES103	ES105					
Order No: None Supplied	Depth (m)	1.00	1.80					
Reporting Date: 14/11/2023	DETS Sample No	677429	677434					

Determinand	Unit	RL				
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
2,4,5-Trichlorophenol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.4	
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
4-Chloroanaline	mg/kg	< 0.15	NONE	< 0.15	< 0.15	
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
Dibenzofuran	mg/kg	< 0.1	MCERTS	0.1	0.2	
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	
Dibutyl phthalate	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	
Carbazole	mg/kg	< 0.1	ISO17025	0.2	0.5	
bis(2-ethylhexyl)phthalate	mg/kg		ISO17025	< 0.15	< 0.15	
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	
Di-n-octyl phthalate	mg/kg		MCERTS	< 0.1	< 0.1	

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01
Project / Job Ref: C-26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.20
Reporting Date: 14/11/2023	DETS Sample No	677415

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02
Project / Job Ref: C-26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.60
Reporting Date: 14/11/2023	DETS Sample No	677419

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	Naphthalene, 1-methyl-	94	mg/kg	< 0.1	0.9
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.90
Reporting Date: 14/11/2023	DETS Sample No	677422

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03
Project / Job Ref: C-26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.40
Reporting Date: 14/11/2023	DETS Sample No	677424

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP03
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.55
Reporting Date: 14/11/2023	DETS Sample No	677426

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04
Project / Job Ref: C-26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 14/11/2023	DETS Sample No	677429

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	1.80
Reporting Date: 14/11/2023	DETS Sample No	677434

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

4480

Leachate Analysis Certificate						
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	26/09/23	27/09/23	
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP01	TP02	TP04	
Project / Job Ref: C-26279	Additional Refs	ES103	ES105	ES104	ES104	
Order No: None Supplied	Depth (m)	0.65	1.70	2.50	1.20	
Reporting Date: 14/11/2023	DETS Sample No	677414	677417	677421	677432	

Determinand	Unit	RL	Accreditation				
Hq	pH Units	N/a	ISO17025	7.0	7.7	7.7	
Electrical Conductivity	uS/cm	< 5	NONE	164	200	176	
Total Cyanide	ug/l	< 5	ISO17025	< 5	25	< 5	
Free Cyanide	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Sulphate as SO ₄	mg/l	< 1	ISO17025	9	9	7	
Ammoniacal Nitrogen as NH ₄	ug/l	< 50	ISO17025	596	232	416	
Ammonia as NH ₄	ug/l	< 50	ISO17025	596	232	416	
Ammonium as NH ₄	ug/l	< 50	ISO17025	596	232	416	
Chloride	mg/l	< 1	ISO17025	3	2	2	
Nitrate as NO ₃	mg/l	< 0.5	ISO17025	< 0.5	< 0.5	0.5	
Nitrite as NO ₂	mg/l	< 0.5	NONE	< 0.5	< 0.5	0.7	
Fluoride	mg/l	< 0.5	ISO17025	< 0.5	< 0.5	< 0.5	
Bromate (S)	ug BrO3/l	< 0.8	NONE	< 0.80	< 0.80	< 0.80	
Aluminium	ug/l	< 5	ISO17025	215	369	446	
Antimony	ug/l	< 5	ISO17025	5	< 5	< 5	
Arsenic	ug/l	< 5	ISO17025	28.0	11.0	6.0	
Barium	ug/l	< 5	ISO17025	11.0	26.0	12.0	
Boron	ug/l	< 5	ISO17025	63	68	68	
Cadmium	ug/l	< 0.4	ISO17025	<0.4	<0.4	<0.4	
Chromium	ug/l	< 5	ISO17025	<5		6.0	
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20	< 20	
Chromium III	ug/l	< 20	NONE	< 20	< 20	< 20	
Cobalt	ug/l	< 5	ISO17025	<5	<5	<5	
Copper	ug/l	< 5	ISO17025	29.0	9.0	9.0	
Iron	ug/l	< 5	ISO17025	97	27	70	
Lead	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Manganese	ug/l	<5	ISO17025	12	< 5	< 5	
Mercury	ug/l	< 0.05	ISO17025	0.40	0.61	0.18	
Nickel	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Selenium	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Silver (S)	ug/l	< 0.13	NONE	< 0.130	< 0.130	< 0.130	
Tin	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Vanadium	ug/l	< 5	ISO17025	250	594	199	
Zinc	ug/l	< 2	ISO17025	7	4	6	
Calcium	mg/l	< 0.2	ISO17025	18.4	29.9	22.6	_
Sodium	mg/l	< 0.2	ISO17025	3.2	1.5	2.2	
Total Phenols (monohydric)	ug/l	< 10	ISO17025	< 10	< 10	< 10	

Subcontracted analysis (S)

Tel: 01622 850410

Leachate Analysis Certificate - Speciated PAH								
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	27/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP02	TP04				
Project / Job Ref: C-26279	Additional Refs	ES105	ES104	ES104				
Order No: None Supplied	Depth (m)	1.70	2.50	1.20				
Reporting Date: 14/11/2023	DETS Sample No	677417	677421	677432				

Determinand	Unit	RL	Accreditation				
Naphthalene	ug/l	< 0.01	NONE	1.83	1.95	2.49	
Acenaphthylene	ug/l	< 0.01	NONE	0.13	0.01	0.43	
Acenaphthene	ug/l	< 0.01	NONE	0.54	0.06	0.04	
Fluorene	ug/l	< 0.01	NONE	0.53	0.03	0.13	
Phenanthrene	ug/l	< 0.01	NONE	1.01	0.07	0.38	
Anthracene	ug/l	< 0.01	NONE	0.20	0.01	0.08	
Fluoranthene	ug/l	< 0.01	NONE	0.39	0.05	0.06	
Pyrene	ug/l	< 0.01	NONE	0.23	0.04	0.07	
Benzo(a)anthracene	ug/l	< 0.01	NONE	0.05	< 0.01	< 0.01	
Chrysene	ug/l	< 0.01	NONE	0.09	0.01	< 0.01	
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	0.10	< 0.01	< 0.01	
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	0.04	< 0.01	< 0.01	
Benzo(a)pyrene	ug/l	< 0.01	NONE	0.04	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	ug/l	0.008	NONE	< 0.008	< 0.008	< 0.008	
Total EPA-16 PAHs	ug/l	< 0.16	NONE	5.18	2.23	3.68	

Leachate Analysis Certificate - Volatile Organic Compounds (VOC)							
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	27/09/23			
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied			
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP02	TP04			
Project / Job Ref: C-26279	Additional Refs	ES105	ES104	ES104			
Order No: None Supplied	Depth (m)	1.70	2.50	1.20			
Reporting Date: 14/11/2023	DETS Sample No	677417	677421	677432			

Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Vinyl Chloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloroform	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromochloromethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
Benzene	ug/l	< 1	ISO17025	< 1	17	< 1	
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Trichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromodichloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Dibromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
TAME	ug/l	< 5	ISO17025	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
trans-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,3-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Tetrachloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Dibromochloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2-Dibromoethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Ethyl Benzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
m,p-Xylene	ug/l	< 10	ISO17025	< 10	< 10	< 10	
o-Xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Styrene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromoform	ug/l	< 10	IS017025	< 10	< 10	< 10	
Isopropylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,2,3-Trichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
n-Propylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromobenzene	ug/l	< 5	ISO17025	< 5 < 5	< 5 < 5	< 5 < 5	
2-Chlorotoluene	ug/l	< 5	ISO17025				
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
tert-Butylbenzene	ug/l	< 5	ISO17025 ISO17025	< 5 < 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/l	< 5 < 5	ISO17025	< 5 < 5	< 5 < 5	< 5 < 5	
sec-Butylbenzene	ug/l	< 5 < 5	ISO17025				
p-Isopropyltoluene 1,3-Dichlorobenzene	ug/l ug/l	< 5 < 5	ISO17025	< 5 < 5	< 5 < 5	< 5 < 5	
1,4-Dichlorobenzene		< 5 < 5	ISO17025	< 5 < 5	< 5 < 5	< 5	
n-Butylbenzene	ug/l	< 5	ISO17025	< 5 < 5	< 5 < 5	< 5	
1,2-Dichlorobenzene	ug/l ug/l	< 5 < 5	ISO17025	< 5 < 5	< 5 < 5	< 5	
.,2-Dibromo-3-chloropropane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
	•	< 10		< 10 < 5	< 10 < 5	< 10 < 5	
Hexachlorobutadiene	ug/l	< 5	ISO17025	< 5	< 5	< 5	<u> </u>

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	1.70
Reporting Date: 14/11/2023	DETS Sample No	677417

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a			< 5	< 5
5	N/a	N/a	μg/l	< 5	< 5

Reporting Date: 14/11/2023

DETS Ltd it 1, Rose Lane Industrial Es Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

4480

DETS Sample No

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02
Project / Job Ref: C-26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	2.50

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
					Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a			< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a	μg/l	< 5	< 5

Reporting Date: 14/11/2023

DETS Ltd it 1, Rose Lane Industrial Es Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

4480

DETS Sample No

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)DETS Report No: 23-12154Date Sampled27/09/23HydrockTime SampledNone SuppliedSite Reference: SWITCH, Port TalbotTP / BH NoTP04Project / Job Ref: C-26279Additional RefsES104Order No: None SuppliedDepth (m)1.20

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a	μg/l	< 5	< 5

Kent ME17 2JN Tel : 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds (SVOC)								
DETS Report No: 23-12154	Date Sampled	26/09/23	26/09/23	27/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01	TP02	TP04				
Project / Job Ref: C-26279	Additional Refs	ES105	ES104	ES104				
Order No: None Supplied	Depth (m)	1.70	2.50	1.20				
Reporting Date: 14/11/2023	DETS Sample No	677417	677421	677432	·			

Determinand	Unit	RL	Accreditation				
Phenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
0-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,4-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Isophorone	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachloroethane	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
p-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4,6-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4,5-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Methylnaphthalene	ug/l	< 0.1	NONE	0.3	< 0.1	< 0.1	
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorobutadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,6-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chloronaphthalene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dibenzofuran	ug/l	< 0.1	NONE	0.3	< 0.1	< 0.1	
Azobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Carbazole	ug/l	< 0.1	NONE	1.5	< 0.1	< 0.1	
bis(2-ethylhexyl)phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01
Project / Job Ref: C-26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	1.70
Reporting Date: 14/11/2023	DETS Sample No	677417

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a			< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	26/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP02
Project / Job Ref: C-26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	2.50
Reporting Date: 14/11/2023	DETS Sample No	677421

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a			< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12154	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH, Port Talbot	TP / BH No	TP04
Project / Job Ref: C-26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.20
Reporting Date: 14/11/2023	DETS Sample No	677432

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a		< 0.1	< 0.1

Bulk Analysis Certificate				
DETS Report No: 23-12154	Date Sampled	26/09/23		
Hydrock	Time Sampled	None Supplied		
Site Reference: SWITCH, Port Talbot	TP / BH No	TP01		
Project / Job Ref: C-26279	Additional Refs	ES103		
Order No: None Supplied	Depth (m)	0.65		
Reporting Date: 14/11/2023	DETS Sample No	677414		

Determinand	Unit	RL	Accreditation			
Asbestos Type (S)	PLM Result	N/a	ISO17025	Not Detected		
Sample Matrix (S)	Material Type	N/a	NONE	Woven		

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification) that is in accordance with the Health and Safety Executive HSG 248 Appendix 2.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Subcontracted analysis (S)

This report refers to samples as received, and Dets Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 23-12154

Hydrock

Site Reference: SWITCH, Port Talbot

Project / Job Ref: C-26279

Order No: None Supplied

Reporting Date: 14/11/2023

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
677413	TP01	ES102	0.30	9	Brown gravelly sand with stones and concrete
677415	TP01	ES104	1.20	9.3	Brown gravelly sand with stones and concrete
677416	TP01	ES105	1.70	12.9	Brown sandy gravel with stones and concrete
677418	TP02	ES101	0.15	10.5	Brown gravelly sand with stones and concrete
677419	TP02	ES103	1.60	8.9	Black gravelly sand with stones and concrete
677420	TP02	ES104	2.50	10.4	Black gravelly sand with stones and concrete
677422	TP02	ES105	2.90	20.5	Black sandy clay
677423	TP03	ES101	0.40	12.2	Light brown sandy clay
677424	TP03	ES103	1.40	7.6	Black sandy clay with stones and concrete
677425	TP03	ES104	2.40	4.5	Red clay
677426	TP03	ES105	2.55	17.9	Brown sandy clay with stones
677427	TP04	ES101	0.20	7.4	Brown gravelly sand with stones and concrete
677428	TP04	D1	0.30	6.7	Brown gravelly sand with stones and concrete
677429	TP04	ES103	1.00	6.8	Black gravelly sand with stones and concrete
677430	TP04	D3	1.00	7.9	Brown loamy sand with stones and concrete
677431	TP04	ES104	1.20	8.9	Black loamy sand with stones and concrete
677433	TP04	D6	1.20	8.3	Black loamy sand with stones and concrete
677434	TP04	ES105	1.80	14.7	Black loamy sand with stones and concrete
677435	TP04	D9	2.00	17.1	Black sandy gravel with stones and concrete
677436	BH01	ES101	0.20	6.6	Brown gravelly sand with stones and concrete
677437	TP05	ES101	0.20	8.8	Brown gravelly sand with stones and concrete
677438	TP05	D3	0.30	7.3	Brown gravelly sand with stones and concrete

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 23-12154 Hydrock

Site Reference: SWITCH, Port Talbot

Project / Job Ref: C-26279 Order No: None Supplied Reporting Date: 14/11/2023

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil	On D	Roron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	No E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	cartridge	E004
Soil	AR		Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013 E009
Soil Soil	D D		Determination of sulphate by extraction with water & analysed by ion chromatography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009 E014
Soil	AR		Determination of water soluble sulphate by extraction with water followed by ICF-OES Determination of sulphide by distillation followed by colorimetry	E014
Soil	D		Determination of stipling by distillation followed by colorinetry Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR		Determination of comingulatile organic compounds by extraction in acctone and beyong followed by	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
Soil	AR		iron (II) sulphate Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR Dried	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

4480

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-12154
Hydrock
Site Reference: SWITCH, Port Talbot

Project / Job Ref: C-26279 Order No: None Supplied Reporting Date: 14/11/2023

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF		Determination of BTEX by headspace GC-MS	E101
Water	F		Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
147.1.	_		Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E404
Water	F	C12-C16, C16-C21, C21-C40)		E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	ÜF		Determination of phenols by distillation followed by colorimetry	E121
		,	Determination of DAH compounds by concentration through SDE cartridge, collection in	
Water	F	PAH - Speciated (EPA 16)	dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	ÜF		Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	ÜF	Sulnhide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators
DETS Report No: 23-12154
Hydrock
Site Reference: SWITCH, Port Talbot
Project / Job Ref: C-26279
Order No: None Supplied
Reporting Date: 14/11/2023

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym
Benzene - HS_1D_MS
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
TPH CWG - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH LQM - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH LQM - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH LQM - Aliphatic >C16 - C35 - EH_CU_1D_AL
TPH LQM - Aliphatic >C35 - C44 - EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH LQM - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH LQM - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH LQM - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH LQM - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH LQM - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH LQM - Aromatic >C35 - C44 - EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH LQM - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH LQM - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH LQM - Total >C5 - C44 - HS_1D_MS+EH_CU_1D_Total
Toluene - HS_1D_MS
m & p-xylene - HS_1D_MS
o-Xylene - HS_1D_MS

Mathew Holbourn Hydrock 3rd Floor, Wharton Place, 13 Wharton Street, Cardiff CF10 1GS

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 23-12382

Site Reference: SWITCH

Project / Job Ref: 26279

Order No: PO29482

Sample Receipt Date: 02/10/2023

Sample Scheduled Date: 04/10/2023

Report Issue Number: 2

Reporting Date: 09/11/2023

Authorised by:

5.62

Steve Knight

Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Reason for reissue:-

Correction of leachate metals LOD's

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP05	TP05	TP05	TP05	TP05
Project / Job Ref: 26279	Additional Refs	ES103	D4	D6	ES104	ES105
Order No: None Supplied	Depth (m)	1.00	1.00	2.00	2.00	2.80
Reporting Date: 09/11/2023	DETS Sample No	678381	678382	678383	678384	678385

Determinand	Unit	RL	Accreditation	(n)	(n)	(n)	(n)	
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected			Not Detected	Not Detected
Sample Matrix (S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	11.9	10.6	9.2	8.8	7.5
Free Cyanide	mg/kg	< 1	NONE	< 1			< 1	< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS		3219	1938		
Total Sulphate as SO ₄	%	< 0.02	MCERTS		0.32	0.19		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS		240	133		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS		0.24	0.13		
Total Sulphur	%	< 0.02	NONE		0.14	0.11		
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.049			0.081	0.012
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS		3	42.5		
Ammonium as NH ₄	mg/l	< 0.05	MCERTS		0.30	4.25		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		56	44		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		28	22		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS		< 3	5		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS		< 1.5	2.4		
Arsenic (As)	mg/kg	< 2	MCERTS	14			19	6
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.6			2.3	0.7
W/S Boron	mg/kg	< 1	NONE	< 1			1.9	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2			< 0.2	< 0.2
Chromium (III)	mg/kg	< 2	NONE	715			216	11
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2			< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	64			51	10
Lead (Pb)	mg/kg	< 3	MCERTS	97			46	6
W/S Magnesium	mg/l	< 0.1	NONE		0.6	0.4		
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1			< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	20			16	12
Selenium (Se)	mg/kg	< 2	MCERTS	7.2			< 2	< 2
Vanadium (V)	mg/kg	< 1	MCERTS	797			304	16
Zinc (Zn)	mg/kg	< 3	MCERTS	163			117	45 < 2
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2			< 2	< 2

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP06	TP06	TP06	TP06	TP06
Project / Job Ref: 26279	Additional Refs	D2	ES102	D6	ES104	ES106
Order No: None Supplied	Depth (m)	0.30	0.50	1.00	1.50	2.50
Reporting Date: 09/11/2023	DETS Sample No	678386	678387	678388	678389	678390

Determinand	Unit	RL	Accreditation	(n)				
Asbestos Screen (S)	N/a	N/a	ISO17025		Not Detected		Not Detected	
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	11.3	9.6	10.1	9.8	
Free Cyanide	mg/kg	< 1	NONE		< 1		< 1	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	5753		3175		
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.58		0.32		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	220		164		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.22		0.16		
Total Sulphur	%	< 0.02	NONE	0.20		0.13		
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS		0.026		0.021	
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	0.7		6		
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	0.07		0.60		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	23		31		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	11.4		15.5		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	5		< 3		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2.6		< 1.5		
Arsenic (As)	mg/kg	< 2	MCERTS		24		11	
Beryllium (Be)	mg/kg	< 0.5	MCERTS		1		< 0.5	
W/S Boron	mg/kg	< 1	NONE		< 1		< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS		0.3		< 0.2	
Chromium (III)	mg/kg	< 2	NONE		65		175	
Chromium (hexavalent)	mg/kg	< 2	NONE		< 2		< 2	
Copper (Cu)	mg/kg	< 4	MCERTS		63		38	
Lead (Pb)	mg/kg	< 3	MCERTS		158		65	
W/S Magnesium	mg/l	< 0.1	NONE	0.4		0.7		
Mercury (Hg)	mg/kg	< 1	MCERTS		< 1		< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS		17		13	
Selenium (Se)	mg/kg	< 2	MCERTS		< 2		< 2	
Vanadium (V)	mg/kg	< 1	MCERTS		94		284	
Zinc (Zn)	mg/kg	< 3	MCERTS		230		82	
Total Phenols (monohydric)	mg/kg	< 2	NONE		< 2		< 2	

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP07	TP07	TP07	TP07	TP07
Project / Job Ref: 26279	Additional Refs	ES101	D4	ES103	D9	ES105
Order No: None Supplied	Depth (m)	0.20	0.50	1.00	2.00	2.60
Reporting Date: 09/11/2023	DETS Sample No	678391	678392	678393	678394	678395

Determinand	Unit	RL	Accreditation	(n)		(n)		
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected		Not Detected		Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	10.4	8.3	10.4	10.0	7.4
Free Cyanide	mg/kg	< 1	NONE	< 1		< 1		< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS		679		1904	
Total Sulphate as SO ₄	%	< 0.02	MCERTS		0.07		0.19	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS		90		83	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS		0.09		0.08	
Total Sulphur	%	< 0.02	NONE		0.03		0.09	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.021		0.045		0.090
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS		13.2		1.5	
Ammonium as NH₄	mg/l	< 0.05	MCERTS		1.32		0.15	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		21		89	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		10.7		44.6	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS		12		18	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS		6.2		8.9	
Arsenic (As)	mg/kg	< 2	MCERTS	11		13		58
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.8		1.3		0.6
W/S Boron	mg/kg	< 1	NONE	< 1		< 1		2.2
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.3		0.4		0.4
Chromium (III)	mg/kg	< 2	NONE	57		283		66
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2		< 2
Copper (Cu)	mg/kg	< 4	MCERTS	26		503		142
Lead (Pb)	mg/kg	< 3	MCERTS	102		139		233
W/S Magnesium	mg/l	< 0.1	NONE		7.4		0.5	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		< 1		< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	9		14		17
Selenium (Se)	mg/kg	< 2	MCERTS	< 2		< 2		< 2
Vanadium (V)	mg/kg	< 1	MCERTS	73		344		106
Zinc (Zn)	mg/kg	< 3	MCERTS	150		164		366
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		< 2		< 2

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP07	TP07	BH01	BH01	BH01
Project / Job Ref: 26279	Additional Refs	ES106	D12	ES103	ES105	ES106
Order No: None Supplied	Depth (m)	3.00	3.00	1.10	3.00	5.50
Reporting Date: 09/11/2023	DETS Sample No	678396	678397	678398	678399	678400

Determinand	Unit	RL	Accreditation	(n)	(n)	(n)		(n)
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		Not Detected	Not Detected	Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	7.4	7.6	10.3	8.2	7.4
Free Cyanide	mg/kg	< 1	NONE	< 1		< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS		628		< 200	< 200
Total Sulphate as SO ₄	%	< 0.02	MCERTS		0.06		< 0.02	< 0.02
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS		18		< 10	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS		0.02		< 0.01	< 0.01
Total Sulphur	%	< 0.02	NONE		0.06		< 0.02	< 0.02
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.007		0.042	0.001	< 0.001
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS		33.9		2.5	1.9
Ammonium as NH ₄	mg/l	< 0.05	MCERTS		3.39		0.25	0.19
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		105		3	2
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		52.4		1.4	1.2
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS		< 3		< 3	< 3
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS		< 1.5		< 1.5	< 1.5
Arsenic (As)	mg/kg	< 2	MCERTS	7		22	< 2	< 2
Beryllium (Be)	mg/kg	< 0.5	MCERTS	< 0.5		1.1	< 0.5	< 0.5
W/S Boron	mg/kg	< 1	NONE	< 1		< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2		< 0.2	< 0.2	< 0.2
Chromium (III)	mg/kg	< 2	NONE	18		330	11	5
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	11		76	< 4	< 4
Lead (Pb)	mg/kg	< 3	MCERTS	13		121	3	< 3
W/S Magnesium	mg/l	< 0.1	NONE		0.2		0.4	0.4
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	6		29	7	6
Selenium (Se)	mg/kg	< 2	MCERTS	< 2		2.3	< 2	< 2
Vanadium (V)	mg/kg	< 1	MCERTS	24		582	15	5
Zinc (Zn)	mg/kg	< 3	MCERTS	28	-	183	19	15
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		< 2	< 2	< 2

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	28/09/23	29/09/23	29/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	BH02	BH02	BH02	TP08	TP08
Project / Job Ref: 26279	Additional Refs	ES103	ES104	ES105	D2	ES103
Order No: None Supplied	Depth (m)	1.00	2.80	3.70	0.10	1.00
Reporting Date: 09/11/2023	DETS Sample No	678401	678402	678403	678404	678405

Determinand	Unit	RL	Accreditation		(n)	(n)		
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected		Not Detected
Sample Matrix (S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	11.1	7.9	10.0	8.4	10.2
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1		< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS				250	
Total Sulphate as SO ₄	%	< 0.02	MCERTS				0.03	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS				12	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS				0.01	
Total Sulphur	%	< 0.02	NONE				< 0.02	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.037	0.015	0.007		0.063
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS				2	
Ammonium as NH ₄	mg/l	< 0.05	MCERTS				0.20	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS				15	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS				7.3	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS				< 3	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS				< 1.5	
Arsenic (As)	mg/kg	< 2	MCERTS	17	12	5		12
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.7	0.6	0.5		1.2
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1		< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2		0.7
Chromium (III)	mg/kg	< 2	NONE	580	27	24		301
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2		< 2
Copper (Cu)	mg/kg	< 4	MCERTS	59	19	8		53
Lead (Pb)	mg/kg	< 3	MCERTS	74	13	9		128
W/S Magnesium	mg/l	< 0.1	NONE				3	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1		< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	18	14	20		18
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2		< 2
Vanadium (V)	mg/kg	< 1	MCERTS	755	37	32		394
Zinc (Zn)	mg/kg	< 3	MCERTS	123	47	56		236
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2		< 2

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP08	TP08	TP08	TP09	TP09
Project / Job Ref: 26279	Additional Refs	ES104	D7	D9	ES103	ES104
Order No: None Supplied	Depth (m)	1.00	1.50	1.50	1.00	3.00
Reporting Date: 09/11/2023	DETS Sample No	678406	678407	678408	678409	678410

Determinand	Unit	RL	Accreditation		(n)	(n)	
Asbestos Screen (S)	N/a	N/a	ISO17025			Not Detected	Detected
Sample Matrix (S)	Material Type	N/a	NONE				Loose Fibres
Asbestos Type (S)	PLM Result	N/a	ISO17025				Chrysotile
pH	pH Units	N/a	MCERTS	10.3	9.0	10.5	8.9
Free Cyanide	mg/kg	< 1	NONE			< 1	< 1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	1152	1240		
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.12	0.12		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	51	33		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.05	0.03		
Total Sulphur	%	< 0.02	NONE	0.06	0.07		
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS			0.048	0.014
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	1.9	2		
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	0.19	0.20		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	16	17		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	7.8	8.4		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	7	< 3		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	3.5	< 1.5		
Arsenic (As)	mg/kg	< 2	MCERTS			17	8
Beryllium (Be)	mg/kg	< 0.5	MCERTS			0.9	< 0.5
W/S Boron	mg/kg	< 1	NONE			< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS			0.3	< 0.2
Chromium (III)	mg/kg	< 2	NONE			435	91
Chromium (hexavalent)	mg/kg	< 2	NONE			< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS			73	19
Lead (Pb)	mg/kg	< 3	MCERTS			126	36
W/S Magnesium	mg/l	< 0.1	NONE	0.5	< 0.1		
Mercury (Hg)	mg/kg	< 1	MCERTS			< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS			20	14
Selenium (Se)	mg/kg	< 2	MCERTS			< 2	< 2
Vanadium (V)	mg/kg	< 1	MCERTS			617	111
Zinc (Zn)	mg/kg	< 3	MCERTS			217	109
Total Phenols (monohydric)	mg/kg	< 2	NONE			< 2	< 2

Soil Analysis Certificate						
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP09	TP09	TP10	TP10	TP10
Project / Job Ref: 26279	Additional Refs	D7	D9	ES101	ES102	D6
Order No: None Supplied	Depth (m)	2.00	3.00	0.20	0.50	0.85
Reporting Date: 09/11/2023	DETS Sample No	678411	678412	678413	678414	678415

Determinand	Unit	RL	Accreditation	(n)		(n)	(n)	(n)
Asbestos Screen (S)	N/a	N/a	ISO17025			Not Detected	Not Detected	
Sample Matrix (S)	Material Type	N/a	NONE					
Asbestos Type (S)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS	8.9	10.4	10.2	10.9	9.2
Free Cyanide	mg/kg	< 1	NONE			< 1	< 1	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	2701	751			1163
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.27	0.08			0.12
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	183	52			97
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.18	0.05			0.10
Total Sulphur	%	< 0.02	NONE	0.14	0.05			0.06
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS			0.044	0.032	
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	2.9	10.5			14.1
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	0.29	1.05			1.41
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	28	11			13
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	13.9	5.6			6.5
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	< 3	< 3			< 3
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	< 1.5	< 1.5			< 1.5
Arsenic (As)	mg/kg	< 2	MCERTS			11	23	
Beryllium (Be)	mg/kg	< 0.5	MCERTS			0.5	1	
W/S Boron	mg/kg	< 1	NONE			< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS			0.4	0.6	
Chromium (III)	mg/kg	< 2	NONE			24	31	
Chromium (hexavalent)	mg/kg	< 2	NONE			< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS			27	56	
Lead (Pb)	mg/kg	< 3	MCERTS			46	238	
W/S Magnesium	mg/l	< 0.1	NONE	0.7	0.6			0.9
Mercury (Hg)	mg/kg	< 1	MCERTS			< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS			9	20	
Selenium (Se)	mg/kg	< 2	MCERTS			< 2	< 2	
Vanadium (V)	mg/kg	< 1	MCERTS			38	42	
Zinc (Zn)	mg/kg	< 3	MCERTS			132	310	
Total Phenols (monohydric)	mg/kg	< 2	NONE			< 2	< 2	

Soil Analysis Certificate											
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23							
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied							
Site Reference: SWITCH	TP / BH No	TP10	TP10	TP10							
Project / Job Ref: 26279	Additional Refs	ES103	ES104	ES105							
Order No: None Supplied	Depth (m)	1.00	2.10	2.60							
Reporting Date: 09/11/2023	DETS Sample No	678416	678417	678418							

Determinand	Unit	RL	Accreditation			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	
Sample Matrix ^(S)	Material Type	N/a	NONE			
Asbestos Type (S)	PLM Result	N/a	ISO17025			
pH	pH Units	N/a	MCERTS	9.4	7.4	
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS			•
Total Sulphate as SO ₄	%	< 0.02	MCERTS			
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS			
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS			
Total Sulphur	%	< 0.02	NONE			
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.050	0.013	
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS			
Ammonium as NH ₄	mg/l	< 0.05	MCERTS			
W/S Chloride (2:1)	mg/kg	< 1	MCERTS			
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS			
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS			
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS			
Arsenic (As)	mg/kg	< 2	MCERTS	21	13	
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.8	1	
W/S Boron	mg/kg	< 1	NONE	< 1	1.9	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.8	< 0.2	
Chromium (III)	mg/kg	< 2	NONE	74	18	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	83	11	
Lead (Pb)	mg/kg	< 3	MCERTS	196	15	
W/S Magnesium	mg/l	< 0.1	NONE			
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	39	18	
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	
Vanadium (V)	mg/kg	< 1	MCERTS	102	26	
Zinc (Zn)	mg/kg	< 3	MCERTS	440	116	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP05	TP05	TP05	TP06	TP06
Project / Job Ref: 26279	Additional Refs	ES103	ES104	ES105	ES102	ES104
Order No: None Supplied	Depth (m)	1.00	2.00	2.80	0.50	1.50
Reporting Date: 09/11/2023	DETS Sample No	678381	678384	678385	678387	678389

Determinand	Unit	RL	Accreditation	(n)	(n)			
Naphthalene	mg/kg	< 0.1	MCERTS	0.74	< 0.1	< 0.1	2.12	3.70
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.56
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.17
Phenanthrene	mg/kg	< 0.1	MCERTS	0.86	0.27	< 0.1	0.96	0.32
Anthracene	mg/kg	< 0.1	MCERTS	0.46	< 0.1	< 0.1	0.21	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	1.41	0.34	< 0.1	1.77	0.47
Pyrene	mg/kg	< 0.1	MCERTS	1.25	0.27	< 0.1	1.77	0.44
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	1.03	0.25	< 0.1	1.34	0.34
Chrysene	mg/kg	< 0.1	MCERTS	0.97	0.23	< 0.1	1.21	0.35
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.83	0.20	< 0.1	1.49	0.47
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.61	< 0.1	< 0.1	0.52	0.15
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.81	0.14	< 0.1	1.05	0.34
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.13	< 0.1	1.20	0.29
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.31
Total EPA-16 PAHs				9	1.8	< 1.6	13.6	7.9

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP07	TP07	TP07	TP07	BH01
Project / Job Ref: 26279	Additional Refs	ES101	ES103	ES105	ES106	ES103
Order No: None Supplied	Depth (m)	0.20	1.00	2.60	3.00	1.10
Reporting Date: 09/11/2023	DETS Sample No	678391	678393	678395	678396	678398

Determinand	Unit	RL	Accreditation	(n)	(n)		(n)	(n)
Naphthalene	mg/kg	< 0.1	MCERTS	0.38	0.33	< 0.1	< 0.1	4.06
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	3.36	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.02	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.55	0.54	0.18	1.21	0.67
Anthracene	mg/kg	< 0.1	MCERTS	0.11	0.17	< 0.1	0.27	0.15
Fluoranthene	mg/kg	< 0.1	MCERTS	0.90	1	0.23	0.46	0.82
Pyrene	mg/kg	< 0.1	MCERTS	0.73	0.86	0.20	0.36	0.62
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.62	0.66	< 0.1	0.20	0.58
Chrysene	mg/kg	< 0.1	MCERTS	0.80	0.68	0.17	0.19	0.63
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.81	0.84	0.23	0.17	0.70
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.31	0.27	< 0.1	< 0.1	0.27
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.59	0.17	0.14	0.54
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.43	0.22	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.13	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	0.40	0.26	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	5.2	6.9	1.7	7.4	9

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	28/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	BH01	BH01	BH02	BH02	BH02
Project / Job Ref: 26279	Additional Refs	ES105	ES106	ES103	ES104	ES105
Order No: None Supplied	Depth (m)	3.00	5.50	1.00	2.80	3.70
Reporting Date: 09/11/2023	DETS Sample No	678399	678400	678401	678402	678403

Determinand	Unit	RL	Accreditation		(n)		(n)	(n)
Naphthalene	mg/kg	< 0.1	MCERTS	1.24	< 0.1	0.62	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	0.12	< 0.1	0.12	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.77	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.18	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	1.03	< 0.1	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.85	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.64	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.60	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.71	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.26	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.54	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.37	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.35	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	7	< 1.6	< 1.6

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP08	TP09	TP09	TP10	TP10
Project / Job Ref: 26279	Additional Refs	ES103	ES103	ES104	ES101	ES102
Order No: None Supplied	Depth (m)	1.00	1.00	3.00	0.20	0.50
Reporting Date: 09/11/2023	DETS Sample No	678405	678409	678410	678413	678414

Determinand	Unit	RL	Accreditation		(n)		(n)	(n)
Naphthalene	mg/kg	< 0.1	MCERTS	0.43	0.56	0.25	< 0.1	0.56
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	1.81	0.49	0.48	0.78	1.78
Anthracene	mg/kg	< 0.1	MCERTS	1	< 0.1	< 0.1	0.30	0.42
Fluoranthene	mg/kg	< 0.1	MCERTS	3.48	0.75	0.73	1.48	2.94
Pyrene	mg/kg	< 0.1	MCERTS	2.54	0.63	0.52	1.24	2.30
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	2.41	0.51	0.44	1.14	1.91
Chrysene	mg/kg	< 0.1	MCERTS	2.23	0.49	0.46	1.12	1.97
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	2.30	0.64	0.43	1.15	2.33
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.87	0.21	0.13	0.42	0.54
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	1.64	0.46	0.26	0.88	1.81
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	1.19	0.35	0.16	0.70	1.27
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	1.18	0.34	0.16	< 0.1	1.03
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	21.1	5.4	4	9.2	18.9

Soil Analysis Certificate - Speciated PAHs					
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23		
Hydrock	Time Sampled	None Supplied	None Supplied		
Site Reference: SWITCH	TP / BH No	TP10	TP10		
Project / Job Ref: 26279	Additional Refs	ES103	ES105		
Order No: None Supplied	Depth (m)	1.00	2.60		
Reporting Date: 09/11/2023	DETS Sample No	678416	678418		

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	0.39	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	1.80	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	0.26	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	2.94	< 0.1		
Pyrene	mg/kg	< 0.1	MCERTS	2.02	< 0.1		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	2.06	< 0.1		
Chrysene	mg/kg	< 0.1	MCERTS	2.44	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	2.63	< 0.1		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	1.22	< 0.1		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	2.08	< 0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	1.55	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.52	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	1.41	< 0.1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	21.3	< 1.6		

Soil Analysis Certificate - TPH LQM Banded									
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH	TP / BH No	TP05	TP05	TP05	TP06	TP06			
Project / Job Ref: 26279	Additional Refs	ES103	ES104	ES105	ES102	ES104			
Order No: None Supplied	Depth (m)	1.00	2.00	2.80	0.50	1.50			
Reporting Date: 09/11/2023	DETS Sample No	678381	678384	678385	678387	678389			

Determinand	Unit	RL	Accreditation	(n)	(n)			
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH CU 1D AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C35 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic >C35 - C44 : EH CU 1D AL	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	< 30	< 30	< 30	< 30	< 30
Aromatic >C5 - C7 : HS 1D MS AR	mg/kg	< 0.01	NONE	0.11	0.16	< 0.01	0.09	0.04
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	0.08	< 0.05
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	10	8
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	9	13
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	7	12
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	< 3	< 3	< 3	9	< 3
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	< 10	< 10	< 10	40	< 10
Aromatic >C35 - C44 : EH_CU_1D_AR	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	< 30	< 30	< 30	75	34
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 60	NONE	< 60	< 60	< 60	75	< 60

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Total >C5 - C44 :

HS_1D_MS+EH_CU_1D_Tot

< 60

mg/kg

NONE

276

75

< 60

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - 1 DETS Report No: 23-12382	FR LUM DANGE		Data Carrelle 1	27/00/22	27/00/02	27/00/00	27/00/00	27/00/22
Hydrock			Date Sampled Time Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
•				None Supplied				
Site Reference: SWITCH Project / Job Ref: 26279			TP / BH No Additional Refs	TP07 ES101	TP07 ES103	TP07 ES105	TP07 ES106	BH01 ES103
Order No: None Supplied		Depth (m)		0.20	1.00	2.60	3.00	1.10
Reporting Date: 09/11/2023	3		ETS Sample No	678391	678393	678395	678396	678398
reporting Dute: 05/11/202		DE13 Sample No			070333	070333	070330	070530
Determinand	Unit	RL	Accreditation	(n)	(n)		(n)	(n
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	344	< 2
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	122	< 2
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	4	< 3	< 3	26	< 3
Aliphatic >C16 - C35 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	76	< 10	< 10	< 10	< 10
Aliphatic >C35 - C44 : EH CU 1D AL	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	80	< 30	< 30	491	< 30
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	0.93
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	0.39
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	416	< 2
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	843	(
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	3	2	< 2	115	!
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	11	13	< 3	21	10
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	165	61	< 10	< 10	3!
Aromatic >C35 - C44 : EH_CU_1D_AR	mg/kg	< 10	NONE	18	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	196	75	< 30	1395	57

1886

HS_1D_MS+EH_CU_1D_Tot

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - TPH L	QM Banded	1						
DETS Report No: 23-12382			Date Sampled	27/09/23	27/09/23	28/09/23	29/09/23	29/09/23
Hydrock			Time Sampled	None Supplied				
Site Reference: SWITCH			TP / BH No	BH01	BH01	BH02	BH02	BH02
Project / Job Ref: 26279			Additional Refs	ES105	ES106	ES103	ES104	ES105
Order No: None Supplied			Depth (m)	3.00	5.50	1.00	2.80	3.70
Reporting Date: 09/11/2023		DI	ETS Sample No	678399	678400	678401	678402	678403
Determinand	Unit	RL	Accreditation		(n)		(n)	(n)
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH CU 1D AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 : EH CU 1D AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 : EH CU 1D AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C35 : EH CU 1D AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic >C35 - C44 : EH CU 1D AL	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	< 30	< 30	< 30	< 30	< 30
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	0.04	< 0.01	0.16	0.01	< 0.01
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	0.13	< 0.05	< 0.05
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	5	< 2	< 2
Aromatic >C12 - C16 : EH CU 1D AR	mg/kg	< 2	MCERTS	< 2	< 2	4	< 2	< 2
Aromatic >C16 - C21 : EH CU 1D AR	mg/kg	< 3	MCERTS	< 3	< 3	8	< 3	< 3
Aromatic >C21 - C35 : EH CU 1D AR	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aromatic >C35 - C44 : EH_CU_1D_AR	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	< 30	< 30	< 30	< 30	< 30
Total >C5 - C44 :	ma/ka	. 60	NONE	. 60	. 60	. 60	. 60	. 60

< 60

mg/kg

NONE

< 60

< 60

< 60

< 60

< 60

Soil Analysis Certificate - TPH LQM Bande	ed					
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP08	TP09	TP09	TP10	TP10
Project / Job Ref: 26279	Additional Refs	ES103	ES103	ES104	ES103	ES105
Order No: None Supplied	Depth (m)	1.00	1.00	3.00	1.00	2.60
Reporting Date: 09/11/2023	DETS Sample No	678405	678409	678410	678416	678418

Reporting Date: 09/11/202	23	DI	ETS Sample No	678405	678409	678410	678416	678418
Determinand	Unit	RL	Accreditation		(n)			
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS_1D_MS_AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	11	< 3	< 3	< 3	< 3
Aliphatic >C16 - C35 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	33	< 10
Aliphatic >C35 - C44 : EH CU 1D AL	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	< 30	< 30	< 30	33	< 30
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	0.04	0.01	< 0.01	0.02	< 0.01
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	5	< 2	< 2	3	< 2
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	15	8	4	15	< 3
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	47	34	< 10	66	< 10
Aromatic >C35 - C44 : EH_CU_1D_AR	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	67	42	< 30	83	< 30
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 60	NONE	78	< 60	< 60	116	< 60

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP05	TP05	TP05	TP06	TP06
Project / Job Ref: 26279	Additional Refs	ES103	ES104	ES105	ES102	ES104
Order No: None Supplied	Depth (m)	1.00	2.00	2.80	0.50	1.50
Reporting Date: 09/11/2023	DETS Sample No	678381	678384	678385	678387	678389

Determinand	Unit	RL	Accreditation	(n)	(n)			
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	109	162	< 2	92	44
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	18	< 5	< 5	82	24
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	5	180	6	160	12
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	16	157	10	171	34
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	4	40	< 2	51	6
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP07	TP07	TP07	TP07	BH01
Project / Job Ref: 26279	Additional Refs	ES101	ES103	ES105	ES106	ES103
Order No: None Supplied	Depth (m)	0.20	1.00	2.60	3.00	1.10
Reporting Date: 09/11/2023	DETS Sample No	678391	678393	678395	678396	678398

Determinand	Unit	RL	Accreditation	(n)	(n)		(n)	(n)
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	930
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	387
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	85	< 2	18	17161	59
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	64	3	21	58528	341
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	24	< 2	< 2	9780	63
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	28/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	BH01	BH01	BH02	BH02	BH02
Project / Job Ref: 26279	Additional Refs	ES105	ES106	ES103	ES104	ES105
Order No: None Supplied	Depth (m)	3.00	5.50	1.00	2.80	3.70
Reporting Date: 09/11/2023	DETS Sample No	678399	678400	678401	678402	678403

Determinand	Unit	RL	Accreditation		(n)		(n)	(n)
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	45	7	157	15	< 2
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	49	< 5	130	< 5	< 5
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	13	< 2	25	< 2	< 2
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	47	5	108	< 2	< 2
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	12	< 2	26	< 2	< 2
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
Hydrock	Time Sampled	None Supplied				
Site Reference: SWITCH	TP / BH No	TP08	TP09	TP09	TP10	TP10
Project / Job Ref: 26279	Additional Refs	ES103	ES103	ES104	ES103	ES105
Order No: None Supplied	Depth (m)	1.00	1.00	3.00	1.00	2.60
Reporting Date: 09/11/2023	DETS Sample No	678405	678409	678410	678416	678418

Determinand	Unit	RL	Accreditation		(n)			
Benzene: HS_1D_MS	ug/kg	< 2	MCERTS	39	11	6	18	4
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	24	7	< 5	15	< 5
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	3	< 2	< 2	4	< 2
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	11	3	< 2	14	< 2
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	3	< 2	< 2	4	< 2
MTBE: HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - Volatile Organic Compounds (VOC)									
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH	TP / BH No	TP05	TP05	TP06	TP07	TP07			
Project / Job Ref: 26279	Additional Refs	ES103	ES105	ES104	ES103	ES105			
Order No: None Supplied	Depth (m)	1.00	2.80	1.50	1.00	2.60			
Reporting Date: 09/11/2023	DETS Sample No	678381	678385	678389	678393	678395			

Dibromochloromethane	Reporting Date: 09/11/2	.023		e i S Sample No	6/8381	6/8385	6/8389	6/8393	6/8395
Dehitrocrifility Charles Ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 < 5 < 5	Dotorminand	llnit	DI	Accreditation	(n)			(n)	
Virtor Charlete						_ 5	_ 5		
Chloromethane		5							
Chlorosthane		5/ 5							
Bromomethane									
Trichlorduromentane									
1.1-Dichlorostehne									
MTBE									
tans1,2-Dichloroethene									
Ces-12-Dictionorethane	trans-1,2-Dichloroethene								
2,2-Olchloropropane	1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Chloroform Ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Bromochloromethane	2,2-Dichloropropane	ug/kg	< 5		< 5	< 5	< 5	< 5	< 5
1,1,1-Trichloropthane		ug/kg			< 5		< 5	< 5	
1,1-Dichloropropene		ug/kg							
Carbon Tetrachloride									
1,2-Dichlorotethane									
Benzene									
1,2-Dichloropropane									
Trichloroethene									
Bromodichloromethane									
Dibromomethane									
TAME		5							
Cis-1,3-Dichloropropene									
Tolluene		5							
trans-1,3-Dichloropropene									
1,1,2-Trichloroethane	trans-1,3-Dichloropropene	ug/kg	< 5				< 5	< 5	
Tetrachloroethene	1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Dibromochloromethane	1,3-Dichloropropane	ug/kg	< 5		< 5	< 5	< 5	< 5	< 5
1,2-Dibromoethane		ug/kg							
Chlorobenzene									
1,1,1,2-Tetrachloroethane		5/ 5							
Ethyl Benzene									
m_p-Xylene									
O-Xylene ug/kg < 2 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <								< 2	18
Styrene								2	
Bromoform									
Isopropylbenzene									
1,1,2,2-Tetrachloroethane ug/kg < 5									
n-Propylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 Bromobenzene ug/kg < 5	1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Bromobenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 2-Chlorotoluene ug/kg < 5	1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
2-Chlorotoluene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 1,3,5-Trimethylbenzene ug/kg < 5	n-Propylbenzene	ug/kg	< 5		< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene ug/kg < 5									
4-Chlorotoluene ug/kg < 5									
tert-Butylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 1,2,4-Trimethylbenzene ug/kg < 5									
1,2,4-Trimethylbenzene ug/kg < 5									
sec-Butylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 p-Isopropyltoluene ug/kg < 5									
p-Isopropyltoluene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 1,3-Dichlorobenzene ug/kg < 5									
1,3-Dichlorobenzene ug/kg < 5									
1,4-Dichlorobenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
n-Butylbenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 1,2-Dichlorobenzene ug/kg < 5									< 5
1,2-Dichlorobenzene ug/kg < 5 MCERTS < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
,2-Dibromo-3-chloropropane ug/kg < 10 MCERTS < 10 < 10 < 10 < 10 < 10 Hexachlorobutadiene ug/kg < 5									< 5
		ug/kg	< 10		< 10	< 10			< 10
		ug/kg						< 5	< 5

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	e - Volatile Organic (Compo	ounds (VOC)					
DETS Report No: 23-1238	82		Date Sampled	27/09/23	28/09/23	29/09/23	29/09/23	29/09/23
Hydrock			Time Sampled	None Supplied				
Site Reference: SWITCH			TP / BH No	BH01	BH02	BH02	TP08	TP09
Project / Job Ref: 26279		1	Additional Refs	ES103	ES103	ES104	ES103	ES103
Order No: None Supplied			Depth (m)	1.10	1.00	2.80	1.00	1.00
Reporting Date: 09/11/2	2023	D	ETS Sample No	678398	678401	678402	678405	678409
Determinand	Unit	RL	Accreditation	(n)		(n)		(n
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< !
						_		

Reporting Date: 09/11/2	023	DI	TS Sample No	678398	678401	678402	678405	678409
D-4i	1114	ъ.	A	(-)		(.)		(-)
Determinand	Unit	RL	Accreditation	(n)		(n)		(n)
Dichlorodifluoromethane Vinyl Chloride	ug/kg	< 5 < 5	MCERTS MCERTS	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	
Chloromethane	ug/kg	< 10	MCERTS					
Chloroethane	ug/kg ug/kg	< 5	MCERTS	< 10	< 10 < 5	< 10	< 10 < 5	
Bromomethane	5, 5	< 10	MCERTS	< 5 < 10	< 10	< 5 < 10		
Trichlorofluoromethane	ug/kg ug/kg	< 5	MCERTS	< 10 < 5	< 5	< 10		
1,1-Dichloroethene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5		
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		*
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Benzene	ug/kg	< 2	MCERTS	930	157	15	39	11
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		*
Toluene	ug/kg	< 5	MCERTS	387	130	< 5		
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	8	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5 59	< 5 25	< 5	< 5	
Ethyl Benzene	ug/kg	< 2	MCERTS MCERTS			< 2	11	< 2
m,p-Xylene o-Xylene	ug/kg ug/kg	< 2 < 2	MCERTS	341 63	108 26	< 2 < 2	3	< 2
Styrene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10		*
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		*
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		*
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	37	43	< 5		
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		*
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	34	27	< 5		< 5
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		< 5
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		< 5
.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - Volatile Organic Compounds (VOC)								
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH	TP / BH No	TP09	TP10	TP10				
Project / Job Ref: 26279	Additional Refs	ES104	ES103	ES105				
Order No: None Supplied	Depth (m)	3.00	1.00	2.60				
Reporting Date: 09/11/2023	DETS Sample No	678410	678416	678418				

Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	6	18	4	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	15	< 5	
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	4	< 2	
m,p-Xylene	ug/kg	< 2	MCERTS	< 2	14	< 2	
o-Xylene	ug/kg	< 2	MCERTS	< 2	4	< 2	
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP05
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678381

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP05
Project / Job Ref: 26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.80
Reporting Date: 09/11/2023	DETS Sample No	678385

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP06
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.50
Reporting Date: 09/11/2023	DETS Sample No	678389

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)	
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP07
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678393

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP07
Project / Job Ref: 26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.60
Reporting Date: 09/11/2023	DETS Sample No	678395

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	BH01
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.10
Reporting Date: 09/11/2023	DETS Sample No	678398

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	28/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678401

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	2.80
Reporting Date: 09/11/2023	DETS Sample No	678402

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP08
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678405

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)	
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP09
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678409

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP09
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	3.00
Reporting Date: 09/11/2023	DETS Sample No	678410

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)	
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP10
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678416

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Tel: 01622 850410

Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP10
Project / Job Ref: 26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.60
Reporting Date: 09/11/2023	DETS Sample No	678418

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/kg	< 10	< 10
2	N/a	N/a	μg/kg	< 10	< 10
3	N/a	N/a	μg/kg	< 10	< 10
4	N/a	N/a	μg/kg	< 10	< 10
5	N/a	N/a	μg/kg	< 10	< 10

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)									
DETS Report No: 23-12382	Date Sampled	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH	TP / BH No	TP05	TP05	TP06	TP07	TP07			
Project / Job Ref: 26279	Additional Refs	ES103	ES105	ES104	ES103	ES105			
Order No: None Supplied	Depth (m)	1.00	2.80	1.50	1.00	2.60			
Reporting Date: 09/11/2023	DETS Sample No	678381	678385	678389	678393	678395			

Determinand	Unit	RL	Accreditation	(n)			(n)	
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	mg/kg		ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	
Isophorone	mg/kg		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane	mg/kg		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	mg/kg		MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2-Nitroaniline	mg/kg		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	1.2	0.1	0.2
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline	mg/kg		NONE	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
4-Nitrophenol	mg/kg		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether	mg/kg		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.5	< 0.1	0.1
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	mg/kg		ISO17025	< 0.1	< 0.1	< 0.1	0.2	< 0.1
bis(2-ethylhexyl)phthalate	mg/kg		ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	
Benzyl butyl phthalate	mg/kg		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate			MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)									
DETS Report No: 23-12382	Date Sampled	27/09/23	28/09/23	29/09/23	29/09/23	29/09/23			
Hydrock	Time Sampled	None Supplied							
Site Reference: SWITCH	TP / BH No	BH01	BH02	BH02	TP08	TP09			
Project / Job Ref: 26279	Additional Refs	ES103	ES103	ES104	ES103	ES103			
Order No: None Supplied	Depth (m)	1.10	1.00	2.80	1.00	1.00			
Reporting Date: 09/11/2023	DETS Sample No	678398	678401	678402	678405	678409			

Reporting Date: 09/11/2	2023	DI	TS Sample No	678398	678401	678402	678405	678409
Determinand	Unit	RL	Accreditation	(n)		(n)		(n)
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	1.1	0.3	< 0.1	0.4	0.1
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	0.2	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline	mg/kg	< 0.15	NONE	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran	mg/kg	< 0.1	MCERTS	< 0.1	0.1	< 0.1	< 0.1	< 0.1
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole	mg/kg	< 0.1	ISO17025	< 0.1	0.2	< 0.1	< 0.1	< 0.1
bis(2-ethylhexyl)phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	

Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)						
DETS Report No: 23-12382	Date Sampled	29/09/23	29/09/23	29/09/23		
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied		
Site Reference: SWITCH	TP / BH No	TP09	TP10	TP10		
Project / Job Ref: 26279	Additional Refs	ES104	ES103	ES105		
Order No: None Supplied	Depth (m)	3.00	1.00	2.60		
Reporting Date: 09/11/2023	DETS Sample No	678410	678416	678418		

							1
Determinand	Unit	RL					
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,2,4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
1,3-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
1,4-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
2,4-Dimethylphenol	mg/kg		ISO17025	< 0.15	< 0.15	< 0.15	
Isophorone	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
p-Cresol	mg/kg		MCERTS	< 0.15	0.24	< 0.15	
2,4,6-Trichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
2,4,5-Trichlorophenol	mg/kg	< 0.15	MCERTS	< 0.15	< 0.15	< 0.15	
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.2	< 0.1	
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
4-Chloroanaline	mg/kg	< 0.15	NONE	0.17	< 0.15	< 0.15	
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Dibenzofuran	mg/kg	< 0.1	MCERTS	< 0.1	0.1	< 0.1	
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dibutyl phthalate	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	< 0.1	
Carbazole	mg/kg	< 0.1	ISO17025	0.3	0.3	< 0.1	
bis(2-ethylhexyl)phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15	< 0.15	
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Di-n-octyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP05
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678381

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP05
Project / Job Ref: 26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.80
Reporting Date: 09/11/2023	DETS Sample No	678385

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP06
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.50
Reporting Date: 09/11/2023	DETS Sample No	678389

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	Naphthalene, 1,2,3,4-tetrahydro-	Naphthalene, 1,2,3,4- tetrahydro-	ma/ka	< 0.1	3.2
2	Naphthalene, 1-methyl-	91	mg/kg	< 0.1	1.2
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP07
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678393

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP07
Project / Job Ref: 26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.60
Reporting Date: 09/11/2023	DETS Sample No	678395

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	BH01
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.10
Reporting Date: 09/11/2023	DETS Sample No	678398

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	28/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678401

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
					Concentration
1	Naphthalene, 1,2,3,4-tetrahydro-	95	mg/kg	< 0.1	1.1
2	Naphthalene, 1-methyl-	91	mg/kg	< 0.1	0.2
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	2.80
Reporting Date: 09/11/2023	DETS Sample No	678402

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP08
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678405

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP09
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678409

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP09
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	3.00
Reporting Date: 09/11/2023	DETS Sample No	678410

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds	TIC (SVOC)	
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP10
Project / Job Ref: 26279	Additional Refs	ES103
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678416

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

Tel: 01622 850410

Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP10
Project / Job Ref: 26279	Additional Refs	ES105
Order No: None Supplied	Depth (m)	2.60
Reporting Date: 09/11/2023	DETS Sample No	678418

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	mg/kg	< 0.1	< 0.1
2	N/a	N/a	mg/kg	< 0.1	< 0.1
3	N/a	N/a	mg/kg	< 0.1	< 0.1
4	N/a	N/a	mg/kg	< 0.1	< 0.1
5	N/a	N/a	mg/kg	< 0.1	< 0.1

4480

Leachate Analysis Certificate					
DETS Report No: 23-12382	Date Sampled	27/09/23	29/09/23	29/09/23	
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: SWITCH	TP / BH No	TP06	TP08	TP10	
Project / Job Ref: 26279	Additional Refs	ES106	ES104	ES104	
Order No: None Supplied	Depth (m)	2.50	1.00	2.10	
Reporting Date: 09/11/2023	DETS Sample No	678390	678406	678417	

Determinand	Unit	RL	Accreditation				
Hq	pH Units	N/a	ISO17025	7.5	9.4	9.7	
Electrical Conductivity	uS/cm	< 5	NONE	63	166	185	
Total Cyanide	ug/l	< 5	ISO17025	< 5	< 5	11	
Free Cyanide	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Sulphate as SO ₄	mg/l	< 1	ISO17025	3	10	13	
Ammoniacal Nitrogen as NH ₄	ug/l	< 50	ISO17025	3010	500	144	
Ammonia as NH ₄	ug/l	< 50	ISO17025	3010	500	144	
Ammonium as NH ₄	ug/l	< 50	ISO17025	3010	500	144	
Chloride	mg/l	< 1	ISO17025	< 1	2	2	
Nitrate as NO ₃	mg/l	< 0.5	ISO17025	< 0.5	< 0.5	0.5	
Nitrite as NO ₂	mg/l	< 0.5	NONE	< 0.5	< 0.5	< 0.5	
Fluoride	mg/l	< 0.5	ISO17025	< 0.5	< 0.5	< 0.5	
Bromate (S)	ug BrO3/l	< 0.8	NONE	< 0.80	< 0.80	< 0.80	
Aluminium	ug/l	< 5	ISO17025	100	213	686	
Antimony	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Arsenic	ug/l	< 5	ISO17025	< 5	10.0	6.0	
Barium	ug/l	< 5	ISO17025	< 5	26.0	15.0	
Boron	ug/l	< 5	ISO17025	50	59	71	
Cadmium	ug/l	< 0.4	ISO17025	< 0.4	< 0.4	< 0.4	
Chromium	ug/l	< 5	ISO17025	< 5	< 5	7.0	
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20	< 20	
Chromium III	ug/l	< 20	NONE	< 20	< 20	< 20	
Cobalt	ug/l	< 5	ISO17025	<5	<5	<5	
Copper	ug/l	< 5	ISO17025	< 5	18.0	< 5	
Iron	ug/l	< 5	ISO17025	350	50	15	
Lead	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Manganese	ug/l	<5	ISO17025	40.0	7.0	< 5	
Mercury	ug/l	< 0.05	ISO17025	< 0.05	0.66	0.42	
Nickel	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Selenium	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Silver (S)	ug/l	< 0.13	NONE	0.200	< 0.130	< 0.130	
Tin	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Vanadium	ug/l	< 5	ISO17025	< 5	481	191	
Zinc	ug/l	< 2	ISO17025	23	4	5	
Calcium	mg/l	< 0.2	ISO17025	0.7	26.8	26.7	
Sodium	mg/l	< 0.2	ISO17025	4.2	2.1	2.4	 _
Total Phenols (monohydric)	ug/l	< 10	ISO17025	< 10	< 10	< 10	

Subcontracted analysis (S)

Tel: 01622 850410

eachate Analysis Certificate - Speciated PAH.								
DETS Report No: 23-12382	Date Sampled	27/09/23	29/09/23	29/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH	TP / BH No	TP06	TP08	TP10				
Project / Job Ref: 26279	Additional Refs	ES106	ES104	ES104				
Order No: None Supplied	Depth (m)	2.50	1.00	2.10				
Reporting Date: 09/11/2023	DETS Sample No	678390	678406	678417				

Determinand	Unit	RL	Accreditation				
Naphthalene	ug/l	< 0.01	NONE	< 0.01	0.34	< 0.01	
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	0.01	< 0.01	
Acenaphthene	ug/l	< 0.01	NONE	< 0.01	0.04	< 0.01	
Fluorene	ug/l	< 0.01	NONE	< 0.01	0.03	< 0.01	
Phenanthrene	ug/l	< 0.01	NONE	< 0.01	0.04	0.02	
Anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene		< 0.01		< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene		< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	ug/l	0.008	NONE	< 0.008	< 0.008	< 0.008	
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16	0.46	< 0.16	

Tel: 01622 850410

eachate Analysis Certificate - TPH LQM Banded.								
DETS Report No: 23-12382	Date Sampled	27/09/23	29/09/23	29/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH	TP / BH No	TP06	TP08	TP10				
Project / Job Ref: 26279	Additional Refs	ES106	ES104	ES104				
Order No: None Supplied	Depth (m)	2.50	1.00	2.10				
Reporting Date: 09/11/2023	DETS Sample No	678390	678406	678417				

Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6 : HS 1D MS AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C6 - C8 : HS 1D MS AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C8 - C10 : EH CU 1D AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C10 - C12 : EH CU 1D AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C12 - C16 : EH CU 1D AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C16 - C35 : EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C35 - C44 : EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	ug/l	< 70	NONE	< 70	< 70	< 70	
Aromatic >C5 - C7 : HS 1D MS AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C7 - C8 : HS 1D MS AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C8 - C10 : EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C10 - C12 : EH_CU_1D_AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C12 - C16 : EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C16 - C21 : EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C21 - C35 : EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C35 - C44 : EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	ug/l	< 70	NONE	< 70	< 70	< 70	
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al	ug/l	< 140	NONE	< 140	< 140	< 140	

4480

Leachate Analysis Certificate - BTEX / MTBE								
DETS Report No: 23-12382	Date Sampled	27/09/23	29/09/23	29/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH	TP / BH No	TP06	TP08	TP10				
Project / Job Ref: 26279	Additional Refs	ES106	ES104	ES104				
Order No: None Supplied	Depth (m)	2.50	1.00	2.10				
Reporting Date: 09/11/2023	DETS Sample No	678390	678406	678417				

Determinand	Unit	RL	Accreditation				
Benzene: HS_1D_MS	ug/l	< 1	ISO17025	< 1	< 1	< 1	
Toluene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Ethylbenzene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5	< 5	
p & m-xylene : HS_1D_MS	ug/l	< 10	ISO17025	< 10	< 10	< 10	
o-xylene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5	< 5	
MTBE : HS 1D MS	ug/l	< 10	ISO17025	< 10	< 10	< 10	

Leachate Analysis Certificate - Volatile Organic Compounds (VOC)
DETS Report No: 23-12382 Date Sampled 27/09/23 29/09/23 None Supplied 29/09/23 Time Sampled Hydrock None Supplied None Supplied TP / BH No Additional Refs Site Reference: SWITCH Project / Job Ref: 26279 TP06 TP08 TP10 ES106 ES104 ES104 Order No: None Supplied
Reporting Date: 09/11/2023 Depth (m) 2.50 678390 1.00 678406 2.10 678417

Reporting Date: 09/11/2	2023	DI	ETS Sample No	678390	678406	678417	
Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Vinyl Chloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
cis-1,2-Dichloroethene			ISO17025	< 5	< 5	< 5	
,	ug/l	< 5 < 5					
2,2-Dichloropropane Chloroform	ug/l		ISO17025	< 5	< 5	< 5	
	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromochloromethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
Benzene	ug/l	< 1	ISO17025	< 1	< 1	< 1	
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Trichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromodichloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Dibromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
TAME	ug/l	< 5	ISO17025	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
trans-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1,2-Trichloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,3-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Tetrachloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Dibromochloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2-Dibromoethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Ethyl Benzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
m,p-Xylene	-	< 10	ISO17025	< 10	< 10	< 10	
o-Xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
	ug/l	< 5 < 5	ISO17025				
Styrene	ug/l			< 5	< 5	< 5	
Bromoform	ug/l	< 10	ISO17025	< 10	< 10	< 10	
Isopropylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1,2,2-Tetrachloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,2,3-Trichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
n-Propylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
tert-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
sec-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
p-Isopropyltoluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,3-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
n-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
,2-Dibromo-3-chloropropane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
Hexachlorobutadiene		< 5	ISO17025	< 5	< 5	< 5	

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP06
Project / Job Ref: 26279	Additional Refs	ES106
Order No: None Supplied	Depth (m)	2.50
Reporting Date: 09/11/2023	DETS Sample No	678390

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a		< 5	< 5

4480

Leachate Analysis Certificate - Volatile Organic Compounds TIC	C (VOC)	
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP08
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678406

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a		< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a	μg/l	< 5	< 5

UKAS TESTING

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP10
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	2.10
Reporting Date: 09/11/2023	DETS Sample No	678417

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a	μg/l	< 5	< 5

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds (SVOC)								
DETS Report No: 23-12382	Date Sampled	27/09/23	29/09/23	29/09/23				
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied				
Site Reference: SWITCH	TP / BH No	TP06	TP08	TP10				
Project / Job Ref: 26279	Additional Refs	ES106	ES104	ES104				
Order No: None Supplied	Depth (m)	2.50	1.00	2.10				
Reporting Date: 09/11/2023	DETS Sample No	678390	678406	678417		·		

Determinand	Unit	RL	Accreditation				
Phenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
0-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,4-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Isophorone	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachloroethane	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
p-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4,6-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4,5-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Methylnaphthalene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorobutadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,6-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chloronaphthalene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dibenzofuran	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Azobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Carbazole	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-ethylhexyl)phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	27/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP06
Project / Job Ref: 26279	Additional Refs	ES106
Order No: None Supplied	Depth (m)	2.50
Reporting Date: 09/11/2023	DETS Sample No	678390

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a			< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP08
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	1.00
Reporting Date: 09/11/2023	DETS Sample No	678406

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a			< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12382	Date Sampled	29/09/23
Hydrock	Time Sampled	None Supplied
Site Reference: SWITCH	TP / BH No	TP10
Project / Job Ref: 26279	Additional Refs	ES104
Order No: None Supplied	Depth (m)	2.10
Reporting Date: 09/11/2023	DETS Sample No	678417

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a			< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 23-12382

Hydrock

Site Reference: SWITCH

Project / Job Ref: 26279

Order No: None Supplied

Reporting Date: 09/11/2023

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture	Sample Matrix Description
•	IF / BIT NO		,	Content (%)	•
678381	TP05	ES103	1.00	8.5	Brown sandy gravel with stones and concrete
678382	TP05	D4	1.00	7.1	Brown sandy gravel with stones and concrete
678383	TP05	D6	2.00		Black sandy gravel with stones and concrete
678384	TP05	ES104	2.00		Black sandy gravel with stones and concrete
678385	TP05	ES105	2.80		Brown sandy clay with stones
678386	TP06	D2	0.30		Brown sandy gravel with stones and concrete
678387	TP06	ES102	0.50	9.3	Brown gravelly sand with stones and concrete
678388	TP06	D6	1.00	5.9	Black gravelly sand with stones and concrete
678389	TP06	ES104	1.50	5.6	Brown sandy clay with stones
678391	TP07	ES101	0.20	10.1	Brown sandy gravel with stones and concrete
678392	TP07	D4	0.50	14.5	Light brown sandy clay with stones
678393	TP07	ES103	1.00	10	Brown sandy gravel with stones and concrete
678394	TP07	D9	2.00	8.1	Brown gravelly sand with stones and concrete
678395	TP07	ES105	2.60	34.9	Black loamy clay with stones and vegetation
678396	TP07	ES106	3.00	11.7	Black loamy gravel with stones
678397	TP07	D12	3.00	10.7	Brown loamy gravel with stones and oil / petroleum
678398	BH01	ES103	1.10	8.6	Black sandy gravel with stones and concrete
678399	BH01	ES105	3.00	2.4	Brown gravelly sand with stones and oil / petroleum
678400	BH01	ES106	5.50	2.3	Brown gravel with stones
678401	BH02	ES103	1.00	10.3	Brown sandy clay with stones and concrete
678402	BH02	ES104	2.80	15.6	Grey clay with stones
678403	BH02	ES105	3.70	4.4	Brown gravel with stones
678404	TP08	D2	0.10	6.6	Red gravelly sand with stones
678405	TP08	ES103	1.00	8.7	Brown gravelly sand with stones and concrete
678407	TP08	D7	1.50		Brown gravelly sand with stones and concrete
678408	TP08	D9	1.50	2.8	Brown gravel with stones
678409	TP09	ES103	1.00	10.6	Black sandy gravel with stones and concrete
678410	TP09	ES104	3.00		Brown sandy clay with stones
678411	TP09	D7	2.00	10.3	Black sandy gravel with stones and concrete
678412	TP09	D9	3.00	17.9	Brown sandy clay with stones
678413	TP10	ES101	0.20		Brown sandy gravel with stones and concrete
678414	TP10	ES102	0.50		Brown sandy gravel with stones and concrete
678415	TP10	D6	0.85		Black sandy gravel with stones and concrete
678416	TP10	ES103	1.00		Black gravelly sand with stones and concrete
678418	TP10	ES105	2.60		Grey clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 23-12382

Hydrock
Site Reference: SWITCH

Project / Job Ref: 26279

Order No: None Supplied

Reporting Date: 09/11/2023

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by agua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Flemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of Flooride by extraction with water & analysed by foir ciromatography Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser. Determination of TOC by combustion analyser.	E027
Soil	AR		Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
Soil	D	Loss on Ignition @ 450oC	titration with iron (II) sulphate Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil Soil	D AR	Sulphur - Total SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024 E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
		, , ,	addition of ferric nitrate followed by colorimetry	E011
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene Determination of organic matter by oxidising with potassium dichromate followed by titration with	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

4480

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-12382
Hydrock
Site Reference: SWITCH
Project / Job Ref: 26279
Order No: None Supplied
Reporting Date: 09/11/2023

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F		Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F		Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF		Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF	pH	Determination of pH by electrometric measurement	E107
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators
DETS Report No: 23-12382
Hydrock
Site Reference: SWITCH
Project / Job Ref: 26279
Order No: None Supplied
Reporting Date: 27/10/2023

Acronym	Description	
HS	Headspace analysis	
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent	
CU	Clean-up - e.g. by florisil, silica gel	
1D	GC - Single coil gas chromatography	
2D	GC-GC - Double coil gas chromatography	
Total	Aliphatics & Aromatics	
AL	Aliphatics only	
AR	Aromatics only	
#1	EH_2D_Total but with humics mathematically subtracted	
#2	EH_2D_Total but with fatty acids mathematically subtracted	
	Operator - underscore to separate acronyms (exception for +)	
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total	

Det - Acronym
Benzene - HS_1D_MS
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
TPH CWG - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH LQM - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH LQM - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH LQM - Aliphatic >C16 - C35 - EH_CU_1D_AL
TPH LQM - Aliphatic >C35 - C44 - EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH LQM - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH LQM - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH LQM - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH LQM - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH LQM - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH LQM - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH LQM - Aromatic >C35 - C44 - EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH LQM - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH LQM - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH LQM - Total >C5 - C44 - HS_1D_MS+EH_CU_1D_Total
Toluene - HS_1D_MS
m & p-xylene - HS_1D_MS
o-Xylene - HS_1D_MS

Mathew Holbourn Hydrock 3rd Floor, Wharton Place, 13 Wharton Street, Cardiff CF10 1GS

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 23-12620

Site Reference: Switch

Project / Job Ref: 26279

Order No: PO029482

Sample Receipt Date: 11/10/2023

Sample Scheduled Date: 11/10/2023

Report Issue Number: 1

Reporting Date: 07/11/2023

Authorised by:

5.62

Steve Knight

Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate DETS Report No: 23-12620 Date Sampled 06/10/23 06/10/23 Hydrock Time Sampled None Supplied None Supplied Site Reference: Switch Project / Job Ref: 26279 TP / BH No Additional Refs BH01 BH02 None Supplied None Supplied Order No: PO029482 Depth (m) 2.14 2.13 **DETS Sample No** Reporting Date: 07/11/2023 679472

Determinand	Unit	RL	Accreditation				
рН	pH Units	N/a	ISO17025	7.6	7.6		
Electrical Conductivity (at 25°C)	uS/cm	< 5	NONE	659	765		
Total Cyanide	ug/l	< 5	ISO17025	53	< 5		
Free Cyanide	ug/l	< 5	ISO17025	< 5	< 5		
Bromate ^(S)	ug BrO3/I	< 0.8	NONE	< 0.80	< 0.80		
Sulphate as SO ₄	mg/l	< 1	ISO17025	93	86		
Ammoniacal Nitrogen as NH ₄	ug/l	< 50	ISO17025	635	284		
Ammonia as NH ₄	ug/l	< 50	ISO17025	635	284		
Ammonium as NH ₄	ug/l	< 50	ISO17025	635	284		
Ammonium as NH ₄	mg/l	< 0.05	ISO17025	0.64	0.28		
Chloride	mg/l	< 1	ISO17025	74	88		
Nitrate as N	mg/l	< 0.5	NONE	< 0.5	< 0.5		,
Nitrite as N	mg/l	< 0.5	NONE	< 0.5	< 0.5		
Fluoride	mg/l	< 0.5	ISO17025	< 0.5	< 0.5		
Dissolved Organic Carbon (DOC)	mg/l	<1.0	ISO17025	14.7	11.7		,
Hardness - Total	mgCaCO3/l	< 0.25	NONE	254	254		
Aluminium (dissolved)	ug/l	< 1	ISO17025	1	< 1		
Antimony (dissolved)	ug/l	< 0.2	ISO17025	0.3	< 0.2		
Arsenic (dissolved)	ug/l	< 0.2	ISO17025	2.1	0.7		,
Barium (dissolved)	ug/l	< 0.2	ISO17025	84.0	21.0		
Boron (dissolved)	ug/l	< 1	ISO17025	173	241		
Cadmium (dissolved)	ug/l	< 0.2	ISO17025	< 0.2	< 0.2		
Chromium (dissolved)	ug/l	< 0.2	ISO17025	< 0.2	< 0.2		
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20		
Chromium III	ug/l	< 20	NONE	< 20	< 20		
Cobalt (dissolved)	ug/l	< 0.2	ISO17025	< 0.2	2.0		
Copper (dissolved)	ug/l	< 0.2	ISO17025	0.6	1.3		
Iron (dissolved)	ug/l	< 1	ISO17025	58	6		
Lead (dissolved)	ug/l	< 0.2	ISO17025	< 0.2	< 0.2		
Manganese (dissolved)	ug/l	< 0.2	ISO17025	2530.0	492.0		
Mercury (dissolved)	ug/l	< 0.04	ISO17025	0.12	< 0.04		
Nickel (dissolved)	ug/l	< 0.2	ISO17025	2.3	1.4		
Selenium (dissolved)	ug/l	< 0.2	ISO17025	1.2	0.2		
Silver (dissolved) (S)	ug/l	< 0.2	NONE	< 0.2	< 0.2		
Tin (dissolved)	ug/l	< 0.1	ISO17025	0.1	< 0.1		
Vanadium (dissolved)	ug/l	< 0.2	ISO17025	< 0.2	< 0.2		
Zinc (dissolved)	ug/l	< 1	ISO17025	2	3		
Calcium (dissolved)	mg/l	< 0.1	ISO17025	83.6	78.5		
Sodium (dissolved)	mg/l	< 0.1	ISO17025	43.2	67.3		
Total Phenols (monohydric)	ug/l	< 10	ISO17025	43	< 10		

Subcontracted analysis ^(S) Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Tel: 01622 850410

Water Analysis Certificate - Speciated PAI	Water Analysis Certificate - Speciated PAH									
DETS Report No: 23-12620	Date Sampled	06/10/23	06/10/23							
Hydrock	Time Sampled	None Supplied	None Supplied							
Site Reference: Switch	TP / BH No	BH01	BH02							
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied							
Order No: P0029482	Depth (m)	2.14	2.13							
Reporting Date: 07/11/2023	DETS Sample No	679472	679473							

Determinand	Unit	RL	Accreditation				
Naphthalene		< 0.01		< 0.01	< 0.01		1
Acenaphthylene		< 0.01		< 0.01	< 0.01		
Acenaphthene		< 0.01		0.04	< 0.01		
Fluorene		< 0.01		< 0.01	< 0.01		
Phenanthrene		< 0.01		< 0.01	< 0.01		
Anthracene		< 0.01		< 0.01	< 0.01		
Fluoranthene		< 0.01		< 0.01	< 0.01		
Pyrene		< 0.01		< 0.01	< 0.01		
Benzo(a)anthracene				< 0.01	< 0.01		
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01		
Benzo(ghi)perylene	ug/l	0.008	NONE	< 0.008	< 0.008		
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16	< 0.16		

Kent ME17 2JN Tel : 01622 850410

Water Analysis Certificate - TPH LQM Banded									
DETS Report No: 23-12620	Date Sampled	06/10/23	06/10/23						
Hydrock	Time Sampled	None Supplied	None Supplied						
Site Reference: Switch	TP / BH No	BH01	BH02						
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied						
Order No: PO029482	Depth (m)	2.14	2.13						
Reporting Date: 07/11/2023	DETS Sample No	679472	679473						

					•	•	
Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6 :	//	< 10	NONE	< 10	< 10		
HS_1D_MS_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C6 - C8 :	ug/l	< 10	NONE	< 10	< 10		
HS_1D_MS_AL	ug/1	\ 10	NONE	\ 10	\ 10		
Aliphatic >C8 - C10 :	ug/l	< 10	NONE	< 10	< 10		
EH_CU_1D_AL	-5/.			. = -			
Aliphatic >C10 - C12 :	ug/l	< 10	NONE	< 10	< 10		
EH_CU_1D_AL Aliphatic >C12 - C16:	-						
EH CU 1D AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C16 - C35 :							
EH CU 1D AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C35 - C44 :		- 10					
EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic (C5 - C44) : HS 1D MS+EH CU 1D AL	ug/l	< 70	NONE	< 70	< 70		
HS_ID_MS+EH_CU_ID_AL							
Aromatic >C5 - C7 :	ug/l	< 10	NONE	< 10	< 10		
HS_1D_MS_AR	ug/i	\ 10	NONE	\ 10	V 10		
Aromatic >C7 - C8 :	ug/l	< 10	NONE	< 10	< 10		
HS_1D_MS_AR	-5/.						
Aromatic >C8 - C10 :	ug/l	< 10	NONE	< 10	< 10		
EH_CU_1D_AR Aromatic >C10 - C12 :							
	ug/l	< 10	NONE	< 10	< 10		
EH_CU_1D_AR Aromatic >C12 - C16 :							
EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C16 - C21 :							
EH_CU_1D_AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C21 - C35 :		< 10	NONE	. 10	. 10		
EH_CU_1D_AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C35 - C44 :	ug/l	< 10	NONE	< 10	< 10		
EH CU 1D AR	ug/i	< 10	NONE	< 10	< 10		
Aromatic (>C5 - C44) :							
HS 1D MS+EH CU 1D AR	ug/l	< 70	NONE	< 70	< 70		
Total >C5 - C44 :							
HS_1D_MS+EH_CU_1D_Tot	-	< 140	NONE	< 140	< 140		
al							

Water Analysis Certificate - BTEX / MTBE									
DETS Report No: 23-12620	Date Sampled	06/10/23	06/10/23						
Hydrock	Time Sampled	None Supplied	None Supplied						
Site Reference: Switch	TP / BH No	BH01	BH02						
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied						
Order No: PO029482	Depth (m)	2.14	2.13						
Reporting Date: 07/11/2023	DETS Sample No	679472	679473						

Determinand	Unit	RL	Accreditation				
Benzene : HS_1D_MS	ug/l	< 1	ISO17025	< 1	< 1		
Toluene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5		
Ethylbenzene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5		
p & m-xylene : HS_1D_MS	ug/l	< 10	ISO17025	< 10	< 10		
o-xylene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5		
MTBE : HS 1D MS	ug/l	< 10	ISO17025	< 10	< 10		

n-Butylbenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

,2-Dibromo-3-chloropropane

ug/l

ug/l

ug/l

< 5

< 5

< 10

ISO17025

ISO17025

ISO17025 ISO17025

< 5

< 5

< 10

< 5 < 5 < 10

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

	te - Volatile Organ	ic Cam	nounde (VOC)				
Water Analysis Certificat		ic Com		06/40/22	06/40/22		
DETS Report No: 23-1262	U		Date Sampled	06/10/23	06/10/23		_
Hydrock			Time Sampled	None Supplied	None Supplied		_
Site Reference: Switch			TP / BH No	BH01	BH02		_
Project / Job Ref: 26279		,	Additional Refs	None Supplied	None Supplied		_
Order No: P0029482	•••	_	Depth (m)	2.14	2.13		
Reporting Date: 07/11/20	023	D	ETS Sample No	679472	679473		
Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5	< 5		
Vinyl Chloride	ug/l	< 5	ISO17025	< 5	< 5		_
Chloromethane	ug/l	< 5	ISO17025	< 5	< 5		
Chloroethane	ug/l	< 5	ISO17025	< 5	< 5		
Bromomethane	ug/l	< 5	ISO17025	< 5	< 5		
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5		
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5		
MTBE	ug/l	< 10	ISO17025	< 10	< 10		
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5		
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5		
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5		
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5		
Chloroform	ug/l	< 5	ISO17025	< 5	< 5	1	
Bromochloromethane	ug/l	< 10	ISO17025	< 10	< 10		1
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5	< 5		
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5		
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5		
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10	< 10		
Benzene	ug/l	< 1	ISO17025	< 1	< 1		
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5		1
Trichloroethene	ug/l	< 5	ISO17025	< 5	< 5		+
Bromodichloromethane	ug/l	< 5	ISO17025	< 5	< 5		+
Dibromomethane	ug/l	< 5	ISO17025	< 5	< 5		+
TAME	ug/l	< 5	ISO17025	< 5	< 5	+	+
cis-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5		+
Toluene	ug/l	< 5	ISO17025	< 5	< 5	+	+
trans-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5		+
1,1,2-Trichloroethane	ug/l	< 10	ISO17025	< 10	< 10		+
1,1,2-Trichloropropane		< 5	ISO17025				+
Tetrachloroethene	ug/l	< 5	ISO17025	< 5 < 5	< 5 < 5	-	+
Dibromochloromethane	ug/l	< 5	ISO17025		< 5	-	+
1,2-Dibromoethane	ug/l	< 5 < 5	ISO17025	< 5		+	+
	ug/l	< 5 < 5		< 5	< 5	-	+
Chlorobenzene	ug/l		ISO17025	< 5	< 5		+
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5	< 5		+
Ethyl Benzene	ug/l	< 5	ISO17025	< 5	< 5		+
m,p-Xylene	ug/l	< 10	ISO17025	< 10	< 10	 	+
o-Xylene	ug/l	< 5	ISO17025	< 5	< 5		+
Styrene	ug/l	< 5	ISO17025	< 5	< 5		+
Bromoform	ug/l	< 10	ISO17025	< 10	< 10		+
Isopropylbenzene	ug/l	< 5	ISO17025	< 5	< 5		+
1,1,2,2-Tetrachloroethane	ug/l	< 10	ISO17025	< 10	< 10	ļ	_
1,2,3-Trichloropropane	ug/l	< 5	ISO17025	< 5	< 5	ļ	
n-Propylbenzene	ug/l	< 5	ISO17025	< 5	< 5	ļ	_
Bromobenzene	ug/l	< 5	ISO17025	< 5	< 5	ļ	
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5		
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5		1
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5		
tert-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5		
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5		
sec-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5		T
p-Isopropyltoluene	ug/l	< 5	ISO17025	< 5	< 5	<u> </u>	
1,3-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5		
1,4-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5		1
n-Butylbenzene	ua/l	< 5	TS017025	< 5	< 5		

Tel: 01622 850410

Water Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12620	Date Sampled	06/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH01
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: PO029482	Depth (m)	2.14
Reporting Date: 07/11/2023	DETS Sample No	679472

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
4	N1/-	N1/-	//		Concentration
L	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a			< 5

Tel: 01622 850410

Water Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-12620	Date Sampled	06/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: PO029482	Depth (m)	2.13
Reporting Date: 07/11/2023	DETS Sample No	679473

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
4	N1/-	N1/-	//		Concentration
L	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a			< 5

Tel: 01622 850410

Water Analysis Certificate - Semi Volatile	Water Analysis Certificate - Semi Volatile Organic Compounds (SVOC)								
DETS Report No: 23-12620	DETS Report No: 23-12620 Date Sampled 06/10/23 06/10/23								
Hydrock	Time Sampled	None Supplied	None Supplied						
Site Reference: Switch	TP / BH No	BH01	BH02						
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied						
Order No: PO029482	Depth (m)	2.14	2.13						
Reporting Date: 07/11/2023	DETS Sample No	679472	679473						

Determinand	Unit	RL	Accreditation				
Phenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
0-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1	< 0.1		
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4-Dichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Chlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,4-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Isophorone	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachloroethane	ug/l	< 0.1	NONE	< 0.1	< 0.1		
p-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4,6-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4,5-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Methylnaphthalene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachlorobutadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,6-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Chloronaphthalene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1		
3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Dibenzofuran	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Azobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Carbazole	ug/l	< 0.1	NONE	< 0.1	< 0.1		
bis(2-ethylhexyl)phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		

Tel: 01622 850410

Water Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12620	Date Sampled	06/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH01
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: PO029482	Depth (m)	2.14
Reporting Date: 07/11/2023	DETS Sample No	679472

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	1H-Indene-1-one, 2,3-dihydro	95	μg/l	< 0.1	1.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a			< 0.1
4	N/a	N/a			< 0.1
5	N/a	N/a			< 0.1

Tel: 01622 850410

Water Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-12620	Date Sampled	06/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: PO029482	Depth (m)	2.13
Reporting Date: 07/11/2023	DETS Sample No	679473

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a			< 0.1
4	N/a	N/a			< 0.1
5	N/a	N/a			< 0.1

4480

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-12620
Hydrock
Site Reference: Switch
Project / Job Ref: 26279
Order No: PO029482
Reporting Date: 07/11/2023

Water F Ammoniacal Nitrogen Determination of ammoniacal nitrogen by discrete analyser. EIL Water UF BTK Determination of BTEX by headspace GC-MS Water F Chemical Oxygen Demand (COD) Determination sins a COD reactor followed by ICP-MS EIL Water F Chemical Oxygen Demand (COD) Determination sins a COD reactor followed by ICP-MS Water F Chemical Oxygen Demand (COD) Determination sins a COD reactor followed by ICP-MS Water F Chronium - Nesswatern Determination of chindre by firstration a snaysed by ion chromatography Water UF Cyanide - Free Determination of heavyleter Chronium by addification, addition of 1,5 diphenylcarbazide followed by ICP-MS Water UF Cyanide - Total Determination of theoxyleter Chronium by addification, addition of 1,5 diphenylcarbazide followed by ICP-MS Water UF Cyclohocane Extractable Matter (CEM) Gravimetrially determined by Cyanide by distillation followed by colorimetry Water UF Cyclohocane Extractable Matter (CEM) Gravimetrially determined by Cyanide by distillation followed by Colorimetry Water UF Cyclohocane Extractable Matter (CEM) Gravimetrially determined by Cyclorimetry EIL Water F Dissolved Organic Content (DoC) Determination of the Cycloridate System of the Cyanide by Cyclorimetry EIL Water F Dissolved Organic Content (DoC) Determination of DoC by Pitrabon followed by Cyclorimetry Water F Dissolved Organic Content (DoC) Determination of DoC by Pitrabon followed by Cyclorimetry Water F EPH TEXAS (CG-62, CS-C1, C1-C2) Determination of dispulcit destraction with hexane followed by Cyclorimetry Water F EPH TEXAS (CG-62, CS-C1, C1-C2) Determination of dispulcit destraction with hexane followed by Cyclorimetry Water F EPH TEXAS (CG-62, CS-C1, C1-C2) Determination of dispulcit destraction with hexane followed by Cyclorimetry EIL Water F Running of Cyclorimetry (Colorimetry) Water F EPH TEXAS (CG-62, CS-C1, C1-C2) Determination of fluidicity of Extraction in Machabon in Cyclorimetry (Colorimetry) Water F Machabon (Colorimetry) Water F Machabon (Colorimetry) Water F Mach	Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water UF	Water		Alkalinity	, , , , , , , , , , , , , , , , , , , ,	E103
Water F Cations Determination of actions by filtration followed by ICP-MS Water F Chemical Oxygen Demand (COD) Determination using a COD reactor followed by colorimetry Water F Chemical Poxygen Demand (COD) Determination of chloride by filtration & analysed by ion chromatography Water F Chronium - Hexavalent Determination of charge by defiltration & analysed by ion chromatography Water UF Cyanide - Complex Determination of reavalent chronium by addification of 1,5 diphenylcarbazide followed by ELI Water UF Cyanide - Froat Determination of recyanide by distillation followed by colorimetry Water UF Cyclohexane Extractable Mater (CEM) Garmination of total cyanide by distillation followed by colorimetry Water UF Cyclohexane Extractable Mater (CEM) Garmination of total cyanide by distillation followed by colorimetry Water F Dissel Range Organics (CLID - C24) Determination of Individicular destraction with cyclohexane Bischart (CEM) Garmination of liquid-fliquid destraction with hexane followed by GC-FID for Clip Colorimation of Education of Individicular destraction with persuphate addition followed by IR dete ELI Water F Electrical Conductivity Determination of Policy by filtration followed by GC-FID for CB to C40. C6 to C8 by EFH (CEM) C-040) Determination of Education with hexane followed by GC-FID for CB to C40. C6 to C8 by EFH (CEM) C-040) Determination of Flouride by filtration with hexane followed by GC-FID for CB to C40. C6 to C8 by EFF (CEM) C-040) Determination of Flouride by filtration of Standard by GC-FID for CB to C40. C6 to C8 by EFF (CEM) C-040) Determination of Flouride by filtration with hexane followed by GC-FID for CB to C40. C6 to C8 by EFF (CEM) C-040, CEM) Determination of Flouride by filtration with hexane followed by GC-FID for CB to C40. C6 to C8 by EFF (CEM) C-040, CEM, CEM, CEM, CEM, CEM, CEM, CEM, CEM	Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water UF Chemical Doxygen Demand (COD) Determination using a COD reactor followed by colorimetry Water F Chronium - Hexavelent Determination of hotoride by filtration & analysed by un chromatography Elitwater UF Cyanide - Tree Determination of hexavelent chromium by addiffication, addition of 1,5 diphenylcarbazide followed by Elitwater UF Cyanide - Tree Determination of complex cyanide by distillation followed by colorimetry Water UF Cyanide - Tree Determination of complex cyanide by distillation followed by colorimetry UF Cyanide - Tree Determination of free cyanide by distillation followed by colorimetry Elitwater UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined by distillation followed by colorimetry UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid cliquid extraction with cyclohexane Extractable Matter (CEM) Gravimetrically determination of total cyanide by distillation followed by GC-FID Elitwater F Dissolved Grapatic Content (DOC) Determination of DoC by filtration followed by low heat with persulphate addition followed by IR determination of Elitwater F Dissolved Grapatic Content (DOC) Determination of Elitwater F Matter B Elitwater F Elitwater F Elitwater F Elitwater F Elitwater F Matter B Elitwater F Elitwater F Monology Elitwater F Monology Elitwater F Elitw	Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water F Chronium - Nexawatent Determination of chioride by filtration & analysed by ion chromatography Water UF Cyanide - Complex Determination of nexawalent Chronium by addiffication, addition of 1,5 diphenylcarbazide followed by Clarification of Chronium Determination of Camplex Quantide by distillation followed by colorimetry Water UF Cyanide - Total Determination of complex Quantide by distillation followed by colorimetry Water UF Cyclohexane Extractable Matter (EM) Grawmetrically determined through liquid-liquid extraction with persuphate addition followed by Colorimetry Water F Dissel Range Organics (C10 - C24) Determination of Iotal cyanide by distillation followed by Colorimetry Water UF Selectrical Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by Endowed Programs of Canada C	Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water F Chronium - Nexawatent Determination of chioride by filtration & analysed by ion chromatography Water UF Cyanide - Complex Determination of nexawalent Chronium by addiffication, addition of 1,5 diphenylcarbazide followed by Clarification of Chronium Determination of Camplex Quantide by distillation followed by colorimetry Water UF Cyanide - Total Determination of complex Quantide by distillation followed by colorimetry Water UF Cyclohexane Extractable Matter (EM) Grawmetrically determined through liquid-liquid extraction with persuphate addition followed by Colorimetry Water F Dissel Range Organics (C10 - C24) Determination of Iotal cyanide by distillation followed by Colorimetry Water UF Selectrical Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID Filtration Conductivity Determination of Ioquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by Endowed Programs of Canada C	Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water UF	Water	F			E109
Water UF	Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water UF	Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water UF Cyclohexane Extractable Matter (CEM) Gravimentically determined through liquid-liquid extraction with cyclohexane (CID - C2A) Determination of liquid-liquid extraction with persuphate addition followed by IR determination of liquid-liquid extraction with hexane followed by GC-FID (CID - CID	Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water F	Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water UF Dissolved Organic Content (DOC) Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete E1: Water UF Electrical Conductivity Determination of Electrical Conductivity by electrometric measurement E1: Water F EPH TEXAS (G6-C8, C8-C10, C10-C12), Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C11-C40), Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C11-C40), Determination of Plouride by Filtration & analysed by on chromatography E1/C40-C40, Determination of C8 and Mp by ICP-MS followed by calculation E1/C40-C40, Determination of C8 and Mp by ICP-MS followed by calculation E1/C40-C40, Determination of C8 and Mp by ICP-MS followed by ICP-MS followe	Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water UF	Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water F EPH CL10 - C40 Determination of liquid:liquid extraction with hexane followed by GC-FID E10	Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water F C12-C16, C16-C21, C21-C40) headspace GC-MS Water F F Houride Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E16 Water F F Houride Determination of Fluoride by filtration & analysed by ion chromatography E16 Water F Leachate Preparation - NAR Based on National Rivers Authority Jeach Surburnity Jeach	Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water F C12-C16, C16-C21, C21-C40) headspace GC-MS Water F F F F F F F F F F F F F F F F F F F	Water	F	EPH (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water F Gl2-C16, C16-C21, C21-C40) headspace GC-MS Section	Matar	_	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104
Water F	water	F	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E104
Water F	Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Leachate F Leachate Preparation - WAC Based on BS EN 12457 Pt1, 2, 3 Water F Metals Determination of metals by filtration followed by ICP-MS Water F Mineral Oil (C10 - C40) Determination of liquid-liquid extraction with hexane followed by G1-FID E10 Water F Mineral Oil (C10 - C40) Determination of liquid-liquid extraction with hexane followed by G1-FID E10 Water UF Monohydric Phenol Determination of litrate by filtration & analysed by ion chromatography E11 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid-liquid extraction with petroleum ether E11 Water UF Redox Potential Determination of phosphate by filtration & analysed by ion chromatography E11 Water UF Redox Potential Determination of phosphate by filtration & analysed by ion chromatography E11 Water UF Sulphide Determination of sulphia by electrometric measurement E11 Water UF Sulphide Determination of sulphia by electrometric measurement E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid-liquid extraction with toluene E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined by GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, Determination of liquid: liquid extraction with hexane, fractionatin	Water	F			E102
Water F Mineral Oil (C10 - C40) Determination of metals by filtration followed by ICP-MS Water F Mineral Oil (C10 - C40) Determination of liquid-liquid extraction with hexane followed by GI-FID E10 Water F Monohydric Phenol Determination of nitrate by filtration & analysed by ion chromatography E10 Water F PAH - Speciated (EPA 16) Determination of phenols by distillation followed by colorimetry Determination of pAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water F PCB - 7 Congeners Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid-liquid extraction with petroleum ether E11 Water UF Phosphate Determination of phosphate by filtration & analysed by ion chromatography E11 Water UF Redox Potential Determination of redox potential by electrometric measurement E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through by distillation followed by colorimetry E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through by GC-MS UN between the properties of th	Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301
Water F Mineral Oil (C10 - C40) Determination of liquid:liquid extraction with hexane followed by G1-FID E1f Water F Nitrate Determination of nitrate by filtration & analysed by ion chromatography E1f Water UF Monohydric Phenol Determination of phenols by distillation followed by colorimetry E1f Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E1f Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E1f Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E1f Water UF Phosphate Determination of pH by electrometric measurement E1f Water UF Redox Potential Determination of redox potential by electrometric measurement E1f Water UF Sulphate (as S04) Determination of sulphate by filtration & analysed by ion chromatography E1f Water UF Sulphate (as S04) Determination of sulphate by distillation followed by colorimetry E1f Water UF Toluene Ext	Leachate	F			E302
Water F Mineral Oil (C10 - C40) Determination of liquid:liquid extraction with hexane followed by G1-FID E1f Water F Nitrate Determination of intrate by filtration & analysed by ion chromatography E1f Water UF Monohydric Phenol Determination of phenols by distillation followed by colorimetry E1f Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E1f Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E1f Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E1f Water UF Phosphate Determination of PH by electrometric measurement E1f Water UF Redox Potential Determination of phosphate by filtration & analysed by ion chromatography E1f Water UF Sulphate (as S04) Determination of sulphate by filtration & analysed by ion chromatography E1f Water UF Toluene Extractable Matter (TEM) Determination of sulphate by distillation followed by colorimetry E1f Water UF T	Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water UF Monohydric Phenol Determination of phenols by distillation followed by colorimetry Water F PAH - Speciated (EPA 16) Water F PCB - 7 Congeners Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E1: Water UF Phosphate Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal E1: Water UF Phosphate Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal E1: Water UF Phosphate Determination of pto ple electrometric measurement E1: Water UF Redox Potential Determination of phosphate by filtration & analysed by ion chromatography E1: Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E1: Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E1: Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E1: Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E1: Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E1: Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E1: TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C36, C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C36, C35-	Water	F	Mineral Oil (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E11 Water UF Phosphate Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethal E16 Water UF Phosphate Determination of PCB compounds by concentration with petroleum ether E11 Water UF Phosphate Determination of pH by electrometric measurement E11 Water F Sulphate (as SO4) Determination of phosphate by filtration & analysed by ion chromatography E16 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E16 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E16 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E11 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by GC-MS Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E11 TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water UF VOCs Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of volatile organic compounds by headspace GC-MS Water UF VO	Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	E109
Water F PCB - 7 Congeners Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane E10 Determination of PCB compounds by concentration with petroleum ether E11 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E11 Water F Phosphate Determination of ph by electrometric measurement E10 Determination of ph by electrometric measurement E11 Water F Phosphate Determination of phosphate by filtration & analysed by ion chromatography E10 Determination of phosphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtration & analysed by ion chromatography E10 Determination of sulphate by filtr	Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water F PCB - 7 Congeners Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal E10 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E11 Water UF Phosphate Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal E10 Water UF Phosphate Determination of phosphate by filtration & analysed by ion chromatography E11 Water UF Redox Potential Determination of redox potential by electrometric measurement E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determination of sulphate by filtration & analysed by ion chromatography E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determination of sul	Water	_	DAH Consisted (EDA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E10E
Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E1: Water UF pH Determination of pH by electrometric measurement E1(Water UF Redox Potential Determination of phosphate by filtration & analysed by ion chromatography E1(Water UF Redox Potential Determination of redox potential by electrometric measurement E1: Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E10 Water UF Sulphide (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E10 Water F Sulphide (as SO4) Determination of sulphate by distillation followed by colorimetry E11 Water F SVOC Determination of sulphide by distillation followed by colorimetry E11 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E11 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E11 Water F C10-C12, C12-C16, C16-C21, C21-C34, C34-C34, C35-C44, arcs C5-C7, C7-C8, C8-C10, C10-C12,	water	Г	PARI - Specialeu (EPA 16)	dichloromethane followed by GC-MS	E102
Water UF Phosphate Determination of pH by electrometric measurement E10 Water F Phosphate Determination of phosphate by filtration & analysed by ion chromatography E10 Water UF Redox Potential Determination of suphate by filtration & analysed by ion chromatography E10 Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E10 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E10 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E10 Water UF SVOC Determination of sulphate by distillation followed by colorimetry Determination of sulphide by distillation followed by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Grawimetrically determined through liquid:liquid extraction with toluene E11 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E11 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E11 Water UF TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C8 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C235, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C8 to C8 by headspace GC-MS Water UF VOCs Determination of volatile organic compounds by headspace GC-MS	Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
WaterFPhosphate Redox Potential Determination of phosphate by filtration & analysed by ion chromatographyE10WaterUFRedox Potential Sulphate (as SO4)Determination of redox potential by electrometric measurementE11WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE10WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE10WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE10WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE10WaterFSulphate (as SO4)Determination of sulphate by distillation followed by colorimetryE11WaterUFToluche Extractable Matter (TEM)Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE10WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE11WaterFC10-C12, C12-C16, C16-C21, C21-C34, C31-C34,	Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water UF Redox Potential Determination of redox potential by electrometric measurement E1: Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E1(Water UF Sulphide Determination of sulphide by distillation followed by colorimetry E1: Water F SVOC Determination of sulphide by distillation followed by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid: liquid extraction with toluene E1: Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of volatile organic compounds by headspace GC-MS Water UF VOCs Determination of volatile organic compounds by headspace GC-MS	Water	UF	pH	Determination of pH by electrometric measurement	E107
Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography Water UF Sulphide Determination of sulphate by distillation followed by colorimetry Water F SVOC Water UF Toluene Extractable Matter (TEM) Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Gravimetrically determined through liquid:liquid extraction with toluene Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) Determination of sulphate by distillation followed by GC-MS Gravimetrically determined through liquid:liquid extraction with toluene E1: TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E10 E10 E10 E10 E10 E10 E10 E1	Water		Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
Water UF Sulphide Determination of sulphide by distillation followed by colorimetry Water F Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E1: Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E1: TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E10 E10 E10 E11 E10 E10 E10 E1	Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water F SVOC Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E1: Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E1: TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS	Water		Sulphate (as SO4)	Determination of sulphate by filtration & analysed by ion chromatography	E109
Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E1: Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E1: TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS	Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E1: Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E1: TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS	Water	F	SVOC		E106
Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection F C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C12-C16, C16-C21, C21-C35) Water F F LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS	Water	UF	Toluene Extractable Matter (TEM)		E111
Water F TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35) E10 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C44. C5 to C8 by headspace GC-MS E10 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E10	Water	UF			E110
Water F C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for arc: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS Water UF VOCs Determination of volatile organic compounds by headspace GC-MS			TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
	Water		C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	C8 to C44. C5 to C8 by headspace GC-MS	E104
Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E10	Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
	Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym
Benzene - HS_1D_MS
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
TPH LQM - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH LQM - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH LQM - Aliphatic >C16 - C35 - EH_CU_1D_AL
TPH LQM - Aliphatic >C35 - C44 - EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH LQM - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH LQM - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH LQM - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH LQM - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH LQM - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH LQM - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH LQM - Aromatic >C35 - C44 - EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH LQM - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH LQM - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH LQM - Total >C5 - C44 - HS_1D_MS+EH_CU_1D_Total
Toluene - HS_1D_MS
m & p-xylene - HS_1D_MS
o-Xylene - HS_1D_MS

Mathew Holbourn Hydrock 3rd Floor, Wharton Place, 13 Wharton Street, Cardiff CF10 1GS

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 23-13124

Site Reference: Switch

Project / Job Ref: 26279

Order No: None Supplied

Sample Receipt Date: 23/10/2023

Sample Scheduled Date: 23/10/2023

Report Issue Number: 1

Reporting Date: 10/11/2023

Authorised by:

5.62

Steve Knight

Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate					
DETS Report No: 23-13124	Date Sampled	20/10/23	20/10/23		
Hydrock	Time Sampled	None Supplied	None Supplied		
Site Reference: Switch	TP / BH No	BH01	BH02		
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	2.10	2.07		
Reporting Date: 10/11/2023	DETS Sample No	681693	681694		

Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	ISO17025	7.8	11.1	1	
Electrical Conductivity (at 25°C)	uS/cm	< 5	NONE	610	775		
Total Cyanide	ug/l	< 5	ISO17025	106	11		
Free Cyanide	ug/l	< 5	ISO17025	< 5	< 5		
Bromate (S)	ug BrO3/l	< 0.8	NONE	< 0.80	< 0.80	a a	
Sulphate as SO ₄	mg/l	< 1	ISO17025	73	46		
Ammoniacal Nitrogen as NH₄	ug/l	< 50	ISO17025	803	2210		
Ammonia as NH ₄	ug/l	< 50	ISO17025	803	2210		
Ammonium as NH₄	ug/l	< 50	ISO17025	803	2210	a a	
Ammonium as NH₄	mg/l	< 0.05	ISO17025	0.80	2.21	a a	
Chloride	mg/l	< 1	ISO17025	66	75		
Nitrate as N	mg/l	< 0.5	NONE	< 0.5	< 0.5		
Nitrite as N	mg/l	< 0.5	NONE	< 0.5	0.5		
Fluoride	mg/l	< 0.5	ISO17025	< 0.5	< 0.5		
Dissolved Organic Carbon (DOC)	mg/l	<1.0	ISO17025	14.3	9.5	a a	
Hardness - Total	mgCaCO3/I	< 0.25	NONE	255	176		
Aluminium (dissolved)	ug/l	< 5	ISO17025	<5	264		
Antimony (dissolved)	ug/l	< 5	ISO17025	<5	<<5		
Arsenic (dissolved)	ug/l	< 5	ISO17025	<5	<5		
Barium (dissolved)	ug/l	< 5	ISO17025	52.2	165.0		
Boron (dissolved)	ug/l	< 5	ISO17025	151	99		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	<0.4	<0.4		
Chromium (dissolved)	ug/l	< 5	ISO17025	<5	<5		
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20		
Chromium III	ug/l	< 20	NONE	< 20	< 20		
Cobalt (dissolved)	ug/l	< 5	ISO17025	<5	<5		
Copper (dissolved)	ug/l	< 5	ISO17025	<5	34.2		
Iron (dissolved)	ug/l	< 5	ISO17025	78	6		
Lead (dissolved)	ug/l	< 5	ISO17025	<5	<5		
Manganese (dissolved)	ug/l	<5	ISO17025	1880.0	<5		
Mercury (dissolved)	ug/l	< 0.05	ISO17025	0.25	<0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	<5	5.9		
Selenium (dissolved)	ug/l	< 5	ISO17025	<5	<5		
Silver (dissolved) (S)	ug/l	< 0.13	NONE	< 0.13	< 0.13		
Tin (dissolved)	ug/l	< 5	ISO17025	< 5	< 5		
Vanadium (dissolved)	ug/l	< 5	ISO17025	< 5	< 5		
Zinc (dissolved)	ug/l	< 2	ISO17025	<2	<2		
Calcium (dissolved)	mg/l	< 0.2	ISO17025	88	70.5		
Sodium (dissolved)	mg/l	< 0.2	ISO17025	39.2	71.6		
Total Phenols (monohydric)	ug/l	< 10	ISO17025	163	10		

Subcontracted analysis ^{(S} Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Tel: 01622 850410

Water Analysis Certificate - Speciated PAH								
DETS Report No: 23-13124	Date Sampled	20/10/23	20/10/23					
Hydrock	Time Sampled	None Supplied	None Supplied					
Site Reference: Switch	TP / BH No	BH01	BH02					
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied					
Order No: None Supplied	Depth (m)	2.10	2.07					
Reporting Date: 10/11/2023	DETS Sample No	681693	681694					

Determinand	Unit	RL	Accreditation			
Naphthalene		< 0.01		82,45	0.02	
Acenaphthylene		< 0.01		0.01	< 0.01	
Acenaphthene		< 0.01		0.14	< 0.01	
Fluorene		< 0.01		0.02	< 0.01	
Phenanthrene		< 0.01		0.01	< 0.01	
Anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	•
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	
Benzo(ghi)perylene	ug/l	0.008	NONE	< 0.008	< 0.008	
Total EPA-16 PAHs	ug/l	< 0.16	NONE	82.63	< 0.16	

Kent ME17 2JN Tel : 01622 850410

Water Analysis Certificate - TPH LQM Banded									
DETS Report No: 23-13124			Date Sampled	20/10/23	20/10/23				
Hydrock			Time Sampled	None Supplied	None Supplied				
Site Reference: Switch			TP / BH No	BH01	BH02				
Project / Job Ref: 26279		-	Additional Refs	None Supplied	None Supplied				
Order No: None Supplied			Depth (m)	2.10	2.07				
Reporting Date: 10/11/2023		DI	TS Sample No	681693	681694				
Determinand	Unit	RL	Accreditation						

Determinand	Unit	D.	Accreditation				1
	Unit	KL	Accreditation				1
Aliphatic >C5 - C6 : HS_1D_MS_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C6 - C8 : HS 1D MS AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C8 - C10 : EH CU 1D AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C10 - C12 : EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C12 - C16 : EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C16 - C35 : EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic >C35 - C44 : EH_CU_1D_AL	ug/l	< 10	NONE	< 10	< 10		
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	ug/l	< 70	NONE	< 70	< 70		
Aromatic >C5 - C7 : HS_1D_MS_AR	ug/l	< 10	NONE	11	< 10		
Aromatic >C7 - C8 : HS_1D_MS_AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C8 - C10 : EH_CU_1D_AR	ug/l	< 10	NONE	187	< 10		
Aromatic >C10 - C12 : EH_CU_1D_AR	ug/l	< 10	NONE	168	< 10		
Aromatic >C12 - C16 : EH_CU_1D_AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C16 - C21 : EH_CU_1D_AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C21 - C35 : EH_CU_1D_AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic >C35 - C44 : EH CU 1D AR	ug/l	< 10	NONE	< 10	< 10		
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	ug/l	< 70	NONE	365	< 70		
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al		< 140	NONE	365	< 140		

Water Analysis Certificate - BTEX / MTBE DETS Report No: 23-13124 **Date Sampled** 20/10/23 20/10/23 Time Sampled Hydrock None Supplied None Supplied Site Reference: Switch
Project / Job Ref: 26279
Order No: None Supplied
Reporting Date: 10/11/2023 TP / BH No Additional Refs BH01 BH02 None Supplied None Supplied Depth (m) 2.10 2.07 **DETS Sample No** 681694 681693

Determinand	Unit	RL	Accreditation				
Benzene : HS_1D_MS	ug/l	< 1	ISO17025	11	< 1		
Toluene : HS_1D_MS	ug/l	< 5	ISO17025	< 5	< 5		
Ethylbenzene : HS_1D_MS	ug/l	< 5	ISO17025	55	< 5		
p & m-xylene : HS_1D_MS	ug/l	< 10	ISO17025	64	< 10		
o-xylene : HS_1D_MS	ug/l	< 5	ISO17025	29	< 5		
MTBE : HS_1D_MS	ug/l	< 10	ISO17025	< 10	< 10		

Water Analysis Certifica	te - Volatile Organ	ic Com	pounds (VOC)			
DETS Report No: 23-1312	24		Date Sampled	20/10/23	20/10/23	
Hydrock			Time Sampled	None Supplied	None Supplied	
Site Reference: Switch			TP / BH No	BH01	BH02	
Project / Job Ref: 26279		-	Additional Refs	None Supplied	None Supplied	
Order No: None Supplied			Depth (m)	2.10	2.07	
Reporting Date: 10/11/2	.023	D	ETS Sample No	681693	681694	
Determinand	Unit	RL	Accreditation			
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5	< 5	
Vinyl Chloride	ug/l	< 5	ISO17025	< 5	< 5	
Chloromethane	ug/l	< 5	ISO17025	< 5	< 5	
Chloroethane	ug/l	< 5 < 5	ISO17025 ISO17025	< 5	< 5 < 5	
Bromomethane Trichlorofluoromethane	ug/l ug/l	< 5	ISO17025	< 5 < 5	< 5 < 5	
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	
MTBE	ug/l	< 10	ISO17025	< 10	< 10	
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5	
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	
Chloroform	ug/l	< 5	ISO17025	< 5	< 5	
Bromochloromethane	ug/l	< 10	ISO17025	< 10	< 10	
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5	< 5	
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5	
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10	< 10	
Benzene	ug/l	< 1	ISO17025	11	< 1	
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	
Trichloroethene	ug/l	< 5	ISO17025	< 5	< 5	
Bromodichloromethane	ug/l	< 5	ISO17025	< 5	< 5	
Dibromomethane	ug/l	< 5	ISO17025	< 5	< 5	
TAME	ug/l	< 5 < 5	ISO17025 ISO17025	< 5	< 5	
cis-1,3-Dichloropropene Toluene	ug/l ug/l	< 5 < 5	ISO17025	< 5 < 5	< 5 < 5	
trans-1,3-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	
1,1,2-Trichloroethane	ug/l	< 10	ISO17025	< 10	< 10	
1,3-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	
Tetrachloroethene	ug/l	< 5	ISO17025	< 5	< 5	
Dibromochloromethane	ug/l	< 5	ISO17025	< 5	< 5	
1,2-Dibromoethane	ug/l	< 5	ISO17025	< 5	< 5	
Chlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/l	< 5	ISO17025	< 5	< 5	
Ethyl Benzene	ug/l	< 5	ISO17025	55	< 5	
m,p-Xylene	ug/l	< 10	ISO17025	64	< 10	
o-Xylene	ug/l	< 5	ISO17025	29	< 5	
Styrene	ug/l	< 5	ISO17025	< 5	< 5	
Bromoform	ug/l	< 10	ISO17025 ISO17025	< 10	< 10	
Isopropylbenzene 1,1,2,2-Tetrachloroethane	ug/l ug/l	< 5 < 10	ISO17025	< 5 < 10	< 5 < 10	
1,2,3-Trichloropropane		< 5	ISO17025			
n-Propylbenzene	ug/l	< 5	ISO17025	< 5 < 5	< 5 < 5	
Bromobenzene	ug/l	< 5	ISO17025	< 5	< 5	
2-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	
1,3,5-Trimethylbenzene	ug/l	< 5	ISO17025	8	< 5	
4-Chlorotoluene	ug/l	< 5	ISO17025	< 5	< 5	
tert-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	
1,2,4-Trimethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	
sec-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	
p-Isopropyltoluene	ug/l	< 5	ISO17025	< 5	< 5	
1,3-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	
1,4-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	
n-Butylbenzene	ug/l	< 5	ISO17025	< 5	< 5	
1,2-Dichlorobenzene	ug/l	< 5	ISO17025	< 5	< 5	
.,2-Dibromo-3-chloropropane	ug/l	< 10	ISO17025	< 10	< 10	
Hexachlorobutadiene	ug/l	< 5	ISO17025	< 5	< 5	

Tel: 01622 850410

Water Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-13124	Date Sampled	20/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH01
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: None Supplied	Depth (m)	2.10
Reporting Date: 10/11/2023	DETS Sample No	681693

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
4	N1/-	N1/-	//		Concentration
L	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a			< 5

There were no / other compounds identified with a match of >90%

Tel: 01622 850410

Water Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 23-13124	Date Sampled	20/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: None Supplied	Depth (m)	2.07
Reporting Date: 10/11/2023	DETS Sample No	681694

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/l	< 5	< 5
2	N/a	N/a	μg/l	< 5	< 5
3	N/a	N/a	μg/l	< 5	< 5
4	N/a	N/a	μg/l	< 5	< 5
5	N/a	N/a			< 5

There were no / other compounds identified with a match of >90%

Tel: 01622 850410

Water Analysis Certificate - Semi Volatile Organic Compounds (SVOC)								
DETS Report No: 23-13124	Date Sampled	20/10/23	20/10/23					
Hydrock	Time Sampled	None Supplied	None Supplied					
Site Reference: Switch	TP / BH No	BH01	BH02					
Project / Job Ref: 26279	Additional Refs	None Supplied	None Supplied					
Order No: None Supplied	Depth (m)	2.10	2.07					
Reporting Date: 10/11/2023	DETS Sample No	681693	681694					

Determinand	Unit	RL	Accreditation				
Phenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
0-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1	< 0.1		
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4-Dichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Chlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,4-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Isophorone	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachloroethane	ug/l	< 0.1	NONE	< 0.1	< 0.1		
p-Cresol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4,6-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4,5-Trichlorophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Methylnaphthalene	ug/l	< 0.1	NONE	1.6	< 0.1		
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachlorobutadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,6-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Dimethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2-Chloronaphthalene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Chloroanaline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Chlorophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1		
3-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Nitroaniline	ug/l	< 0.1	NONE	< 0.1	< 0.1		
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Hexachlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
2,4-Dinitrotoluene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Diethyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Dibenzofuran	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Azobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Dibutyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Carbazole	ug/l	< 0.1	NONE	< 0.1	< 0.1		
bis(2-ethylhexyl)phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Benzyl butyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		
Di-n-octyl phthalate	ug/l	< 0.1	NONE	< 0.1	< 0.1		

Tel: 01622 850410

Water Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-13124	Date Sampled	20/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH01
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: None Supplied	Depth (m)	2.10
Reporting Date: 10/11/2023	DETS Sample No	681693

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	Naphthalene, 1,2,3,4-tetrahydro-	95	μg/l	< 0.1	1.8
2	Benzo[c]thiophene	94	μg/l	< 0.1	6.1
3	1H-Indenol	93	μg/l	< 0.1	1
4	1H-Inden-1-one, 2,3-dihydro-	97	μg/l	< 0.1	0.9
5	Naphthalene, 1-methyl-	96	μg/l	< 0.1	2

There were no / other compounds identified with a match of >90%

Tel: 01622 850410

Water Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 23-13124	Date Sampled	20/10/23
Hydrock	Time Sampled	None Supplied
Site Reference: Switch	TP / BH No	BH02
Project / Job Ref: 26279	Additional Refs	None Supplied
Order No: None Supplied	Depth (m)	2.07
Reporting Date: 10/11/2023	DETS Sample No	681694

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a			< 0.1
5	N/a	N/a			< 0.1

There were no / other compounds identified with a match of >90%

Water Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 23-13124 Hydrock

Site Reference: Switch Project / Job Ref: 26279 Order No: None Supplied Reporting Date: 10/11/2023

Matrix	Analysed	Determinand	Brief Method Description	Method
	On		Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end	No
Water	UF	Alkalinity	point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF		Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F		Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF		Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF		Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	, , , , , , , , , , , , , , , , , , , ,	Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104
		C12-C16, C16-C21, C21-C40)		
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid: liquid extraction with hexane followed by GI-FID	E104
Water	F UF		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Mononyaric Phenoi	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E105
Water	F	DCD 7 Congonore	dichloromethane followed by GC-MS Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E108
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E107
Water	UF		Determination of prospriate by initiation & analysed by for ciromatography Determination of redox potential by electrometric measurement	E113
Water	F		Determination of redox potential by electrometric measurement Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
		Salphide	Determination of sarphide by distillation followed by concentration through SPE cartridge, collection	
Water	F	SVOC	in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TFM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators					

Acronym	Description					
HS	Headspace analysis					
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent					
CU	Clean-up - e.g. by florisil, silica gel					
1D	GC - Single coil gas chromatography					
2D	GC-GC - Double coil gas chromatography					
Total	Aliphatics & Aromatics					
AL	Aliphatics only					
AR	Aromatics only					
#1	EH_2D_Total but with humics mathematically subtracted					
#2	#2 EH_2D_Total but with fatty acids mathematically subtracted					
_	Operator - underscore to separate acronyms (exception for +)					
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total					

Det - Acronym
Benzene - HS_1D_MS
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
TPH LQM - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH LQM - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH LQM - Aliphatic >C16 - C35 - EH_CU_1D_AL
TPH LQM - Aliphatic >C35 - C44 - EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH LQM - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH LQM - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH LQM - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH LQM - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH LQM - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH LQM - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH LQM - Aromatic >C35 - C44 - EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH LQM - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH LQM - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH LQM - Total >C5 - C44 - HS_1D_MS+EH_CU_1D_Total
Toluene - HS_1D_MS
m & p-xylene - HS_1D_MS
o-Xylene - HS_1D_MS

Gareth Chugg Hydrock Lobb Shipton Plympton Plymouth PL7 5BP

Derwentside Environmental Testing Services Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410

DETS Report No: 23-14071

SWITCH, Port Talbot Site Reference:

Project / Job Ref: C-26279

Order No: P029482

Sample Receipt Date: 14/11/2023

Sample Scheduled Date: 14/11/2023

Report Issue Number:

Reporting Date: 28/11/2023

Authorised by:

5.62

Steve Knight

Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request. This report supersedes 23-14071, issue no.1. Reissue reason: Sample ID amended.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate DETS Report No: 23-14071 **Date Sampled** 26/09/23 26/09/23 Time Sampled Hydrock None Supplied None Supplied Site Reference: SWITCH, Port Talbot TP / BH No Project / Job Ref: C-26279 **Additional Refs** ES102 ES104 Order No: P029482
Reporting Date: 28/11/2023 Depth (m) 0.30 1.20 **DETS Sample No** 685539 685538

Determinand	Unit	RL	Accreditation				
Asbestos Quantification (S)	%	< 0.001	ISO17025	0.005	0.002		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 23-14071

Hydrock

Site Reference: SWITCH, Port Talbot

Project / Job Ref: C-26279 Order No: P029482

Reporting Date: 28/11/2023 Matrix Analysed Determinand **Brief Method Description** Method On No Soil D Boron - Water Soluble Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES E012 Soil AF BTEX Determination of BTEX by headspace GC-MS E001 Soil D Determination of cations in soil by aqua-regia digestion followed by ICP-OES E002 Soil D Chloride - Water Soluble (2:1) Determination of chloride by extraction with water & analysed by ion chromatography E009 Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of AR E016 Soil Chromium - Hexavalent 1,5 diphenylcarbazide followed by colorimetry Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry AR E015 Soil ΑF Determination of free cyanide by distillation followed by colorimetry E015 Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry E015 D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane E011 Soil Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID E004 Determination of electrical conductivity by addition of saturated calcium sulphate followed by Soil AR **Electrical Conductivity** E022 electrometric measurement Determination of electrical conductivity by addition of water followed by electrometric measurement AR E023 Soil **Electrical Conductivity** Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS E020 Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID E004 ΔR **EPH Product ID** Determination of acetone/hexane extractable hydrocarbons by GC-FID E004 EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by AR E004 Soil C12-C16, C16-C21, C21-C40) headspace GC-MS D F009 Soil Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chromatography D Fraction Organic Carbon (FOC) Determination of TOC by combustion analyser E027 Soil Soil D Organic Matter (SOM) Determination of TOC by combustion analyser. E027 Soil D TOC (Total Organic Carbon) Determination of TOC by combustion analyser. E027 Soil AR Exchangeable Ammonium Determination of ammonium by discrete analyser E029 Determination of fraction of organic carbon by oxidising with potassium dichromate followed by Soil D FOC (Fraction Organic Carbon) F010 titration with iron (II) sulphate Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle D E019 Soil Loss on Ignition @ 450o0 Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E025 Soil D Metals Determination of metals by aqua-regia digestion followed by ICP-OES E002 Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE Soil AR Mineral Oil (C10 - C40) E004 cartridge Soil AR Moisture Content Moisture content; determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography E009 Determination of organic matter by oxidising with potassium dichromate followed by titration with Soil D E010 Organic Matter iron (II) sulphate Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the Soil AR PAH - Speciated (EPA 16) E005 use of surrogate and internal standards Soil PCB - 7 Congeners F008 AR Determination of PCB by extraction with acetone and hexane followed by GC-MS Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether E011 Soil AR Determination of pH by addition of water followed by electrometric measurement E007 Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E021 Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCl followed by ICP-OES F013 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Sulphate (as SO4) - Water Soluble (2:1) Soil D Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry E018 Sulphur - Total Soil D Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024 Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by Soil AR E006 GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by AR E017 Soil Thiocvanate (as SCN addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene F011 Determination of organic matter by oxidising with potassium dichromate followed by titration with D Total Organic Carbon (TOC) E010 iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE AR E004 Soil aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35 TPH LQM (ali: C5-C6, C6-C8, C8-C10 C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 AR Soil aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35, C35-C44 VOC F001 Soil AR Determination of volatile organic compounds by headspace GC-MS VPH (C6-C8 & C8-C10) Soil AR Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001

4480

List of HWOL Acronyms and Operators	
DETS Report No: 23-14071	
Hydrock	
Site Reference: SWITCH, Port Talbot	
Project / Job Ref: C-26279	
Order No: P029482	
Penorting Date: 28/11/2023	

Acronym	Description				
HS	Headspace analysis				
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent				
CU	Clean-up - e.g. by florisil, silica gel				
1D	GC - Single coil gas chromatography				
2D	GC-GC - Double coil gas chromatography				
Total	Aliphatics & Aromatics				
AL	Aliphatics only				
AR	Aromatics only				
#1	EH_2D_Total but with humics mathematically subtracted				
#2	EH_2D_Total but with fatty acids mathematically subtracted				
_	Operator - underscore to separate acronyms (exception for +)				
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total				

Det - Acronym			

Matthew Holbourn Hydrock 3rd Floor, Wharton Place, 13 Wharton Street, Cardiff CF10 1GS

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 23-14072

Site Reference: SWITCH

Project / Job Ref: 26279

Order No: PO29482

Sample Receipt Date: 02/10/2023

Sample Scheduled Date: 14/11/2023

Report Issue Number: 1

Reporting Date: 20/11/2023

Authorised by:

5.62

Steve Knight

Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

 Soil Analysis Certificate

 DETS Report No: 23-14072
 Date Sampled
 29/09/23
 Hydrock
 Time Sampled
 None Supplied

 Site Reference: SWITCH
 TP / BH No
 TP09
 TP09

 Project / Job Ref: 26279
 Additional Refs
 ES104

 Order No: P029482
 Depth (m)
 3.00

 Reporting Date: 20/11/2023
 DETS Sample No
 685540

Determinand	Unit	RL	Accreditation			
Asbestos Quantification (S)	%	< 0.001	ISO17025	0.001		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Reporting Date: 20/11/2023

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 23-14072

Hydrock

Site Reference: SWITCH

Project / Job Ref: 26279

Order No: PO29482

Matrix	rix Analysed Determinand On		Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	,	al Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement	
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR		Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards		E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil Soil	D D		Determination of sulphate by extraction with water & analysed by ion chromatography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009 E014
Soil	AR		Determination of water soluble sulphate by extraction with water followed by ICP-OES Determination of sulphide by distillation followed by colorimetry	E014
Soil	D		Determination of stiplinge by distillation followed by color lineary Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of somi valatile evannic compounds by outpostion in acctons and havens followed by	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
			Determination of organic matter by oxidising with potassium dichromate followed by titration with	
Soil	D	Total Organic Carbon (TOC)	iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

4480

List of HWOL Acronyms and Operators
DETS Report No: 23-14072
Hydrock
Site Reference: SWITCH
Project / Job Ref: 26279
Order No: PO29482
Reporting Date: 20/11/2023

Acronym	Description					
HS	Headspace analysis					
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent					
CU	J Clean-up - e.g. by florisil, silica gel					
1D	GC - Single coil gas chromatography					
2D	GC-GC - Double coil gas chromatography					
Total	Aliphatics & Aromatics					
AL	Aliphatics only					
AR	Aromatics only					
#1	EH_2D_Total but with humics mathematically subtracted					
#2	EH_2D_Total but with fatty acids mathematically subtracted					
_	Operator - underscore to separate acronyms (exception for +)					
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total					

Det - Acronym	

GAC derivation

Background

Initially, the Hydrock GAC were derived following the publishing of soil guideline values (SGV), toxicological (TOX) reports and associated publications by the Environment Agency (EA) in 2009 referenced under Science Report SC050021 (EA, 2009a, b, c, d). The Hydrock GAC have then been periodically updated following publication of new information on toxicological, physico-chemical, land use or receptor parameters, namely:

- » LQM/CIEH, 2009. LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment, second edition. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D.
- » CL:AIRE, 2010. 'The EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment'. Environmental Industries Commission, The Association of Geotechnical and Geoenvironmental Specialists and Contaminated Land: Applications in Real Environment.
- » CL:AIRE, 2014. 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010. Contaminated Land: Applications in Real Environment.
- » LQM/CIEH, 2015. 'The LQM/CIEH S4ULs for Human Health Risk Assessment'. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F.
- » CL:AIRE, 2021. 'C4SL Phase 2 Technical Reports'. Contaminated Land: Applications in Real Environment.

Land use scenarios

Hydrock has derived generic assessment criteria (GAC) for human health based on the six exposure scenarios defined in CL:AIRE (2014) using generic default assumptions from published guidance. GAC for each exposure scenario have been derived for three soil organic matter (SOM) contents, 1%, 2.5% and 6%.

All GAC have been rounded to two significant figures.

Exposure parameters

The exposure parameters used for the Hydrock GAC are the default parameters stated in SR3, unless updated in CL:AIRE (2014) where the CL:AIRE (2014) values have been adopted.

Approach to consumption rates

Hydrock have adopted the 90^{th} percentile consumption rates from Table 3.4 of CL:AIRE (2014) for all produce types. This is noted to be more conservative than the "top two" approach taken in the derivation of C4SLs.

Approach to plant uptake for GAC omitted in CL:AIRE (2010)

Plant uptake factors were not identified in CL:AIRE (2010) for antimony, barium and molybdenum. Hydrock has sourced the required parameter values from ORNL (1984) in order to derive GAC that are inclusive of the homegrown produce exposure pathway.

Chemical and toxicity parameters

The chemical and toxicity parameters have been adopted based on the following documents:

- » IRIS, 2016. 'Toxicological Review of Trimethylbenzenes'. Integrated Risk Information System, National Centre for Environmental Assessment, office of Research and Development, U.S. Environmental Protection Agency.
- » LQM/CIEH, 2015.

- » ORNL, 1984. 'ORNL-5786. A Review and Analysis of Parameters for Assessing Transport of Environmentally released Radionuclides through Agriculture'. Oak Ridge National Laboratory.
- » CL:AIRE, 2010.
- » RIVM, 2001. RIVM Report 711701 025 'HCV Re-evaluation of human-toxicological maximum-permissible risk levels'. National Institute of Public Health and the Environment.
- » LQM/CIEH, 2009.
- » EA, 2009a.

Approach to Cyanide GAC

The Hydrock GAC for free cyanide have been derived based on ingestion of a bolus of contaminated soil. The GAC are derived for acute exposure of a child (0-6 years old) for all land uses except commercial, where the GAC are derived for acute exposure of an adult (16-65 years old). For the purpose of GQRA, the child value may be adopted for all land use scenarios.

For complex cyanide, the GAC have been derived based on chronic exposure, using the default exposure scenarios but excluding the consumption of homegrown produce, soil attached to homegrown produce, indoor vapour and outdoor vapour pathways. The chronic health criteria value (HCV) for complex cyanide is based on the EA (2009a) HCV for free cyanide and the ratio of toxicity between free and complex cyanide proposed by RIVM (2001).

Approach to Phenol GAC

In accordance with the EA Science Report SC050021 / Phenol SGV, a GAC $_{ing/inh}$ has been derived for ingested and inhaled phenol using the CLEA model, with a GAC $_{derm}$ derived for dermal contact using Equation 5.7 within SR3. The lower of the GAC $_{ing/inh}$ and GAC $_{derm}$ has been adopted as the final GAC.

Approach to PCB GAC

GAC for assessing the non-dioxin-like risk from PCBs have been based on the "Dutch 7". As the TDI used by the authors of the Dutch guidance is for the sum of the 7 individual congeners, the TDI has been divided by 7 to create a TDI for each congener. The non-dioxin-like risk from PCBs is therefore assessed using a Hazard Index approach as for total petroleum hydrocarbons (TPH).

Sub-surface soil to indoor air correction factors

Reflecting the approach taken by the Environment Agency in the development of revised SGV in 2009 for BTEX, a sub-surface soil to indoor air correction factor of 10 has been applied for petroleum hydrocarbons in order to account for over-prediction of vapour intrusion into building using the Johnson and Ettinger approach.

The correction factor of 10 has been applied to the following petroleum hydrocarbons (it makes negligible difference to less volatile TPH and PAH compounds):

- » TPHCWG fractions, namely aliphatic EC>5-44 and aromatic EC>6-44;
- » PAHs (acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene), benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h,)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene, pyrene);
- » BTEX;
- » Isopropylbenzene;
- » Propylbenzene;
- » 1,2,4- and 1,3,5-trimethylbenzene; and
- » Styrene.

Approach to saturation limits

The CLEA model includes a traffic light colour system to highlight when saturated soil conditions have potentially been exceeded for the vapour pathways during calculation of assessment criteria. The colours represent:

- » Green: the assessment criteria do not exceed the saturated soil concentration.
- » Amber: the assessment criteria exceed the saturated soil concentration but the contribution of the indoor and outdoor vapour pathway to total exposure is less than 10% and will not significantly affect the assessment criteria.
- » Red: the assessment criteria exceed the saturated soil concentration and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10% and will significantly affect the assessment criteria.

Hydrock have not applied any further calculations or assessment in relation to saturation limits during GAC derivation, with the CLEA-modelled GAC being presented as the GAC. Consideration of saturation limits is undertaken during the data assessment stage.

References

CL:AIRE, 2010. 'The EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment'. Environmental Industries Commission, The Association of Geotechnical and Geoenvironmental Specialists and Contaminated Land: Applications in Real Environment.

CL:AIRE, 2014. 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010. Contaminated Land: Applications in Real Environment

CL:AIRE, 2021. C4SL Phase 2 Technical Reports for tetrachloroethene, trichloroethene and vinyl chloride. Contaminated Land: Applications in Real Environment.

EA, 2009a. 'Science Reports SC050021 – SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, arsenic, nickel, mercury, selenium, cadmium, inorganic cyanide, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, arsenic, nickel, mercury, selenium, cadmium, inorganic cyanide, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, arsenic, nickel, mercury, selenium, cadmium, inorganic cyanide, phenol, dioxins, furans and dioxin-like PCBs'. Environment Agency.

EA, 2009b. 'Science Report – SC050021/SR2. Human health toxicological assessment of contaminants in soil'. Environment Agency.

EA, 2009c. 'Science Report – SC050021/SR3. Updated technical background to the CLEA model'. Environment Agency.

EA, 2009d. 'Science Report – SC050021/SR4. CLEA Software (version 1.05) Handbook'. Environment Agency.

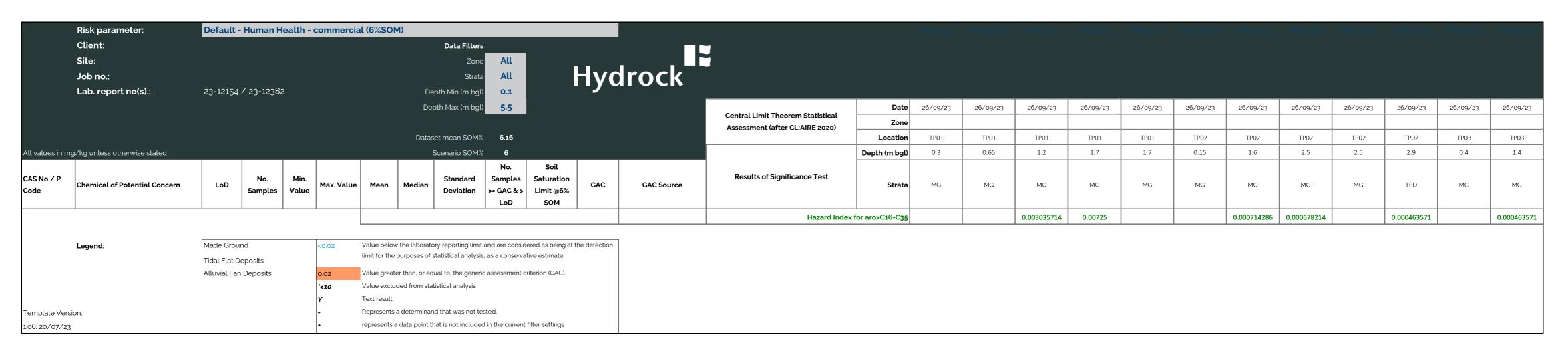
IRIS, 2016. 'Toxicological Review of Trimethylbenzenes'. Integrated Risk Information System, National Centre for Environmental Assessment, office of Research and Development, U.S. Environmental Protection Agency.

LQM/CIEH, 2009. LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment, second edition. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D.

LQM/CIEH, 2015. 'The LQM/CIEH S4ULs for Human Health Risk Assessment'. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F.

ORNL, 1984. 'ORNL-5786. A Review and Analysis of Parameters for Assessing Transport of Environmentally released Radionuclides through Agriculture'. Oak Ridge National Laboratory.

RIVM, 2001. RIVM Report 711701 025 'HCV Re-evaluation of human-toxicological maximum-permissible risk levels'. National Institute of Public Health and the Environment.

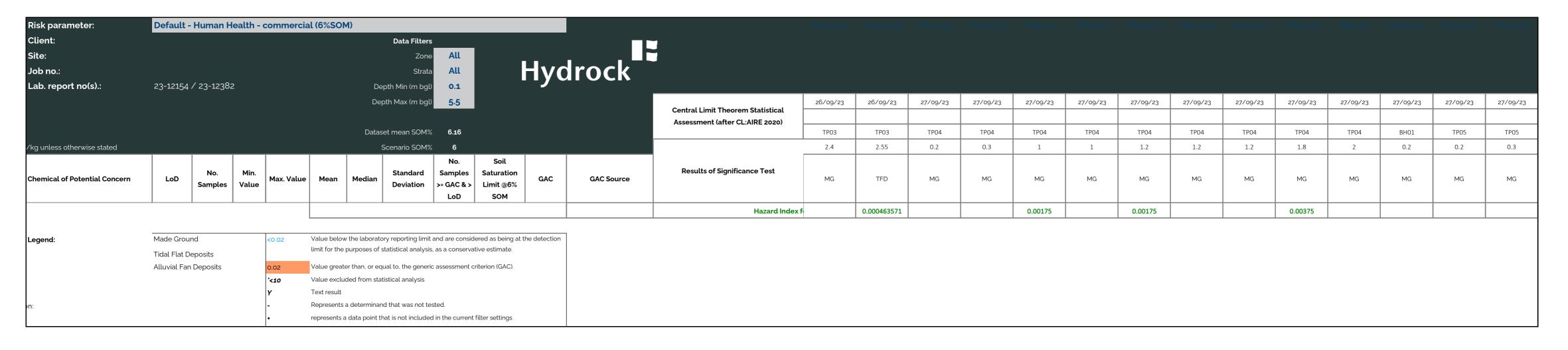


Human health GQRA

Separation of the separation o		Risk parameter:	Default -	Human H	ealth - d	commercia	al (6%SON	M)							TPo1 @ 0.3	TP01 @ 0.65	TP01 @ 1.2	TP01 @ 1.7	TP01 @ 1.7	TP02 @ 0.15	TP02 @ 1.6	TP02 @ 2.5	TP02 @ 2.5	TP02 @ 2.9	TPo3 @ 0.4	TPo3 @ 1.4
Part		Client:							Data Filters																	
Part									Zone																	
Part												Hyc	arock													
Part		Lab. report no(s).:	23-12154	/ 23-12382	2												<u> </u>									
Part								D€	epth Max (m bgl)	5.5	ı			Central Limit Theorem Statistical		26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23
Part								Data	set mean SOM%	616				Assessment (after CL:AIRE 2020)		TP01	TP01	TPO1	TPO1	TPO2	TPO2	TPO2	TPO2	TPO2	TP03	TPO3
The section of the se	All values in mo	g/kg unless otherwise stated													 	+	+									
See Section 1. Section											Soil															
May		Chemical of Potential Concern	LoD			Max. Value	Mean	Median		>= GAC & >	Limit @6%	GAC	GAC Source	Results of Significance Test	Strata MG	MG	MG	MG	MG	MG	MG	MG	MG	TFD	MG	MG
See	-	Asbestos																								
No.	P1020	Asbestos Identified	Y/N	64	-	-	-	-	No. of detects:	3	-	-	-	-	Y	N	Y	N	N	N	N	N	N	N	N	N
Melley Me	P1889	Asbestos Screen Name		3	-	-	-	-	-		-	-	-	-			 									
Content	P1935			3	0.001	0.005	0.003	0.002	No. > LOD:	3	-	-	-	-	0.005		0.002									
Mile	0		1	25	0.001	0.000	0.035	0.022	0.03						0.047		0.056				0.049			0.025	0.011	0.052
Property	P1085	 	-					-				-	-		+											
Part	P1224	-							+			- -	-	-				9.1		10.2		9.8				9
Propress	-	<u>'</u>		9,	0.50	11.55	3111	3170	1.23																	
Prof. Prof	7440-38-2		1	35	1.99	58.00	14.00	12.00	9.68	0	NR	640	C4SL - CL:AIRE 2014	Potentially Suitable for Use	14		23				12			13	6	13
Second S	7440-41-7	Beryllium	0.5	35	0.49	2.30	0.88	0.80	0.43	0	NR	12	Hydrock Derived	Potentially Suitable for Use	1.2		1.3				0.8			0.5	1	2
Marche Part Marche Part Marche Part Marche	7440-42-8	Boron	1	35	0.99	2.20	1.08	0.99	0.29	0	NR	240000	Hydrock Derived	Potentially Suitable for Use	1		1				1			1.2	1.0	1.0
Part	7440-43-9	Cadmium	0.2	35	0.19	1.30	0.38	0.30	0.25	0	NR	410	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.6		1.3				0.5			0.19	0.19	0.6
March Marc	16065-83-1	Chromium (III)	2	35	5.00	715.00	145.23	74.00	168.99	0	NR	8400	Hydrock Derived	Potentially Suitable for Use	118		98				250			28	25	175
Perfect Perf	18540-29-9	Chromium (VI)	2	35	1.90	1.99	1.99	1.99	0.02	0	NR	49	C4SL - CL:AIRE 2014	Potentially Suitable for Use												
Part	7440-50-8	Copper	4							0			· ·	Potentially Suitable for Use												
Marchan Part Marchan Part Marchan Part Marchan Part Marchan Part Part Marchan Part Par			3							1				·												
Part			1						_	0							-									
Process Proc			2						_	0				<u> </u>												
Property			_							0		_		<u> </u>												
Property								-	+	0				<u> </u>	228		537				119			51	68	160
Part		Cyanide (free)	1	35	0.99	0.99	0.99	0.99	0.00	0	NR	24	Acute Risk - SoBRA 2020		0.99		0.99				0.99			0.99	0.99	0.99
Part	P1186	Total Phenols (Monohydric)	2	35	1.99	2.00	1.99	1.99	0.00	0	70308	1300	Hydrock Derived	Potentially Suitable for Use	2		2				1.99			1.99	1.99	1.99
Principle Prin	83-32-9	Acenaphthene	0.1	35	0.09	3.36	0.21	0.09	0.56	0	336	110000	Hydrock Derived	Potentially Suitable for Use	0.09		0.39				0.09			0.09	0.09	0.09
Product	208-96-8	Acenaphthylene	0.1	35	0.09	0.18	0.09	0.09	0.02	0	506	110000	Hydrock Derived	Potentially Suitable for Use	0.09		0.18				0.09			0.09	0.09	0.09
Part	120-12-7	Anthracene	0.1	35	0.09	1.18	0.26	0.11	0.28	0	6.96	540000	Hydrock Derived	Potentially Suitable for Use												
Property									_	0				<u> </u>			-									
Property			 						_	0							-									
Procedure Process Pr		 								0			· ·	<u> </u>												
Property										0			· ·													
Septical Ministry Control										0			· ·	·										0.09		
Page Flag										0					0.09		0.35				0.09			0.09	0.09	0.09
Column C		Fluoranthene	0.1	35	0.09	8.64	1.42	0.86	1.86	0	113	23000	Hydrock Derived	<u> </u>	1.69		5.8				1.67			0.09	0.09	0.88
Part	86-73-7	Fluorene	0.1	35	0.09	1.07	0.15	0.09	0.23	0	183	72000	Hydrock Derived	Potentially Suitable for Use	0.09		1.07				0.09			0.09	0.09	0.09
Sept-18 Persistrices O. 1 S. 5 0.09 S.81 0.88 0.82 1.24 O. 214 2.500 Processingly stable for Use O.77 S.81 S. 1.09 O.78 D.79 O.79 O.	193-39-5	Indeno(123cd)pyrene	0.1	35	0.09	2.10	0.43	0.09	0.53	0	0.37	510	Hydrock Derived	Potentially Suitable for Use	0.55		0.98				0.09			0.09	0.09	0.37
Pyrope A	91-20-3	Naphthalene	0.1	35	0.09	19.80	1.43	0.27	3.67	0	432	7800	Hydrock Derived	Potentially Suitable for Use												
Page								_		0				<u> </u>												
The fractions The fraction		<u>'</u>						_		0	13.2	55000	Hydrock Derived	Potentially Suitable for Use												
Place Plac	P1310		1.6	35	1.59	64.70	9.90	6.80	12.28			-		-	10.5		31.6				17.9			2.2	1.59	5.7
Place The discrete Fixed The discrete Fixed The discrete Fixed The discrete Th	D1 407		0.01	30	0.01	0.01	0.01	0.01	0.000	0	1150	12000	Hudrock Daring L				0.009	0.009			0.009	0.009		0.009		0.009
P1409 TPH ali >EC08-EC10 2 30 1.99 344.00 15.03 2.00 62.340 0 451 1100 Hydrock Derived			 						+	-		_		I												
P1410 TPH ali >EC10-EC12 2 30 1.99 122.00 8.33 2.00 22.86 0 283 47000 Hydrock Derived . 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1		 							_			_	· ·	I		1						9		8		
P1411 TPH ali >EC12-EC16 3 3 30 2.99 26.00 5.10 3.00 5.15 0 142 9000 Hydrock Derived . P1438 TPH ali >EC16-EC35 10 30 9.99 83.00 21.60 10.00 22.62 0 51 180000 Hydrock Derived . P1415 TPH ali >EC35-EC44 10 30 9.99 20.00 10.50 10.00 2.01 0 51 180000 Hydrock Derived . P1420 TPH ali >EC5-EC44 30 30 30 29.99 491.00 58.43 29.99 85.69 . P1441 TPH are EC05-EC07 0.01 30 0.01 12.60 0.53 0.02 2.29 0 4708 8600 Hydrock Derived . P1450 TPH ali >EC5-EC47 0.01 30 0.01 12.60 0.53 0.02 2.29 0 4708 8600 Hydrock Derived . P1460 TPH are EC05-EC07 0.01 30 0.01 12.60 0.53 0.02 2.29 0 4708 8600 Hydrock Derived . P1470 TPH are EC05-EC07 0.01 30 0.01 12.60 0.53 0.02 2.29 0 4708 8600 Hydrock Derived .		 								-			· ·	<u> </u>								11		7		
P1938 TPH ali >EC16-EC35 10 30 9.99 83.00 21.60 10.00 22.62 0 51 180000 Hydrock Derived -		 								-			· ·	I I			2.99	5			18	10		2.99		2.99
P1420 TPH ali >EC5-EC44 30 30 29.99 491.00 58.43 29.99 85.69		 	10						+	0		_	· ·	I I			58	83			58	56		9.99		9.99
P1441 TPH aro ECo5-ECo7 0.01 30 0.01 12.60 0.53 0.02 2.29 0 4708 86000 Hydrock Derived - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.			10	30	9.99	20.00	10.50	10.00	+	0	51	1800000	Hydrock Derived	-		1	9.99	9.99			20	15		9.99		9.99
	P1420	TPH ali >EC5-EC44	30	30	29.99	491.00	58.43	29.99	85.69			-					58	88			126	101		29.99		29.99
P1355 TPH aro >EC07-EC08 0.05 30 0.05 0.39 0.08 0.05 0.08 0 4357 180000 Hydrock Derived -	P1441	TPH aro EC05-EC07	0.01	30	0.01	12.60	0.53	0.02	2.29	0	4708	86000	Hydrock Derived	-			0.02	0.1			0.71	0.55		12.6		0.06
	P1355	TPH aro >EC07-EC08	0.05	30	0.05	0.39	0.08	0.05	0.08	0	4357	180000	Hydrock Derived	-			0.049	0.049			0.23	0.23		0.07		0.049

	Risk parameter:	Default	- Human H	lealth -	commercia	al (6%SON	4)								TP01 @ 0.3	TP01 @ 0.65	TP01 @ 1.2	TP01 @ 1.7	TP01 @ 1.7	TP02 @ 0.15	TP02 @ 1.6	TP02 @ 2.5	TP02 @ 2.5	TP02 @ 2.9	TP03 @ 0.4	TPo3 @ 1.4
	Client:	_						Data Filters																		
	Site:							Zone	411			rock														
	Job no.:							Strata			Hyd	rock														
	Lab. report no(s).:	23-1215/	. / 23-1238:	2			D	epth Min (m bgl	_		ıyu	IIOCK														
		-55	7 _55					epth Max (m bgl						Date	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23
							Do	purinax (m bgt	3.3				Central Limit Theorem Statistical	Zone		20/09/23	20/09/23	20/09/23	20/09/23	20/09/23	20/ 09/ 23	20/ 09/ 23	20/09/23	20/ 09/ 23	20/09/23	20/ 09/ 23
							Data	set mean SOM%	646				Assessment (after CL:AIRE 2020)	Location		TD01	TD01	TD01	TD01	TDO2	TDO2	TDOO	TDO2	TDOO	TDO2	TDO2
All values is as	a // ca unless athomy iss stated							Scenario SOM%						Depth (m bgl)	0.3	TP01 0.65	TP01 1.2	TP01	TP01	TP02 0.15	TP02	TP02 2.5	2.5	TP02 2.9	TP03	TP03
All values in m	g/kg unless otherwise stated							Scenario SOM/	No.	Soil				Depth (m bgt/	0.3	0.03	1.2	1.7	1.7	0.13	1.0	2.3	2.3	2.3	0.4	1.4
CAS No / P			No.	Min.				Standard	Samples	Saturation			Results of Significance Test												·	
Code	Chemical of Potential Concern	LoD	Samples	Value	Max. Value	Mean	Median	Deviation	>= GAC & >	Limit @6%	GAC	GAC Source		Strata	MG	MG	MG	MG	MG	MG	MG	MG	MG	TFD	MG	MG
									LoD	SOM															<u> </u>	
P1356	TPH aro >EC08-EC10	2	30	1.99	416.00	18.76	2.00	75.53	0	3578	17000	Hydrock Derived	-				4	1.99			10	6		15	<u> </u>	1.99
P1357	TPH aro >EC10-EC12	2	30	1.99	843.00	34.50	2.00	153.26	0	2149	34000	Hydrock Derived	-				4	3			13	9		16	<u> </u>	1.99
P1358	TPH aro >EC12-EC16	2	30	1.99	115.00	7.57	2.00	20.48	0	1004	38000	Hydrock Derived	-				6	10			8	5		2	<u> </u>	1.99
P1359	TPH aro >EC16-EC21	3	30	2.99	78.00	12.03	8.00	15.53	0	321	28000	Hydrock Derived	-				33	78			8	9		2.99	<u> </u>	2.99
P1360	TPH aro >EC21-EC35	10	30	9.99	165.00	31.00	10.00	36.55	0	29	28000	Hydrock Derived	-				52	125			12	9.99		9.99	<u> </u>	9.99
P1362	TPH aro >EC35-EC44	10	30	9.99	18.00	10.26	10.00	1.46	0	29	28000	Hydrock Derived	-				9.99	9.99			9.99	9.99		9.99	 '	9.99
P1941	TPH aro >EC5-EC44	30	30	29.90	1395.00	106.79	38.00	249.61			-		-				99	216			52	29.9		46	<u> </u>	29.9
P1373	Total TPH >EC5-EC44	60	30	59.90	1886.00	159.92	60.00	334.35			-		-				157	304			178	130		61		59.9
0	VOCs - BTEX & MTBE																									
71-43-2	Benzene	2	30	0.00	12.59	0.53	0.02	2.29	0	4708	98	C4SL - CL:AIRE 2014	-				0.02	0.1			0.714	0.546		12.591	 '	0.061
108-88-3	Toluene	5	30	0.00	0.39	0.05	0.00	0.09	0	4357	180000	Hydrock Derived	-				0.00499	0.00499			0.229	0.234		0.074	<u> </u>	0.01
100-41-4	Ethylbenzene	2	30	0.00	17.16	0.62	0.00	3.13	0	2844	27000	Hydrock Derived	-				0.00199	0.00199			0.055	0.062		0.681		0.00199
95-47-6	Xylene, o-	2	30	0.00	9.78	0.35	0.00	1.78	0	2618	33000	Hydrock Derived	-				0.00199	0.00199			0.174	0.142		0.191		0.00199
1330-20-7	Xylene, p- (or combined m & p)	2	30	0.00	58.53	2.05	0.01	10.67	0	3167	30000	Hydrock Derived	-				0.003	0.00199			0.511	0.302		1.051		0.007
1634-04-4	МТВЕ	5	30	0.00	0.00	0.00	0.00	0.00	0	62749	22000	Hydrock Derived	-				0.00499	0.00499			0.00499	0.00499		0.00499	<u> </u>	0.00499
0	VOCs - other benzenes																									
98-82-8	Iso-propylbenzene	5	20	0.00	0.01	0.01	0.00	0.00	0	2255	54000	Hydrock Derived	-				0.00499				0.00499			0.014	·	0.00499
103-65-1	Propylbenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	2332	100000	Hydrock Derived	-				0.00499				0.00499			0.00499	·	0.00499
95-63-6	1,2,4-Trimethylbenzene	5	20	0.00	0.15	0.02	0.00	0.04	0	3245	9.5	Hydrock Derived	-				0.00499				0.077			0.098		0.00499
108-67-8	1,3,5-Trimethylbenzene	5	20	0.00	0.16	0.02	0.00	0.04	0	1304	9.5	Hydrock Derived	-				0.00499				0.107			0.051		0.00499
o	VOCs - chlorobenzenes																									
108-86-1	Bromobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	4579	490	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
108-90-7	Chlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3494	290	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
95-50-1	1,2-Dichlorobenzene	5	7	0.00	0.00	0.00	0.00	0.00	0	3239	11000	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
541-73-1	1,3-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3011	170	Hydrock Derived	-				0.00499				0.00499			0.00499	·	0.00499
106-46-7	1,4-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	1275	21000	Hydrock Derived	-				0.00499				0.00499			0.00499	·	0.00499
118-74-1	Hexachlorobenzene	0.1	20	0.09	0.09	0.09	0.09	0.00	0	1.19	120	Hydrock Derived	-				0.09				0.09			0.09	·	0.09
120-82-1	1,2,4-trichlorobenzene	0.1	20	0.00	0.00	0.00	0.00	0.00	0	1876	1300	Hydrock Derived	-				0.00009				0.00009			0.00009		0.00009
o	VOCs - chloroalkanes & alkanes																									
75-27-4	Bromodichloromethane	5	20	0.00	0.00	0.00	0.00	0.00	0	6571	7.1	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
75-00-3	Chloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5709	2000	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
75-01-4	Chloroethene (aka vinyl chloride)	5	20	0.00	0.00	0.00	0.00	0.00	0	2688	2.2	C4SL - CL:AIRE 2021	-				0.00499				0.00499			0.00499		0.00499
74-87-3	Chloromethane	10	20	0.01	0.01	0.01	0.01	0.00	0	2987	1.5	Hydrock Derived	-	1			0.00999				0.00999			0.00999		0.00999
75-34-3	1,1-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5605	800	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
107-06-2	1,2-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	7361	29	C4SL - CL:AIRE 2021	-				0.00499				0.00499			0.00499		0.00499
75-35-4	1,1-Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7944	87	Hydrock Derived	_				0.00499				0.00499			0.00499		0.00499
156-59-2	Cis 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12856	44	Hydrock Derived	_				0.00499				0.00499			0.00499		0.00499
156-60-5	Trans 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12594	76	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
630-20-6	1,1,1,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	14017	560	Hydrock Derived	_				0.00499				0.00499			0.00499		0.00499
79-34-5	1,1,2,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	11983	1100	Hydrock Derived	_				0.00499				0.00499			0.00499		0.00499
79-01-6	Trichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7138	3.4	C4SL - CL:AIRE 2021	-				0.00499				0.00499			0.00499		0.00499
71-55-6	1,1,1-Trichloroethane	5	18	0.00	0.00	0.00	0.00	0.00	0	6392	3000	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
0	Other phenols & chlorophenols				1.50				-			, 22 333														
108-95-2	Phenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	70308	1300	Hydrock Derived					0.09				0.09			0.09		0.09
95-57-8	2-Chlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	306526	4300	Hydrock Derived	-				0.09				0.09			0.09		0.09
120-83-2	2,4-Dichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	23348	4200	Hydrock Derived	-				0.09				0.09			0.09		0.09
105-67-9	2,4-Dimethylphenol	0.15	20	0.15	0.15	0.15	0.15	0.00	0	7238	30000	Hydrock Derived	-				0.149				0.149			0.149		0.149
88-06-2	2,4,6-Trichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	4679	4300	Hydrock Derived	_	1			0.09				0.09			0.09		0.09
0	Phthalates	5.1		5.05	5.20	5.20	5.10	5.50		.5.5	.555	, 250 B 211764	-													
84-66-2	Diethyl Phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	65	280000	Hydrock Derived					0.09				0.09			0.09		0.09
117-84-0	Di-n-octyl phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	196	89000	Hydrock Derived	-		<u> </u>		0.09				0.09			0.09		0.09
0	Other organics	V.1	20	5.05	5.10	5.10	5.10	0.30	Ĭ	150	55000	, a. son Bellived	-				5.05				5.05			3.03		5.05
121-14-2	2,4-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	3800	Hydrock Derived					0.09				0.09			0.09		0.09
		0.1	1 20	1 0.05	0.10	0.10	J. 10	0.00		505	5500	yarook berived	<u>-</u>	1	<u> </u>	<u> </u>								·	<u></u> '	

	Risk parameter:	Default -	· Human H	ealth -	commercia	al (6%SON	4)								TP01 @ 0.3	TPo1 @ 0.65	TP01 @ 1.2	TPo1 @ 1.7	TP01 @ 1.7	TP02 @ 0.15	TP02 @ 1.6	TP02 @ 2.5	TP02 @ 2.5	TP02 @ 2.9	TP03 @ 0.4	TP03 @ 1.4
	Client:							Data Filter																		
	Site:							Zone		1		lrock														
	Job no.: Lab. report no(s).:	22 12154	/ 23-12382	,			_	Strata			Пус	Irock														
	Lab. report nots/	23-12194	/ 23-12302	_				epth Min (m bgl epth Max (m bgl						Date	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23
								parriax (iii 2g)	3.3				Central Limit Theorem Statistical	Zone	20, 09, 23	20, 03, 23	20, 09, 23	20, 03, 23	20, 09, 23	20, 09, 23	20, 09, 23	20, 09, 23	20, 09, 23	207 097 23	20, 09, 23	20, 09, 23
							Data	set mean SOM%	6.16				Assessment (after CL:AIRE 2020)	Location	TP01	TP01	TP01	TP01	TP01	TP02	TP02	TP02	TP02	TP02	TP03	TP03
All values in m	g/kg unless otherwise stated							Scenario SOM%	6					Depth (m bgl)	0.3	0.65	1.2	1.7	1.7	0.15	1.6	2.5	2.5	2.9	0.4	1.4
04611 (19									No.	Soil			Results of Significance Test													
CAS No / P Code	Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	Samples >= GAC & >	Saturation Limit @6%	GAC	GAC Source	Results of Significance rest	Strata	MG	MG	MG	MG	MG	MG	MG	MG	MG	TFD	MG	MG
									LoD	SOM																
606-20-2	2,6-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	1403	1900	Hydrock Derived	-				0.09				0.09			0.09		0.09
100-42-5	Styrene	5	20	0.00	0.00	0.00	0.00	0.00	0	3347	23000	Hydrock Derived	-				0.00499				0.00499			0.00499		0.00499
91-58-7	2-Chloronaphthalene Other VOC Suite Substances which	do not have a	20 3 GAC	0.09	0.10	0.10	0.10	0.00	0	669	2100	Hydrock Derived	-				0.03				0.03			0.03		0.03
74-83-9	Bromomethane	10	20	0.01	0.01	0.01	0.01	0.00			-						0.00999				0.00999			0.00999		0.00999
75-69-4	Trichlorofluoromethane	5	20	0.00	0.00	0.00	0.00	0.00			-		_				0.00499				0.00499			0.00499		0.00499
594-20-7	2,2-Dichloropropane	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
563-58-6	1,1-Dichloropropene	10	20	0.01	0.01	0.01	0.01	0.00			-		-				0.00999				0.00999			0.00999		0.00999
74-95-3	Dibromomethane	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
10061-01-5	Cis-1,3-dichloropropene	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
10061-02-6	Trans-1,3-dichloropropene	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
142-28-9	1,3-Dichloropropane Dibromochloromethane	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
106-93-4	1,2-Dibromoethane	5	20	0.00	0.00	0.00	0.00	0.00			-						0.00499				0.00499			0.00499		0.00499
95-49-8	2-Chlorotoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
106-43-4	4-Chlorotoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
98-06-6	tert butylbenzene	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
135-98-8	8-8 sec butylbenzene 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00												-				0.00499				0.00499			0.00499		0.00499
99-87-6	Isopropyltoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		-				0.00499				0.00499			0.00499		0.00499
104-51-8	,	_									-		-				0.00499				0.00499			0.00499		0.00499
96-12-8				0.01	0.01	0.01	0.01	0.00			-		-				0.00333				0.00333			0.00333		0.00333
111-44-4	Bis(2-chloroethyl)ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		·				0.09				0.09			0.09		0.09
98-95-3	Nitrobenzene	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-				0.09				0.09			0.09		0.09
78-59-1 88-75-5	2-8 1,2-Dibromo-3-chloropropane 10 20 0.01 0.01 0.01 0.01 0.00 0.00 0.0												-				0.09				0.09			0.09		0.09
111-91-1	Bis(2-chloroethoxy)methane	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-				0.09				0.09			0.09		0.09
59-50-7	4-Chloro-3-methylphenol	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-				0.09				0.09			0.09		0.09
95-95-4 91-57-6	2,4,5-Trichlorophenol 2-Methylnaphthalene	0.15	20	0.15	0.15	0.15	0.15	0.00			-		-				0.2				0.8			0.09		0.09
131-11-3	Dimethyl phthalate	0.1	20	0.09	0.20	0.10	0.10	0.02			-		-				0.09				0.09			0.09		0.09
132-64-9	Dibenzofuran	0.1	20	0.09	0.50	0.15	0.10	0.12			-		-				0.4				0.3			0.09		0.09
7005-72-3 100-01-6	4-Chlorophenyl phenyl ether 4-Nitroaniline	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	+			0.09				0.09			0.09		0.09
103-33-3	Azobenzene	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-				0.09				0.09			0.09		0.09
101-55-3	Bromophenyl phenyl ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-				0.09				0.09			0.09		0.09
86-74-8	Carbazole TPH Additivity Check	0.1	HAZARD OI	0.09	0.50 S FOR EACH FI	0.17	0.10	0.12			-						0.4				0.2			0.09		0.09
	THAMMINITY OFFICER		I IAZAKU QU	O HEN IS	JI OR EACH FI	MACHUN							Δ	liphatics >EC5-EC6			0.00000075	0.00000075			0.00000075	0.00000075		0.0000075		0.00000075
														liphatics >EC6-EC8			0.00000075	0.000001225			0.00000073	0.00000073		0.00000073		0.00000073
														phatics >EC8-EC10			0.000180909	0.000180909			0.001181818	0.000818182		0.000727273		0.000180909
								Conside	ered additive				Alip	ohatics >EC10-EC12			4.23404E-05	4.23404E-05			0.000382979	0.000234043		0.000148936		4.23404E-05
													Alip	ohatics >EC12-EC16			3.32222E-05	5.55556E-05			0.0002	0.000111111		3.32222E-05		3.32222E-05
													Alip	ohatics >EC16-EC35			3.2222E-05	4.61111E-05			3.22222E-05	3.11111E-05		0.00000555		0.00000555
														hatics >EC35-EC44			0.00000555	 			1.11111E-05			0.00000555		0.00000555
														Aromatics EC5-EC7			2.32558E-07				8.25581E-06			0.000146512		6.97674E-07
														romatics >EC7-EC8			2.72222E-07				1.27778E-06	1.27778E-06		3.88889E-07		2.72222E-07
	Considered additive													matics >EC8-EC10			0.000235294				0.000588235 0.000382353	0.000352941 0.000264706		0.000882353 0.000470588		0.000117059 5.85294E-05
	Considered additive													matics >EC10-EC12			0.000117847				0.000382353	0.000284708		5.26316E-05		5.23684E-05
														matics >EC16-EC21			0.001178571				0.000210320			0.000106786		0.000106786
	Considered additive													matics >EC21-EC35			0.001857143					0.000356786		0.000356786		0.000356786
													matics >EC35-EC44			0.000356786				0.000356786			0.000356786		0.000356786	
												Hazard In	dex for ali>C8-C16			0.000256472	0.000278805			0.001764797	0.001163335		0.000909431		0.000256472	
		Hazard Inc	dex table -	HI or HQ greate	r than 1 highli	ghted with orar	nge shading.		Hazard Ind	lex for aro>C8-C16			0.000510836	0.000468452			0.001181115	0.000749226		0.001405573		0.000227957				

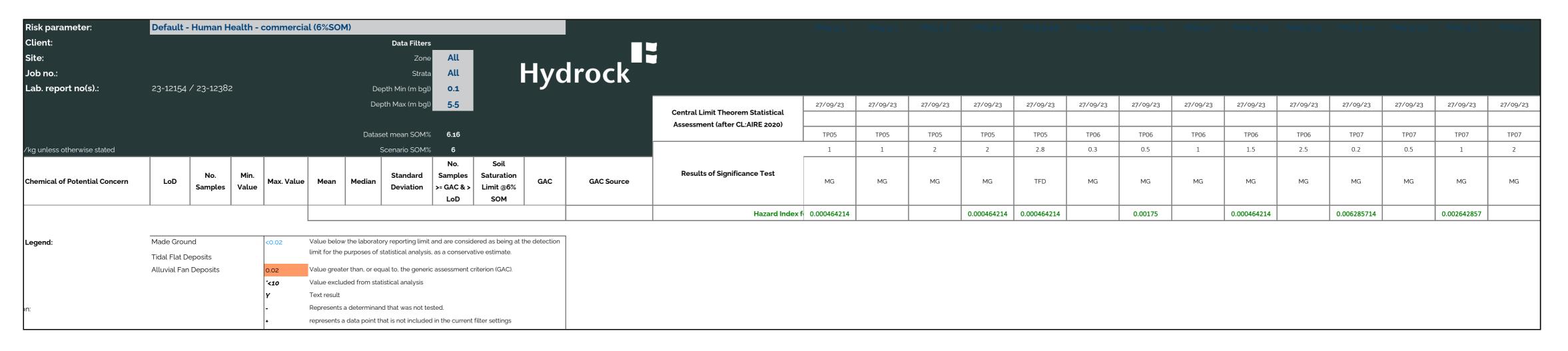


4 of 20 01/12/2023, 09:42

Risk parameter:	Default - Human Health - commercial (6%SOM)												TP03 @ 2.4		TP04 @ 0.2	TP04 @ 0.3	TP04 @ 1	TP04 @ 1					TP04 @ 2	BH01 @ 0.2	TP05 @ 0.2	TP05 @ 0.3
Client:							Data Filters	s																		
Site:							Zone	All			lrock															
Job no.:							Strata	a All		Hva	drock															
Lab. report no(s).:	23-12154	/ 23-12382	2			D	epth Min (m bgl)	0.1	·	· - J ·																
						De	epth Max (m bgl)	5.5				Central Limit Theorem Statistical	26/09/23	26/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
												Assessment (after CL:AIRE 2020)														
						Data	aset mean SOM%	6.16					TP03	TP03	TP04	TP04	TP04	TP04	TP04	TP04	TP04	TP04	TP04	BH01	TP05	TP05
/kg unless otherwise stated	<u>, </u>						Scenario SOM%	6 6					2.4	2.55	0.2	0.3	1	1	1.2	1.2	1.2	1.8	2	0.2	0.2	0.3
								No.	Soil			Results of Significance Test														
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	Samples >= GAC & >	Saturation Limit @6%	GAC	GAC Source	results of significance rest	MG	TFD	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
		·						LoD	SOM																	
Asbestos																										
Asbestos Identified	Y/N	64	-	-	-	-	No. of detects	3	-	-	-	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Asbestos Screen Name		3	-	-	-	-	-		-	-	-	-														
Asbestos Quant. Total	0.001	3	0.001	0.005	0.003	0.002	No. > LOD:	3	-	-	-	-														
Hydrock Default Suite - FOC / SOM	/ pH								-																	
FOC (dimensionless)	0.001	35	0.001	0.090	0.036	0.032	0.02		-	-	-	-	0.08	0.014	0.03		0.02					0.079		0.032	0.037	
SOM (calculated)	0.1724	35	0.16	15.52	6.16	5.52	4.11		-	-	-	-	13.792	2.4136	5.172		3.448					13.6196		5.5168	6.3788	
pH (su)	0.1	57	6.90	11.90	9.41	9.70	1.23		-	-	-	-	7.3	6.9	11	10.7	9.9	9.9	9.7		9.9	8.7	9.4	10.6	10.6	10.4
Hydrock Default Suite - Metals & PA	Н																									
Arsenic	2	35	1.99	58.00	14.00	12.00	9.68	0	NR	640	C4SL - CL:AIRE 2014	Potentially Suitable for Use	7	9	10		8					21		9	17	
Beryllium	0.5	35	0.49	2.30	0.88	0.80	0.43	0	NR	12	Hydrock Derived	Potentially Suitable for Use	0.5	0.7	1.1		0.5					0.6		1.3	1.3	
Boron	1	35	0.99	2.20	1.08	0.99	0.29	0	NR	240000	Hydrock Derived	Potentially Suitable for Use	1.0	1.0	1.0		1.0					1.0		0.99	0.99	
Cadmium	0.2	35	0.19	1.30	0.38	0.30	0.25	0	NR	410	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.6	0.19	0.4		0.4					0.5		0.3	0.7	
Chromium (III)	2	35	5.00	715.00	145.23	74.00	168.99	0	NR	8400	Hydrock Derived	Potentially Suitable for Use	36	11	210		284					187		25	79	
Chromium (VI)	2	35	1.90	1.99	1.99	1.99	0.02	0	NR	49	C4SL - CL:AIRE 2014	Potentially Suitable for Use	1.99	1.99	1.99		1.99					1.99		1.99	1.99	
Copper	4	35	3.99	503.00	59.26	38.00	86.16	0	NR	68000	Hydrock Derived	Potentially Suitable for Use	48000	19 1630	35 622		109					255		83	98	
Lead	3	35	2.99	48000.00	1570.97	98.00	8088.89	1	NR	2300	C4SL - CL:AIRE 2014	Further Assessment Required	0.99	0.99	0.99		0.99					0.99		0.99	0.99	
Mercury, inorganic	1	35	0.99	0.99	0.99	0.99	0.00	0	NR	1100	Hydrock Derived	Potentially Suitable for Use	6.55	11	10		12					15		7	12	
Nickel	3	35	6.00 1.99	43.00 7.20	15.89 2.15	15.00	0.88	0	NR NR	980 12000	Hydrock Derived	Potentially Suitable for Use	1.99	1.99	1.99		1.99					1.99		1.99	1.99	
Selenium	1	35	5.00	797.00	200.60	109.00	218.03	0	NR	9000	Hydrock Derived Hydrock Derived	Potentially Suitable for Use	158	19	288		247					188		30	109	
Vanadium Zinc	2	35	15.00	537.00	160.11	119.00	128.67	0	NR	730000	Hydrock Derived	Potentially Suitable for Use Potentially Suitable for Use	479	63	107		93					107		88	156	
Cyanide (free)	1	35	0.99	0.99	0.99	0.99	0.00	0	NR	24	Acute Risk - SoBRA 2020	Potentially Suitable for Use	0.99	0.99	0.99		0.99					0.99		0.99	0.99	
Total Phenols (Monohydric)	2	35	1.99	2.00	1.99	1.99	0.00	0	70308	1300	Hydrock Derived	Potentially Suitable for Use	1.99	1.99	1.99		1.99					1.99		1.99	1.99	
Acenaphthene	0.1	35	0.09	3.36	0.21	0.09	0.56	0	336	110000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		0.09					0.35		0.09	0.09	
Acenaphthylene	0.1	35	0.09	0.18	0.09	0.09	0.02	0	506	110000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		0.09					0.09		0.09	0.09	
Anthracene	0.1	35	0.09	1.18	0.26	0.11	0.28	0	6.96	540000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		0.61					0.87		0.09	0.56	
Benz(a)anthracene	0.1	35	0.09	4.81	0.90	0.58	1.05	0	10.27	180	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.81		2.98					4.81		0.71	1.61	
Benzo(a)pyrene	0.1	35	0.09	3.17	0.69	0.52	0.75	0	5.46	77	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.09	0.09	0.69		2.11					3.17		0.7	1.13	
Benzo(b)fluoranthene	0.1	35	0.09	5.16	0.95	0.70	1.10	0	7.29	45	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.79		2.92					5.16		0.67	1.45	
Benzo(ghi)perylene	0.1	35	0.09	1.43	0.33	0.09	0.41	0	0.09	4000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		1.05					1.43		0.09	0.09	
Benzo(k)fluoranthene	0.1	35	0.09	1.35	0.35	0.26	0.33	0	4.12	1200	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.26		0.8					1.35		0.36	0.54	
Chrysene	0.1	35	0.09	5.38	0.92	0.62	1.10	0	2.64	360	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.92		2.82					5.38		0.66	1.42	
Dibenz(ah)anthracene	0.1	35	0.09	0.79	0.14	0.09	0.15	0	0.024	3.6	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		0.49					0.79		0.09	0.09	
Fluoranthene	0.1	35	0.09	8.64	1.42	0.86	1.86	0	113	23000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	1.35		4.93					8.64		0.86	2.33	
Fluorene	0.1	35	0.09	1.07	0.15	0.09	0.23	0	183	72000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		0.14					0.32		0.09	0.09	
Indeno(123cd)pyrene	0.1	35	0.09	2.10	0.43	0.09	0.53	0	0.37	510	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.09		1.41					2.1		0.09	0.09	
Naphthalene	0.1	35	0.09	19.80	1.43	0.27	3.67	0	432	7800	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.27		0.16					19.8		0.09	0.25	
Phenanthrene	0.1	35	0.09	5.81	0.89	0.52	1.24	0	214	23000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	0.52		1.66					4.75		0.09	1.6	
Pyrene	0.1	35	0.09	5.83	1.10	0.71	1.30	0	13.2	55000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09	1.2		3.81					5.83		0.77	1.94	
PAH 16 Total	1.6	35	1.59	64.70	9.90	6.80	12.28			-		· .	1.59	1.59	6.8		25.9					64.7		4.7	12.8	
TPH fractions														0.000			0.000		0.000			0.000				
TPH ali ECo5-ECo6	0.01	30	0.01	0.01	0.01	0.01	0.000	0	1150	12000	Hydrock Derived	-		0.009			0.009		0.009			0.009				
TPH ali >ECo6-ECo8	0.05	30	0.05	0.05	0.05	0.05	0.000	0	736	40000	Hydrock Derived	-		0.049			0.049		0.049			0.049				
TPH ali >EC08-EC10	2	30	1.99	344.00	15.03	2.00	62.340	0	451	11000	Hydrock Derived	-		1.99			1.99		1.99			27 42				
TPH ali >EC10-EC12	2	30	1.99	122.00	8.33	2.00	22.86	0	283	47000	Hydrock Derived	-					1.99 2.99		1.99			8				
TPH ali >EC12-EC16	3	30	2.99	26.00	5.10	3.00	5.15	0	142	90000	Hydrock Derived	-		2.99 9.99			9.99		54			9.99				
TPH ali >EC16-EC35	10	30	9.99	83.00	21.60	10.00	22.62	0	51	1800000	Hydrock Derived	-		9.99			9.99		10			9.99				
TPH ali >EC35-EC44	30	30	9.99 29.99	20.00	10.50 58.43	10.00	2.01 85.69	0	51	1800000	Hydrock Derived	-		29.99			29.99		69			9.99				
TPH ali >EC5-EC44 TPH aro EC05-EC07	0.01	30	0.01	12.60	0.53	0.02	2.29	0	4708	86000	Hydrock Derived	-		0.009			0.01		0.009			0.12				
TPH aro >EC05-EC07	0.01	30	0.01	0.39	0.08	0.02	0.08	0	4357	180000	Hydrock Derived	-		0.049			0.049		0.049			0.049				
	1 0.03	1 30	1 0.03	0.33	0.00	1 0.03	0.00	1 "	+33/	100000	THY GLOCK DELIVED			1	I						1					

Risk parameter:	Default - Human Health - commercial (6%SOM)																									TP05 @ 0.3
Client:							Data Filters	;																		
Site:							Zone	All			lrock															
Job no.:							Strata	All		Hvc	irock															
Lab. report no(s).:	23-12154	/ 23-1238	2			D	epth Min (m bgl)	0.1		'''																
						De	epth Max (m bgl)	5.5				Central Limit Theorem Statistical	26/09/23	26/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
												Assessment (after CL:AIRE 2020)														-
							aset mean SOM%						TP03	TP03	TP04	BH01	TP05	TP05								
/kg unless otherwise stated							Scenario SOM%	6 No.	Soil				2.4	2.55	0.2	0.3	1	1	1.2	1.2	1.2	1.8	2	0.2	0.2	0.3
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	Samples >= GAC & >	Saturation Limit @6% SOM	GAC	GAC Source	Results of Significance Test	MG	TFD	MG											
TPH aro >ECo8-EC10	2	30	1.99	416.00	18.76	2.00	75.53	0	3578	17000	Hydrock Derived	-		1.99			1.99		4			48				
TPH aro >EC10-EC12	2	30	1.99	843.00	34.50	2.00	153.26	0	2149	34000	Hydrock Derived	-		1.99			2		5			73				
TPH aro >EC12-EC16	2	30	1.99	115.00	7.57	2.00	20.48	0	1004	38000	Hydrock Derived	-		1.99			1.99		3			9				
TPH aro >EC16-EC21	3	30	2.99	78.00	12.03	8.00	15.53	0	321	28000	Hydrock Derived	-		2.99			20		20			40				
TPH aro >EC21-EC35	10	30	9.99	165.00	31.00	10.00	36.55	0	29	28000	Hydrock Derived	-		9.99			29		29			65				
TPH aro >EC35-EC44	10	30	9.99	18.00	10.26	10.00	1.46	0	29	28000	Hydrock Derived			9.99			9.99		9.99			9.99				
TPH aro >EC5-EC44	30	30	29.90	1395.00	106.79	38.00	249.61			-	,			29.9			51		60			236				
Total TPH >EC5-EC44	60	30	59.90	1886.00	159.92	60.00	334.35			-				59.9			59.9		129			313				
VOCs - BTEX & MTBE		-		1.50		1.50																				
Benzene	2	30	0.00	12.59	0.53	0.02	2.29	0	4708	98	C4SL - CL:AIRE 2014			0.006			0.011		0.009			0.119				
Toluene	5	30	0.00	0.39	0.05	0.00	0.09	0	4357	180000	Hydrock Derived	-	+	0.00499			0.00499		0.00499			0.036				
Ethylbenzene	7	30	0.00	17.16	0.62	0.00	3.13	0	2844	27000	Hydrock Derived		+	0.00199			0.00199		0.00199			0.071				
Xylene, o-	2	30	0.00	9.78	0.35	0.00	1.78	0	2618	33000	Hydrock Derived	<u> </u>	1	0.00199			0.00199		0.00199			0.035				
Xylene, p- (or combined m & p)	2	30	0.00	58.53	2.05	0.00	10.67	0	3167	30000	Hydrock Derived	<u> </u>	1	0.00199			0.003		0.00199			0.114				
MTBE	5	30	0.00	0.00	0.00	0.00	0.00	0	62749	22000	Hydrock Derived			0.00499			0.00499		0.00499			0.00499				
VOCs - other benzenes		30	0.00	0.00	0.00	0.00	0.00		02713	22000	Trydrock Berryed	-														
Iso-propylbenzene	5	20	0.00	0.01	0.01	0.00	0.00	0	2255	54000	Hydrock Derived			0.00499			0.00499					0.00499				
Propylbenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	2332	100000	Hydrock Derived	-		0.00499			0.00499					0.00499				
1,2,4-Trimethylbenzene	5	20	0.00	0.15	0.02	0.00	0.04	0	3245	9.5	Hydrock Derived	-		0.00499			0.00499					0.152				
1,3,5-Trimethylbenzene	5	20	0.00	0.15	0.02	0.00	0.04	0	1304	9.5	Hydrock Derived	<u> </u>		0.00499			0.00499					0.16				
VOCs - chlorobenzenes		20	0.00	0.10	0.02	0.00	0.01		1301	3.3	Trydrock Berried	_		0.00133			0.00 133					0.10				
Bromobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	4579	490	Hydrock Derived			0.00499			0.00499					0.00499				
Chlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3494	290	Hydrock Derived			0.00499			0.00499					0.00499				
1,2-Dichlorobenzene	5	7	0.00	0.00	0.00	0.00	0.00	0	3239	11000	Hydrock Derived			0.00499			0.00499					0.00499				
1,3-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3011	170	Hydrock Derived			0.00499			0.00499					0.00499				
1,4-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	1275	21000	Hydrock Derived			0.00499			0.00499					0.00499				
Hexachlorobenzene	0.1	20	0.09	0.09	0.09	0.09	0.00	0	1.19	120	Hydrock Derived			0.09			0.09					0.09				
1,2,4-trichlorobenzene	0.1	20	0.00	0.00	0.00	0.00	0.00	0	1876	1300	Hydrock Derived			0.00009			0.00009					0.00009				
VOCs - chloroalkanes & alkanes	0.1		0.00	0.00	0.00	0.00	0.00		1070	1555	yarook berirea															
Bromodichloromethane	5	20	0.00	0.00	0.00	0.00	0.00	0	6571	7.1	Hydrock Derived			0.00499			0.00499					0.00499				
Chloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5709	2000	Hydrock Derived	<u> </u>		0.00499			0.00499					0.00499				
Chloroethane (aka vinyl chloride)	5	20	0.00	0.00	0.00	0.00	0.00	0	2688	2.2	C4SL - CL:AIRE 2021	<u> </u>	1	0.00499			0.00499					0.00499				
Chloromethane	10	20	0.00	0.00	0.00	0.00	0.00	0	2987	1.5	Hydrock Derived	<u> </u>	1	0.00999			0.00999					0.00999				
1,1-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5605	800	Hydrock Derived	<u>-</u>	+	0.00499			0.00499					0.00499				
1,2-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	7361	29	C4SL - CL:AIRE 2021	-	+	0.00499			0.00499					0.00499				
1,1-Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7944	87	Hydrock Derived		1	0.00499			0.00499					0.00499				
Cis 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12856	44	Hydrock Derived		1	0.00499			0.00499					0.00499				
Trans 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12594	76	Hydrock Derived	<u> </u>	1	0.00499			0.00499					0.00499				
1,1,1,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	14017	560	Hydrock Derived		1	0.00499			0.00499					0.00499				
1,1,2,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	11983	1100	Hydrock Derived	<u> </u>	+	0.00499			0.00499					0.00499				
Trichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7138	3.4	C4SL - CL:AIRE 2021	<u> </u>	+	0.00499			0.00499					0.00499				
1,1,1-Trichloroethane	5	18	0.00	0.00	0.00	0.00	0.00	0	6392	3000	Hydrock Derived	<u> </u>	1	0.00499	<u> </u>		0.00499					0.00499				
Other phenols & chlorophenols		10	0.00	0.00	0.00	0.00	0.00		0332	3000	THY GLOCK DETIVED											55				
Phenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	70308	1300	Hydrock Derived	<u>.</u>		0.09			0.09					0.09				
2-Chlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	306526	4300	Hydrock Derived	<u> </u>	1	0.09			0.09					0.09				
2,4-Dichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	23348	4200	Hydrock Derived	-	1	0.09			0.09					0.09				
2,4-Dimethylphenol	0.15	20	0.15	0.15	0.15	0.15	0.00	0	7238	30000	Hydrock Derived	<u> </u>	+	0.149			0.149					0.149				
2,4,6-Trichlorophenol	0.13	20	0.09	0.10	0.10	0.10	0.00	0	4679	4300	Hydrock Derived	<u> </u>	+	0.09			0.09					0.09				
Phthalates	V.1	20	0.05	5.10	0.10	0.10	3.30		10.5	.550	, a. sek belived	·														
Diethyl Phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	65	280000	Hydrock Derived			0.09			0.09					0.09				
Di-n-octyl phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	196	89000	Hydrock Derived	-	+	0.09			0.09					0.09				
Other organics	V.1	20	0.05	5.10	0.10	0.10	3.30		155	33000	, a. sek belived			5.03			5.05					3.03				
2,4-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	3800	Hydrock Derived			0.09			0.09					0.09				
_,	0.1	1 20	1 0.05	1 0.10	1 0.10	1 0.10	1 0.00		l	1	, a. sek serived		1	I	I	L										

Control Cont			
Part			
Part			
Part			
Part			
Property of the Property of	27/09/23 27/09/23	27/09/23	27/09/23
Part			
Particular Par	TP04 BH01	TP05	TP05
Part	2 0.2	0.2	0.3
Part			
Part	MG MG	MG	MG
Characteristrictic Paris			
Part No. Suite Substantion with internal content in the Content			
Properties 15			
Procession			
2-Cichtergroupene			
Experimentation 1			
Discommendative S 20 0.00 0			-
Color 13 dichlargrappare S 20 0.00			
Trais-13-dichloropropene 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
September Sept			
Distribution S 20 0.00			
12-Disromothane 5 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
2-Chlorotoluene 5 70 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
4-Chlorotolluene 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
Feet buty/benzene 5 70 0.00			
Sec butylbenzene 5 20 0.00			
Sopropytoluene 5 20 0.00 0.			
n butylbenzene 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00499 0.00999 0.00499 0.00999 0.00999 0.00999 0.00999 0.00999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.009999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 <td></td> <td></td> <td></td>			
1,2-Dibromo-3-chloropropane 10 20 0.01 0.01 0.01 0.01 0.01 0.00 0.00999 0.			
Other SVOC Suite Substances which do not have a GAC Image: Conformation of the conform			
Nitrobenzene 0.1 20 0.09 0.10 0.10 0.10 0.00 - 0.09 0.10 0.09 0.10 0.00 0.09 0.09 0.10 0.00 0.0			
Sophorone 0.1 20 0.09 0.10 0.10 0.10 0.00			
2-Nitrophenol 0.1 20 0.09 0.10 0.10 0.10 0.00 0.09			
Bis(2-chloroethoxy)methane 0.1 20 0.09 0.10 0.10 0.10 0.00 0.09			
4-Chloro-3-methylphenol 0.1 20 0.09 0.10 0.10 0.10 0.00 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10			
2.4.5-Trichlorophenol 0.15 20 0.15 0.15 0.15 0.00 - - 0.149 2-Methylnaphthalene 0.1 20 0.09 1.20 0.29 0.10 0.34 - - 0.09			
Dimethyl phthalate 0.1 20 0.09 0.20 0.10 0.10 0.02 0.09 0.09 0.09 0.00 0.00 0.09			
Dibenzofuran 0.1 20 0.09 0.50 0.15 0.10 0.12 0.09 0.09 0.50 0.15 0.10 0.12 - 0.2			
4-Chlorophenyl ether 0.1 20 0.09 0.10 0.10 0.10 0.00 0.09			
4-Nitroaniline 0.1 20 0.09 0.10 0.10 0.10 0.00 0.09 0.09 0.09 0.00 0.09 0.00 0.09 0			
Azobenzene 0.1 20 0.09 0.10 0.10 0.10 0.00 - Bromophenyl phenyl ether 0.1 20 0.09 0.10 0.10 0.00 - - 0.09			
Carbazole 0.1 20 0.09 0.50 0.17 0.10 0.12 0.09 0.09 0.00 0.2 0.05 0.17 0.10 0.12 0.05			
TPH Additivity Check HAZARD QUOTIENTS FOR EACH FRACTION HAZARD QUOTIENTS FOR EACH FRACTION			
Aliph 0.00000075 0.00000075 0.00000075 0.00000075 0.00000075			
Aliph 0.00001225 0.00001225 0.00001225 0.00001225 0.00001225			
Alipha 0.000180909 0.000180909 0.000180909 0.000180909 0.0002454545			
Considered additive Alipha 4.23404E-05 4.23404E-05 4.23404E-05 0.000893617			
Alipha 3.3222E-05 3.3222E-05 5.5556E-05 8.88889E-05			
Aliphat 0.00000555 0.00003 0.00000555			
Aliphat 0.00000555 0.00000555 5.5556E-06 0.00000555			
Aroi 1.04651E-07 1.16279E-07 1.04651E-07 1.39535E-06			
Arom 2.72222E-07 2.72222E-07 2.72222E-07 2.72222E-07			
Aroma 0.000117059 0.000235294 0.002823529 0.002823529			
Considered additive 5.85294E-05 5.88235E-05 0.000147059 0.002147059			
Aroma 5.23684E-05 5.23684E-05 7.89474E-05 0.000236842		-	
Considered additive Aroma 0.000106786 0.000714286 0.000714286 0.000714286 0.0001428571			
Aroma 0.000356786 0.001035714 0.001035714 0.002321429			
Aromat 0.000356786 0.000356786 0.000356786 0.000356786 0.000356786			
Hazard Index 0.000256472 0.000278805 0.003437051			
Hazard Index table - HI or HQ greater than 1 highlighted with orange shading. Hazard Index 0.000227957 0.000228251 0.0004613 0.000520743			

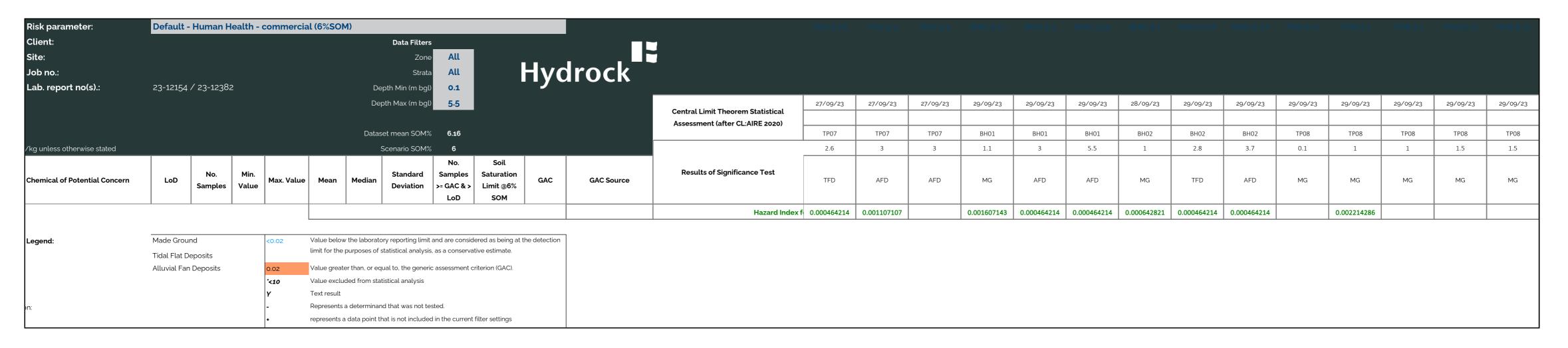


8 of 20 01/12/2023, 09:42

Risk parameter:	Default - Human Health - commercial (6%SOM)																									TP07 @ 2
Client:							Data Filters	·																		
Site:	2							All			drock															
Job no.:							Strata	All		Hva	drock															
Lab. report no(s).:	23-12154	/ 23-12382	2			D	Depth Min (m bgl	0.1	·) .																
						D	epth Max (m bgl	5.5				Central Limit Theorem Statistical	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
												Assessment (after CL:AIRE 2020)														
						Data	aset mean SOM%	6.16					TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06	TP06	TP06	TP07	TP07	TP07	TP07
/kg unless otherwise stated							Scenario SOM%	6					1	1	2	2	2.8	0.3	0.5	1	1.5	2.5	0.2	0.5	1	2
								No.	Soil			Results of Significance Test														
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	Samples >= GAC & >	Saturation Limit @6%	GAC	GAC Source	Results of Significance 1651	MG	MG	MG	MG	TFD	MG	MG							
		·						LoD	SOM																	
Asbestos																										
Asbestos Identified	Y/N	64	-	-	-	-	No. of detects	3	-	-	-	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Asbestos Screen Name		3	-	-	-	-	-		-	-	-	-														
Asbestos Quant. Total	0.001	3	0.001	0.005	0.003	0.002	No. > LOD:	3	-	-	-	-														
Hydrock Default Suite - FOC / SOM	/ pH								-																	
FOC (dimensionless)	0.001	35	0.001	0.090	0.036	0.032	0.02		-	-	-	-	0.049			0.081	0.012		0.026		0.021		0.021		0.045	
SOM (calculated)	0.1724	35	0.16	15.52	6.16	5.52	4.11		-	-	-	-	8.4476			13.9644	2.0688		4.4824		3.6204		3.6204		7.758	
pH (su)	0.1	57	6.90	11.90	9.41	9.70	1.23		-	-	-		11.9	10.6	9.2	8.8	7.5	11.3	9.6	10.1	9.8		10.4	8.3	10.4	10
Hydrock Default Suite - Metals & PA	Н																									
Arsenic	2	35	1.99	58.00	14.00	12.00	9.68	0	NR	640	C4SL - CL:AIRE 2014	Potentially Suitable for Use	14			19	6		24		11		11		13	
Beryllium	0.5	35	0.49	2.30	0.88	0.80	0.43	0	NR	12	Hydrock Derived	Potentially Suitable for Use	0.6			2.3	0.7		1		0.49		0.8		1.3	
Boron	1	35	0.99	2.20	1.08	0.99	0.29	0	NR	240000	Hydrock Derived	Potentially Suitable for Use	0.99			1.9	0.99		0.99		0.99		0.99		0.99	
Cadmium	0.2	35	0.19	1.30	0.38	0.30	0.25	0	NR	410	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.19			0.19	0.19		0.3		0.19		0.3		0.4	
Chromium (III)	2	35	5.00	715.00	145.23	74.00	168.99	0	NR	8400	Hydrock Derived	Potentially Suitable for Use	715			216	11		65		175		57		283	
Chromium (VI)	2	35	1.90	1.99	1.99	1.99	0.02	0	NR	49	C4SL - CL:AIRE 2014	Potentially Suitable for Use	1.99			1.99	1.99		1.99		1.99		1.99		1.99	
Copper	4	35	3.99	503.00	59.26	38.00	86.16	0	NR	68000	Hydrock Derived	Potentially Suitable for Use	97			46	10		158		38 65		102		503 139	
Lead	3	35	2.99	48000.00	1570.97	98.00	8088.89	1	NR NR	2300	C4SL - CL:AIRE 2014	Further Assessment Required	0.99			0.99	0.99		0.99		0.99		0.99		0.99	
Mercury, inorganic	2	35 35	0.99 6.00	0.99	0.99	0.99	0.00 8.13	0	NR	980	Hydrock Derived	Potentially Suitable for Use	20			16	12		17		13		9		14	
Nickel Selenium	2	35	1.99	7.20	15.89 2.15	15.00	0.88	0	NR	12000	Hydrock Derived Hydrock Derived	Potentially Suitable for Use Potentially Suitable for Use	7.2			1.99	1.99		1.99		1.99		1.99		1.99	
Vanadium	1	35	5.00	797.00	200.60	109.00	218.03	0	NR	9000	Hydrock Derived	Potentially Suitable for Use	797			304	16		94		284		73		344	
Zinc	3	35	15.00	537.00	160.11	119.00	128.67	0	NR	730000	Hydrock Derived	Potentially Suitable for Use	163			117	45		230		82		150		164	
Cyanide (free)	1	35	0.99	0.99	0.99	0.99	0.00	0	NR	24	Acute Risk - SoBRA 2020	Potentially Suitable for Use	0.99			0.99	0.99		0.99		0.99		0.99		0.99	
Total Phenols (Monohydric)	2	35	1.99	2.00	1.99	1.99	0.00	0	70308	1300	Hydrock Derived	Potentially Suitable for Use	1.99			1.99	1.99		1.99		1.99		1.99		1.99	
Acenaphthene	0.1	35	0.09	3.36	0.21	0.09	0.56	0	336	110000	Hydrock Derived	Potentially Suitable for Use	0.09			0.09	0.09		0.09		0.56		0.09		0.09	
Acenaphthylene	0.1	35	0.09	0.18	0.09	0.09	0.02	0	506	110000	Hydrock Derived	Potentially Suitable for Use	0.09			0.09	0.09		0.09		0.09		0.09		0.09	
Anthracene	0.1	35	0.09	1.18	0.26	0.11	0.28	0	6.96	540000	Hydrock Derived	Potentially Suitable for Use	0.46			0.09	0.09		0.21		0.09		0.11		0.17	
Benz(a)anthracene	0.1	35	0.09	4.81	0.90	0.58	1.05	0	10.27	180	Hydrock Derived	Potentially Suitable for Use	1.03			0.25	0.09		1.34		0.34		0.62		0.66	
Benzo(a)pyrene	0.1	35	0.09	3.17	0.69	0.52	0.75	0	5.46	77	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.81			0.14	0.09		1.05		0.34		0.09		0.59	
Benzo(b)fluoranthene	0.1	35	0.09	5.16	0.95	0.70	1.10	0	7.29	45	Hydrock Derived	Potentially Suitable for Use	0.83			0.2	0.09		1.49		0.47		0.81		0.84	
Benzo(ghi)perylene	0.1	35	0.09	1.43	0.33	0.09	0.41	0	0.09	4000	Hydrock Derived	Potentially Suitable for Use	0.09			0.09	0.09		0.09		0.31		0.09		0.4	
Benzo(k)fluoranthene	0.1	35	0.09	1.35	0.35	0.26	0.33	0	4.12	1200	Hydrock Derived	Potentially Suitable for Use	0.61			0.09	0.09		0.52		0.15		0.31		0.27	
Chrysene	0.1	35	0.09	5.38	0.92	0.62	1.10	0	2.64	360	Hydrock Derived	Potentially Suitable for Use	0.97			0.23	0.09		1.21		0.35		0.8		0.68	
Dibenz(ah)anthracene	0.1	35	0.09	0.79	0.14	0.09	0.15	0	0.024	3.6	Hydrock Derived	Potentially Suitable for Use	0.09			0.09	0.09		0.09		0.09		0.09		0.13	
Fluoranthene	0.1	35	0.09	8.64	1.42	0.86	1.86	0	113	23000	Hydrock Derived	Potentially Suitable for Use	1.41			0.34	0.09		1.77		0.47		0.9		1	
Fluorene	0.1	35	0.09	1.07	0.15	0.09	0.23	0	183	72000	Hydrock Derived	Potentially Suitable for Use	0.09			0.09	0.09		0.09		0.17		0.09		0.09	
Indeno(123cd)pyrene	0.1	35	0.09	2.10	0.43	0.09	0.53	0	0.37	510	Hydrock Derived	Potentially Suitable for Use	0.09			0.13	0.09		1.2		0.29		0.09		0.43	
Naphthalene	0.1	35	0.09	19.80	1.43	0.27	3.67	0	432	7800	Hydrock Derived	Potentially Suitable for Use	0.74			0.09	0.09		2.12		3.7		0.38		0.33	
Phenanthrene	0.1	35	0.09	5.81	0.89	0.52	1.24	0	214	23000	Hydrock Derived	Potentially Suitable for Use	0.86			0.27	0.09		0.96		0.32		0.55		0.54	
Pyrene PAH 16 Total	0.1	35	0.09	5.83	1.10	0.71	1.30	0	13.2	55000	Hydrock Derived	Potentially Suitable for Use	1.23 Q			1.8	1.59		13.6		7.9		5.2		6.9	
PAH 16 Total	1.6	35	1.59	64.70	9.90	6.80	12.28			-		·	3			1.0	1.33		13.0		1.3		J.2		0.5	
TPH fractions TPH ali EC05-EC06	0.01	30	0.01	0.01	0.01	0.01	0.000	0	1150	12000	Hydrock Derived		0.0099			0.0099	0.0099		0.0099		0.0099		0.0099		0.0099	
TPH all EC05-EC06 TPH all >EC06-EC08	0.01	30	0.01	0.01	0.01	0.01	0.000	0	736	40000	Hydrock Derived	<u> </u>	0.0499			0.0033	0.0099		0.0099		0.0099		0.0499		0.0039	
TPH all >EC06-EC08 TPH all >EC08-EC10	2	30	1.99	344.00	15.03	2.00	62.340	0	451	11000	Hydrock Derived	-	1.999	<u> </u>		1.999	1.999		1.999		1.999		1.999		1.999	
TPH ali >EC10-EC12	2	30	1.99	122.00	8.33	2.00	22.86	0	283	47000	Hydrock Derived	<u> </u>	1.999			1.999	1.999		1.999		1.999		1.999		1.999	
TPH ali >EC12-EC16	3	30	2.99	26.00	5.10	3.00	5.15	0	142	90000	Hydrock Derived	-	2.999			2.999	2.999		2.999		2.999		4		2.999	
TPH ali >EC16-EC35	10	30	9.99	83.00	21.60	10.00	22.62	0	51	1800000	Hydrock Derived	<u> </u>	9.999			9.999	9.999		9.999		9.999		76		9.999	
TPH ali >EC35-EC44	10	30	9.99	20.00	10.50	10.00	2.01	0	51	1800000	Hydrock Derived	-	9.999			9.999	9.999		9.999		9.999		9.999		9.999	
TPH ali >EC5-EC44	30	30	29.99	491.00	58.43	29.99	85.69			-		-	29.99			29.99	29.99		29.99		29.99		80		29.99	
TPH aro EC05-EC07	0.01	30	0.01	12.60	0.53	0.02	2.29	0	4708	86000	Hydrock Derived	-	0.11			0.16	0.0099		0.09		0.04		0.0099		0.0099	
TPH aro >ECo7-ECo8	0.05	30	0.05	0.39	0.08	0.05	0.08	0	4357	180000	Hydrock Derived	-	0.0499			0.0499	0.0499		0.08		0.0499		0.0499		0.0499	
			-	-	-	+	-!	1	-				-													

Risk parameter:	Default -	Human H	lealth - d	commercia	ıl (6%SON	4)							TP05 @ 1	TP05 @ 1	TP05 @ 2	TP05 @ 2	TP05 @ 2.8	TP06 @ 0.3	TP06 @ 0.5	TP06 @ 1	TP06 @ 1.5	TP06 @ 2.5	TP07 @ 0.2	TP07 @ 0.5	TP07 @ 1	TP07 @ 2
Client:							Data Filters																			
Site:							Zone	All			lrock															
Job no.:							Strata	All		Hvo	rock															
Lab. report no(s).:	23-12154	/ 23-12382	2			D€	epth Min (m bgl)	0.1		,,,																
						De	pth Max (m bgl)	5.5				Central Limit Theorem Statistical	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
						Datas	set mean SOM%	6.16				Assessment (after CL:AIRE 2020)	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06	TP06	TP06	TP07	TP07	TP07	TP07
/kg unless otherwise stated							Scenario SOM%						1	1	2	2	2.8	0.3	0.5	1	1.5	2.5	0.2	0.5	1	2
								No.	Soil																	
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation		Saturation Limit @6% SOM	GAC	GAC Source	Results of Significance Test	MG	MG	MG	MG	TFD	MG	MG	MG	MG	MG	MG	MG	MG	MG
TPH aro >EC08-EC10	2	30	1.99	416.00	18.76	2.00	75.53	0	3578	17000	Hydrock Derived	-	1.999			1.999	1.999		10		8		1.999		1.999	
TPH aro >EC10-EC12	2	30	1.99	843.00	34.50	2.00	153.26	0	2149	34000	Hydrock Derived	-	1.999			1.999	1.999		9		13		1.999		1.999	
TPH aro >EC12-EC16	2	30	1.99	115.00	7.57	2.00	20.48	0	1004	38000	Hydrock Derived	-	1.999			1.999	1.999		7		12		3		2	
TPH aro >EC16-EC21	3	30	2.99	78.00	12.03	8.00	15.53	0	321	28000	Hydrock Derived	-	2.999			2.999	2.999		9		2.999		11		13	
TPH aro >EC21-EC35	10	30	9.99	165.00	31.00	10.00	36.55	0	29	28000	Hydrock Derived	-	9.999			9.999	9.999		40		9.999		165		61	
TPH aro >EC35-EC44	10	30	9.99	18.00	10.26	10.00	1.46	0	29	28000	Hydrock Derived	-	9.999			9.999	9.999		9.999		9.999		18		9.999	
TPH aro >EC5-EC44	30	30	29.90	1395.00	106.79	38.00	249.61			-		-	29.99			29.99	29.99		75		34		196		75	
Total TPH >EC5-EC44	60	30	59.90	1886.00	159.92	60.00	334.35			-		-	59.999			59.999	59.999		75		59.999		276		75	
VOCs - BTEX & MTBE																										
Benzene	2	30	0.00	12.59	0.53	0.02	2.29	0	4708	98	C4SL - CL:AIRE 2014	-	0.109			0.162	0.001999		0.092		0.044		0.001999		0.001999	
Toluene	5	30	0.00	0.39	0.05	0.00	0.09	0	4357	180000	Hydrock Derived	-	0.018			0.004999	0.004999		0.082		0.024		0.004999		0.004999	
Ethylbenzene	2	30	0.00	17.16	0.62	0.00	3.13	0	2844	27000	Hydrock Derived	-	0.005			0.18	0.006		0.16		0.012		0.085		0.001999	
Xylene, o-	2	30	0.00	9.78	0.35	0.00	1.78	0	2618	33000	Hydrock Derived	-	0.004			0.04	0.001999		0.051		0.006		0.024		0.001999	
Xylene, p- (or combined m & p)	2	30	0.00	58.53	2.05	0.01	10.67	0	3167	30000	Hydrock Derived	-	0.016			0.157	0.01		0.171		0.034		0.064		0.003	
MTBE	5	30	0.00	0.00	0.00	0.00	0.00	0	62749	22000	Hydrock Derived	-	0.004999			0.004999	0.004999		0.004999		0.004999		0.004999		0.004999	
VOCs - other benzenes																										
Iso-propylbenzene	5	20	0.00	0.01	0.01	0.00	0.00	0	2255	54000	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Propylbenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	2332	100000	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,2,4-Trimethylbenzene	5	20	0.00	0.15	0.02	0.00	0.04	0	3245	9.5	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,3,5-Trimethylbenzene	5	20	0.00	0.16	0.02	0.00	0.04	0	1304	9.5	Hydrock Derived	-	0.004999				0.004999				0.006				0.004999	
VOCs - chlorobenzenes																										
Bromobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	4579	490	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Chlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3494	290	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,2-Dichlorobenzene	5	7	0.00	0.00	0.00	0.00	0.00	0	3239	11000	Hydrock Derived	-														
1,3-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3011	170	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,4-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	1275	21000	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Hexachlorobenzene	0.1	20	0.09	0.09	0.09	0.09	0.00	0	1.19	120	Hydrock Derived	-	0.09				0.09				0.09				0.09	
1,2,4-trichlorobenzene	0.1	20	0.00	0.00	0.00	0.00	0.00	0	1876	1300	Hydrock Derived	-	0.00009				0.00009				0.00009				0.00009	
VOCs - chloroalkanes & alkanes																										
Bromodichloromethane	5	20	0.00	0.00	0.00	0.00	0.00	0	6571	7.1	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Chloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5709	2000	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Chloroethene (aka vinyl chloride)	5	20	0.00	0.00	0.00	0.00	0.00	0	2688	2.2	C4SL - CL:AIRE 2021	-	0.004999				0.004999				0.004999				0.004999	
Chloromethane	10	20	0.01	0.01	0.01	0.01	0.00	0	2987	1.5	Hydrock Derived	-	0.00999				0.00999				0.00999				0.00999	
1,1-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5605	800	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,2-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	7361	29	C4SL - CL:AIRE 2021	-	0.004999				0.004999				0.004999				0.004999	
1,1-Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7944	87	Hydrock Derived	-	0.004999		<u> </u>		0.004999				0.004999				0.004999	
Cis 1,2 Dichloroethene	5 -	20	0.00	0.00	0.00	0.00	0.00	0	12856	44	Hydrock Derived	-	0.004999		<u> </u>		0.004999				0.004999				0.004999	
Trans 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12594	76	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,1,1,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	14017	560	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
1,1,2,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	11983	1100	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Trichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7138	3.4	C4SL - CL:AIRE 2021	-														
1,1,1-Trichloroethane	5	18	0.00	0.00	0.00	0.00	0.00	0	6392	3000	Hydrock Derived	-	0.004999				0.004999				0.004999				0.004999	
Other phenols & chlorophenols	0.1	30	0.00	0.10	0.10	0.10	0.00	0	70200	1200	Hudrook Doning		0.0000				0.0000				0.0000				0.0000	
Phenol 2-Chlorophenol	0.1	20	0.09	0.10	0.10 0.10	0.10	0.00	0 0	70308 306526	1300 4300	Hydrock Derived Hydrock Derived	-	0.0999		<u> </u>		0.0999				0.0999				0.0999	
2,4-Dichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	23348	4200	Hydrock Derived	-	0.0999		<u> </u>		0.0999				0.0999				0.0999	
2,4-Dimethylphenol	0.15	20	0.09	0.10	0.10	0.10	0.00	0	7238	30000	Hydrock Derived	-	0.149999		<u> </u>		0.149999				0.149999				0.149999	
2,4,6-Trichlorophenol	0.15	20	0.15	0.15	0.15	0.15	0.00	0	4679	4300	Hydrock Derived	-	0.0999				0.0999				0.0999				0.0999	
Phthalates	0.1	20	0.03	0.10	0.10	0.10	0.00		70/3	4300	Trydrock Delived	-	3.0000				2.0333				0333				5555	
Diethyl Phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	65	280000	Hydrock Derived		0.0999				0.0999				0.0999				0.0999	
Di-n-octyl phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	196	89000	Hydrock Derived	-	0.0999				0.0999				0.0999				0.0999	
Other organics	V.1	25	3.33	5.10	5.10	3.10	0.00	Ť	130	23000	, a. ook belived		3.0333				5.6555				5.0555				2.3333	
2,4-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	3800	Hydrock Derived		0.0999				0.0999				0.0999				0.0999	
.,	1			<u> </u>		10	1				,				I											

Part	Risk parameter:	Default	- Human F	Health -	commerci	al (6% SO	M)								TP05 @ 1	TP05@2	TP05 @ 2										TP07 @ 2
Part	Client:							Data Filters																			
Part	Site:							Zone	All																		
Part	Job no.:							Strata	All		Hva	irock															
Part	Lab. report no(s).:	23-12154	/ 23-1238	32			De	epth Min (m bgl)	0.1	•	'''																
Part							De	epth Max (m bgl)	5.5				Central Limit Theorem Statistical	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
The proper line in the proper li							Data	set mean SOM%	6.16				Assessment (after CL:AIRE 2020)	TP05	TP05	TP05	TP05	TP05	TP06	TP06	TP06	TP06	TP06	TP07	TP07	TP07	TP07
Mathematical Conting	/kg unless otherwise stated							Scenario SOM%	6					1	1	2	2	2.8	0.3	0.5	1	1.5	2.5	0.2	0.5	1	2
TATION OF TAME AND										l			December of Circuit Courses Total														
Sequence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chemical of Potential Concern	LoD	1		Max. Value	Mean	Median	1	>= GAC & >	Limit @6%	GAC	GAC Source	Results of Significance Test	MG	MG	MG	MG	TFD	MG	MG	MG	MG	MG	MG	MG	MG	MG
The control of the co	2,6-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00		1403	1900	Hydrock Derived	-	0.0999				0.0999				0.0999				0.0999	
Martin M	Styrene	5	20	0.00	0.00	0.00	0.00	0.00	0	3347	23000	Hydrock Derived	-	0.00499				0.00499				0.00499				0.00499	
98. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-Chloronaphthalene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	2100	Hydrock Derived	-	0.0999				0.0999				0.0999				0.0999	
1	Other VOC Suite Substances which	do not have	a GAC																								
Marche M	Bromomethane	10	20	0.01	0.01	0.01	0.01	0.00			-		-	0.00999				0.00999				0.00999				0.00999	
Martin M	Trichlorofluoromethane	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499				0.00499				0.00499				0.00499	
Section 1.	2,2-Dichloropropane	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499				0.00499				0.00499				0.00499	
Marting Conting Cont	1,1-Dichloropropene	10	20	0.01	0.01	0.01	0.01	0.00			-		-	0.00999				0.00999				0.00999				0.00999	
	Dibromomethane	5	20	0.00	-	+	0.00	0.00			-		-														
34. And 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cis-1,3-dichloropropene	5	20	0.00	0.00	+	0.00	0.00			-		-														
Marchander Mar	Trans-1,3-dichloropropene	5	20	+		+	0.00	0.00			-		-														
1	1,3-Dichloropropane	5	20	0.00	0.00	0.00	0.00	0.00			-		-														
State	Dibromochloromethane	5	20	+	_	+	+	0.00			-		-														
Seminor of the control of the contro	1,2-Dibromoethane	5	20	+	0.00	+	+	0.00			-		-														
	2-Chlorotoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499				0.00499				0.00499				0.00499	
Martin	4-Chlorotoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		<u>-</u>					0.00499									
	tert butylbenzene	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499				0.00499				0.00499				0.00499	
Mary Carlon	sec butylbenzene	5	20	0.00	0.00	0.00	0.00	0.00			-		<u>-</u>	0.00499				0.00499				0.00499				0.00499	
Marche M	Isopropyltoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		-														
	n butylbenzene	5	20	+			_				-		-														
Marchander				0.01	0.01	0.01	0.01	0.00			-		-	0.00999				0.00999				0.00999				0.00999	
Mary Control Mary		propropane 10 20 0.01 0.01 0.01 0.00 Substances which do not have a GAC									-		-	0.0999				0.0999				0.0999				0.0999	
New Note	Nitrobenzene			_	_	_	+				-		-	0.0999				0.0999				0.0999				0.0999	
Description of the content of the	Isophorone	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-														
Control Processed Cont	2-Nitrophenol	_		_	+	_	_				-		-														
45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	+	_		+	+																				
	2,4,5-Trichlorophenol	_		_	_		_						-	0.149				0.149				0.149				0.149	
Marie Mari	2-Methylnaphthalene	0.1	20	0.09	1.20	0.29	0.10	0.34			-		-	0.0999				0.0999				1.2				0.0999	
Continue	Dimethyl phthalate		20	_		+	_				-		-														
1	Dibenzofuran			+		_	+						-														
				_	_		+																				
Procession Pro	Azobenzene	_		_			+				-		-	0.0999				0.0999				0.0999				0.0999	
Hadding Cleck HAZARD QUEEN IN FOR RACH FRACTION	Bromophenyl phenyl ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-														
Aliph DEXEMBLE D	Carbazole	0.1		_			0.10	0.12			-			0.0999				0.0999				0.0999				0.2	
Aliph 1,1475-61,	TPH Additivity Check		HAZARD Q	UOTIENTS	FOR EACH F	RACTION																					
Considered additive												-					-	-									
Considered additive Algebra Alge													-														
Alpha 33222-05 3.3222-05								0					<u> </u>														
Alipha 0.0000555 0.00005								Conside	red additive				<u> </u>														
Aligh 0,00005555 0,00005555 0,00005555 0,00005555 0,00005555 0,00005555 0,00005555 0																											
Aron 127907±06 158047±06 1.1510±07												-	<u> </u>				-	 									
Aron 2,772226-07 2,772226-07 4,44444-07 2,772226-07 2,77226-07 2,772226-07 2,7726-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,7726-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07 2,77226-07												-	<u> </u>				 	 			-						
Considered additive												-						 									
Considered additive Aroma 5.87941E-05 5.87941E-05 5.87941E-05 0.000257581 0.000382353 5.87941E-05 0.000382353 5.87941E-05 5.87941E-05 5.87941E-05 0.000382353 0.000315789 7.89474E-05 5.87941E-05 5.87941E-05 0.000382353 0.000315789 0.000315789 0.000315789 0.000315789 0.000315789 0.000315789 0.000315789 0.000315789 0.00031789 0.00031789 0.0000357107 0.0000357107																											
Aroma 5.26053E-05		Considered																									
Considered additive Aromal 0.000107107 0.000107107 0.000107107 0.000321429 0.000107107 0.000392857 0.000464286 Aromal 0.000357107 0.00035710								Conside	reu auditiVe																		
Aroma 0.00357107 0.003																											
Aromat 0.000357107		Considered																									
Hazard Index 0.000257581 0.000257581 0.000257581 0.000257581 0.000257581 0.000257581 0.000257581 0.000257581 0.000257581												l															
																	 	 									
TIGIZATE TITLES TO THE GROUP TO		Hazard Index table - HI or HC								ighted with oran	ige shading						-	1									
		nazaru ir								.J with Oldi	.go or iddining.		nazara inde	0.000220988		I	0.000220988	0.000220388		0.00103/132		0.001100/51		0.00023335		0.000229014	

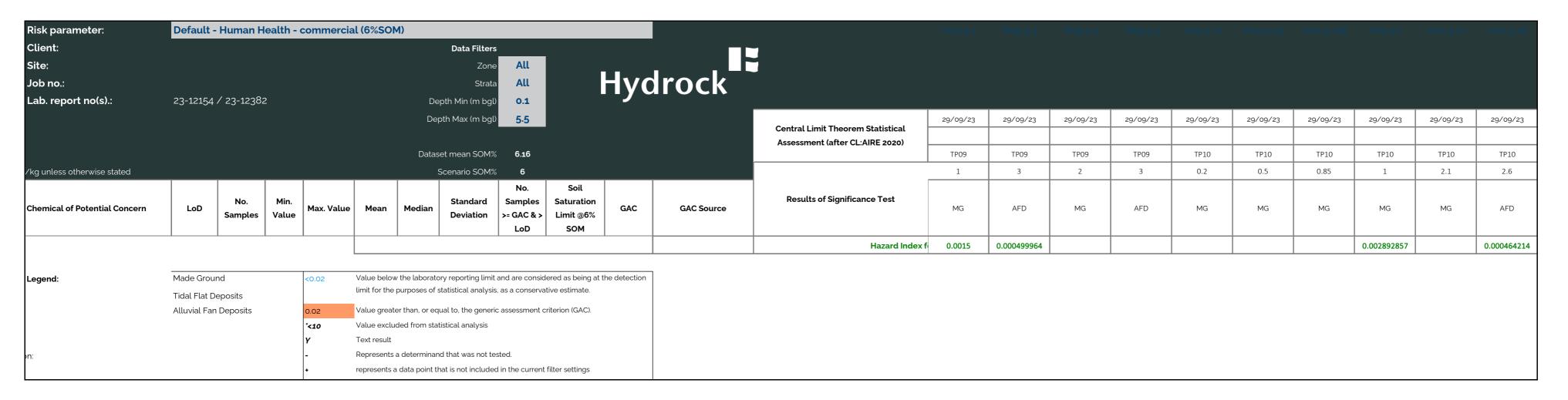


12 of 20 01/12/2023, 09:42

Part	09/23 29/09/23 P08 TP08 1 1.5 MG MG N N 10.3	D8 TP08 5 1.5 G MG
	P08 TP08 1 1.5 MG MG	D8 TP08 5 1.5 G MG
	P08 TP08 1 1.5 MG MG	D8 TP08 5 1.5 G MG
	P08 TP08 1 1.5 MG MG	D8 TP08 5 1.5 G MG
Part	P08 TP08 1 1.5 MG MG	D8 TP08 5 1.5 G MG
Part	1 1.5 MG MG	5 1.5 G MG
Part	1 1.5 MG MG	5 1.5 G MG
Part	MG MG	G MG
Part	N N	I N
Part	N N	I N
Machine Mach		
Part		
Part		
Process Content State Content State Content State Stat	10.3	.3 9
Processor Proc	10.3	.3 9
Contract	10.3	.3 9
Property Service Property Se	10.3	.3 9
Property	10.3	.3 9
Project Format Matter Perfect		
Properties Pro		
Party Marcary Information 1		
Part		
Confirmation 1.0. 4. 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.0		l
Chromism 3D 2 36 5.00 77.500 146.74 74.00 106.99 0.02 0 NR 84.00 Hydrock Invited Potentially Saidable for Use 69 18 830 11 5 580 27 24 501		
Chromismin 1		
Copper A 35 3.99 503.00 59.26 38.00 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 59.26 39.20 39		
Formal F		
Microury, inorganic 1 1 35 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9		
Nicket 3 3 5 6.00 43.00 15.89 15.00 8.13 0 NR 980 Hydrock Derived Potentially Suitable for Use 17 6 29 7 6 18 14 20 1.89 Selenium 2 3 35 1.99 7.20 2.15 1.99 0.88 0 NR 12000 Hydrock Derived Potentially Suitable for Use 1.99 1.99 2.3 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.		
Selenium 2 35 1.99 7.20 2.15 1.99 0.88 0 NR 1200 Hydrock Derived Potentially Suitable for Use 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.9		
Vanadium 1 35 5.00 797.00 200.60 109.00 218.03 0 NR 9000 Hydrock Derived Potentially Suitable for Use 106 24 582 15 5 755 37 32 394 Zinc 3 35 15.00 537.00 160.11 119.00 128.67 0 NR 730000 Hydrock Derived Potentially Suitable for Use 366 28 183 19 15 123 47 56 236 Cyanide (free) 1 35 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9		
Zinc 3 3 5 15.00 537.00 160.11 119.00 128.67 0 NR 730000 Hydrock Derived Potentially Suitable for Use 366 28 183 19 15 123 47 56 236 Cyanide (free) 1 35 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9		
Cyanide (free) 1 35 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9		
Total Phenols (Monohydric) 2 35 1.99 2.00 1.99 1.99 0.00 0 70308 1300 Hydrock Derived Potentially Suitable for Use Acenaphthene 0.1 35 0.09 3.36 0.21 0.09 0.18 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0		
Acenaphthene 0.1 35 0.09 3.36 0.21 0.09 0.56 0 336 11000 Hydrock Derived Potentially Suitable for Use 0.09 0.27 0.09 0.12 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Acenaphthylene 0.1 35 0.09 0.18 0.09 0.09 0.02 0 506 110000 Hydrock Derived Potentially Suitable for Use 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Anthracene 0.1 35 0.09 1.18 0.26 0.11 0.28 0 6.96 540000 Hydrock Derived Potentially Suitable for Use 0.09 0.27 0.58 0.09 0.64 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Benz(a)anthracene 0.1 35 0.09 4.81 0.90 0.58 1.05 0 10.27 180 Hydrock Derived Potentially Suitable for Use 0.58 0.09 0.64 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Total and the second se		
Benzo(a)pyrene 0.1 35 0.09 3.17 0.69 0.52 0.75 0 5.46 77 C4SL - CL:AIRE 2014 Potentially Suitable for Use 0.17 0.14 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Benzo(b)fluoranthene 0.1 35 0.09 5.16 0.95 0.70 1.10 0 7.29 45 Hydrock Derived Potentially Suitable for Use 0.23 0.17 0.70 0.70 0.70 0.70 0.70 0.70 0.70		
Benzo(ghi)perylene 0.1 35 0.09 1.43 0.33 0.09 0.41 0 0.09 4000 Hydrock Derived Potentially Suitable for Use 0.26 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Benzo(k)fluoranthene 0.1 35 0.09 1.35 0.35 0.26 0.33 0 4.12 1200 Hydrock Derived Potentially Suitable for Use 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Chrysene 0.1 35 0.09 5.38 0.92 0.62 1.10 0 2.64 360 Hydrock Derived Potentially Suitable for Use 0.17 0.19 0.63 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Dibenz(ah)anthracene 0.1 35 0.09 0.79 0.14 0.09 0.15 0 0.024 3.6 Hydrock Derived Potentially Suitable for Use 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Fluoranthene 0.1 35 0.09 8.64 1.42 0.86 1.86 0 113 23000 Hydrock Derived Potentially Suitable for Use 0.23 0.46 0.82 0.09 0.09 1.03 0.09 0.09 3.48		
Fluorene 0.1 35 0.09 1.07 0.15 0.09 0.23 0 183 72000 Hydrock Derived Potentially Suitable for Use 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		
Indeno(123cd)pyrene 0.1 35 0.09 2.10 0.43 0.09 0.53 0 0.37 510 Hydrock Derived Potentially Suitable for Use 0.22 0.09 0.09 0.09 0.09 0.09 0.09 0.09		
Naphthalene 0.1 35 0.09 19.80 1.43 0.27 3.67 0 432 7800 Hydrock Derived Potentially Suitable for Use 0.09 0.09 4.06 1.24 0.09 0.62 0.09 0.09 0.43		
Phenanthrene 0.1 35 0.09 5.81 0.89 0.52 1.24 0 214 23000 Hydrock Derived Potentially Suitable for Use 0.18 1.21 0.67 0.09 0.09 0.09 0.09 0.09 1.81		
Pyrene 0.1 35 0.09 5.83 1.10 0.71 1.30 0 13.2 55000 Hydrock Derived Potentially Suitable for Use 0.2 0.36 0.62 0.09 0.85 0.09 0.09 0.09		
PAH 16 Total 1.6 35 1.59 64.70 9.90 6.80 12.28 - 1.7 7.4 9 1.59 7 1.59 1.59 1.59 21.1		
TPH fractions		
TPH ali EC05-EC06 0.01 30 0.01 0.01 0.01 0.01 0.00 0 1150 12000 Hydrock Derived - 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099 0.0099		
TPH ali >EC06-EC08 0.05 30 0.05 0.05 0.05 0.05 0.05 0.00 0 736 40000 Hydrock Derived - 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499		
TPH ali >EC08-EC10 2 30 1.99 344.00 15.03 2.00 62.340 0 451 11000 Hydrock Derived - 1.999 344 1.999 1.999 1.999 1.999 1.999 1.999 1.999 1.999 1.999 1.999		
TPH ali >EC10-EC12 2 30 1.99 122.00 8.33 2.00 22.86 0 283 47000 Hydrock Derived - 1.999 1.999 1.999 1.999 1.999 1.999 1.999 1.999 1.999 1.999		
TPH ali >EC12-EC16 3 30 2.99 26.00 5.10 3.00 5.15 0 142 90000 Hydrock Derived - 2.999 2.999 2.999 2.999 2.999 2.999 2.999 11		
TPH ali >EC16-EC35 10 30 9.99 83.00 21.60 10.00 22.62 0 51 1800000 Hydrock Derived - 9.999 9.999 9.999 9.999 9.999 9.999 9.999 9.999	1	
TPH ali >EC35-EC44 10 30 9.99 20.00 10.50 10.00 2.01 0 51 1800000 Hydrock Derived - 9.999 9.999 9.999 9.999 9.999 9.999 9.999 9.999 9.999		
TPH ali >EC5-EC44 30 30 30 29.99 491.00 58.43 29.99 85.69 - 29.99 29.99 29.99 29.99 29.99 29.99 29.99 29.99 29.99 29.99 29.99		
TPH aro EC05-EC07 0.01 30 0.01 12.60 0.53 0.02 2.29 0 4708 86000 Hydrock Derived - 0.0099 0.0099 0.009 0.009 0.009 0.009 0.0099 0.009 0.009 0.009 0.009 0.0099 0.0099 0.0099 0.009 0.009		
TPH aro >EC07-EC08 0.05 30 0.05 0.39 0.08 0.05 0.08 0 4357 180000 Hydrock Derived - 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499 0.0499		

Risk parameter:	Default -	- Human H	lealth - d	commercia	al (6%SON	M)																				TP08 @ 1.5
Client:							Data Filters																			
Site:							Zone	All			lrock															
Job no.:							Strata	All		Hvc	irock															
Lab. report no(s).:	23-12154	/ 23-12382	2			De	epth Min (m bgl)	0.1		· -) ·																
						De	epth Max (m bgl)	5.5					27/09/23	27/09/23	27/09/23	29/09/23	29/09/23	29/09/23	28/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
												Central Limit Theorem Statistical Assessment (after CL:AIRE 2020)														
						Data	set mean SOM%	6.16				, 100000 ment (a.10)	TP07	TP07	TP07	BH01	BH01	BH01	BH02	BH02	BH02	TP08	TP08	TP08	TP08	TP08
/kg unless otherwise stated							Scenario SOM%	6					2.6	3	3	1.1	3	5.5	1	2.8	3.7	0.1	1	1	1.5	1.5
								No.	Soil																	
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	Samples >= GAC & > LoD	Saturation Limit @6% SOM	GAC	GAC Source	Results of Significance Test	TFD	AFD	AFD	MG	AFD	AFD	MG	TFD	AFD	MG	MG	MG	MG	MG
TPH aro >EC08-EC10	2	30	1.99	416.00	18.76	2.00	75.53	0	3578	17000	Hydrock Derived	-	1.999	416		1.999	1.999	1.999	1.999	1.999	1.999		1.999			
TPH aro >EC10-EC12	2	30	1.99	843.00	34.50	2.00	153.26	0	2149	34000	Hydrock Derived	-	1.999	843		6	1.999	1.999	5	1.999	1.999		1.999			
TPH aro >EC12-EC16	2	30	1.99	115.00	7.57	2.00	20.48	0	1004	38000	Hydrock Derived	-	1.999	115		5	1.999	1.999	4	1.999	1.999		5			
TPH aro >EC16-EC21	3	30	2.99	78.00	12.03	8.00	15.53	0	321	28000	Hydrock Derived	-	2.999	21		10	2.999	2.999	8	2.999	2.999		15			
TPH aro >EC21-EC35	10	30	9.99	165.00	31.00	10.00	36.55	0	29	28000	Hydrock Derived	-	9.999	9.999		35	9.999	9.999	9.999	9.999	9.999		47			
TPH aro >EC35-EC44	10	30	9.99	18.00	10.26	10.00	1.46	0	29	28000	Hydrock Derived	-	9.999	9.999		9.999	9.999	9.999	9.999	9.999	9.999		9.999			
TPH aro >EC5-EC44	30	30	29.90	1395.00	106.79	38.00	249.61			-		-	29.99	1395		57	29.99	29.99	29.99	29.99	29.99		67			
Total TPH >EC5-EC44	60	30	59.90	1886.00	159.92	60.00	334.35			-		-	59.999	1886		59.999	59.999	59.999	59.999	59.999	59.999		78			
VOCs - BTEX & MTBE																										
Benzene	2	30	0.00	12.59	0.53	0.02	2.29	0	4708	98	C4SL - CL:AIRE 2014	-	0.001999	0.001999		0.93	0.045	0.007	0.157	0.015	0.001999		0.039			
Toluene	5	30	0.00	0.39	0.05	0.00	0.09	0	4357	180000	Hydrock Derived	-	0.004999	0.004999		0.387	0.049	0.004999	0.13	0.004999	0.004999		0.024			
Ethylbenzene	2	30	0.00	17.16	0.62	0.00	3.13	0	2844	27000	Hydrock Derived	-	0.018	17.161		0.059	0.013	0.001999	0.025	0.001999	0.001999		0.003			
Xylene, o-	2	30	0.00	9.78	0.35	0.00	1.78	0	2618	33000	Hydrock Derived	-	0.001999	9.78		0.063	0.012	0.001999	0.026	0.001999	0.001999		0.003			
Xylene, p- (or combined m & p)	2	30	0.00	58.53	2.05	0.01	10.67	0	3167	30000	Hydrock Derived	-	0.021	58.528		0.341	0.047	0.005	0.108	0.001999	0.001999		0.011			
MTBE	5	30	0.00	0.00	0.00	0.00	0.00	0	62749	22000	Hydrock Derived	-	0.004999	0.004999		0.004999	0.004999	0.004999	0.004999	0.004999	0.004999		0.004999			
VOCs - other benzenes																										
Iso-propylbenzene	5	20	0.00	0.01	0.01	0.00	0.00	0	2255	54000	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Propylbenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	2332	100000	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,2,4-Trimethylbenzene	5	20	0.00	0.15	0.02	0.00	0.04	0	3245	9.5	Hydrock Derived	-	0.004999			0.034			0.027	0.004999			0.004999			
1,3,5-Trimethylbenzene	5	20	0.00	0.16	0.02	0.00	0.04	0	1304	9.5	Hydrock Derived	-	0.009			0.037			0.043	0.004999			0.004999			
VOCs - chlorobenzenes																										
Bromobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	4579	490	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Chlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3494	290	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,2-Dichlorobenzene	5	7	0.00	0.00	0.00	0.00	0.00	0	3239	11000	Hydrock Derived	-														
1,3-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3011	170	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,4-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	1275	21000	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Hexachlorobenzene	0.1	20	0.09	0.09	0.09	0.09	0.00	0	1.19	120	Hydrock Derived	-	0.09			0.09			0.09	0.09			0.09			
1,2,4-trichlorobenzene	0.1	20	0.00	0.00	0.00	0.00	0.00	0	1876	1300	Hydrock Derived	-	0.00009			0.00009			0.00009	0.00009			0.00009			
VOCs - chloroalkanes & alkanes																										
Bromodichloromethane	5	20	0.00	0.00	0.00	0.00	0.00	0	6571	7.1	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Chloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5709	2000	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Chloroethene (aka vinyl chloride)	5	20	0.00	0.00	0.00	0.00	0.00	0	2688	2.2	C4SL - CL:AIRE 2021	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Chloromethane	10	20	0.01	0.01	0.01	0.01	0.00	0	2987	1.5	Hydrock Derived	-	0.00999			0.00999			0.00999	0.00999			0.00999			
1,1-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5605	800	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,2-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	7361	29	C4SL - CL:AIRE 2021	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,1-Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7944	87	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Cis 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12856	44	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Trans 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12594	76	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,1,1,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	14017	560	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,1,2,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	11983	1100	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Trichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7138	3.4	C4SL - CL:AIRE 2021	-	0.004999			0.004999			0.004999	0.004999			0.004999			
1,1,1-Trichloroethane	5	18	0.00	0.00	0.00	0.00	0.00	0	6392	3000	Hydrock Derived	-	0.004999			0.004999			0.004999	0.004999			0.004999			
Other phenols & chlorophenols																										
Phenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	70308	1300	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
2-Chlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	306526	4300	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
2,4-Dichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	23348	4200	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
2,4-Dimethylphenol	0.15	20	0.15	0.15	0.15	0.15	0.00	0	7238	30000	Hydrock Derived	-	0.149999			0.149999			0.149999	0.149999			0.149999			
2,4,6-Trichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	4679	4300	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
Phthalates																										
Diethyl Phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	65	280000	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
Di-n-octyl phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	196	89000	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
Other organics			0.55	2 : -	0 :-	2.11	2	_		2222			0.0000			0.0000			0.0999	0.0000			0.0000			
2,4-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	3800	Hydrock Derived	-	0.0999			0.0999			0.0333	0.0999			0.0999			

Risk parameter:	Default	- Human F	Health - c	ommerci	al (6% SO	M)																				
Client:							Data Filters	·																		
Site:							Zone	All			lrock															
Job no.:							Strata	All		HVC	irock															
Lab. report no(s).:	23-12154	/ 23-1238	2				Depth Min (m bgl)	0.1		-																
						[Depth Max (m bgl)	5.5				Central Limit Theorem Statistical	27/09/23	27/09/23	27/09/23	29/09/23	29/09/23	29/09/23	28/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
												Assessment (after CL:AIRE 2020)														
						Dat	ataset mean SOM%	6.16					TP07	TP07	TP07	BH01	BH01	BH01	BH02	BH02	BH02	TP08	TP08	TP08	TP08	TP08
/kg unless otherwise stated	_	<u> </u>					Scenario SOM%	6					2.6	3	3	1.1	3	5.5	1	2.8	3.7	0.1	1	1	1.5	1.5
		No	Min				Standard	No. Samples	Soil Saturation			Results of Significance Test														
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Media	Deviation	>= GAC & >	Limit @6%	GAC	GAC Source		TFD	AFD	AFD	MG	AFD	AFD	MG	TFD	AFD	MG	MG	MG	MG	MG
2,6-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	1403	1900	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
Styrene	5	20	0.00	0.00	0.00	0.00	0.00	0	3347	23000	Hydrock Derived	-	0.00499			0.00499			0.00499	0.00499			0.00499			
2-Chloronaphthalene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	2100	Hydrock Derived	-	0.0999			0.0999			0.0999	0.0999			0.0999			
Other VOC Suite Substances which	do not have	a GAC																								
Bromomethane	10	20	0.01	0.01	0.01	0.01	0.00			-		-	0.00999			0.00999			0.00999	0.00999			0.00999			
Trichlorofluoromethane	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
2,2-Dichloropropane	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
1,1-Dichloropropene	10	20	0.01	0.01	0.01	0.01				-		-	0.00999			0.00999			0.00999	0.00999			0.00999			
Dibromomethane	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
Cis-1,3-dichloropropene	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
Trans-1,3-dichloropropene	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
1,3-Dichloropropane	5	20	0.00	0.00	0.00	0.00				-	<u> </u>	-	0.00499			0.00499			0.00499	0.00499			0.00499			
Dibromochloromethane	5	20	0.00	0.00	0.00	0.00		-		-	<u> </u>	-	0.00499			0.00499			0.00499	0.00499			0.00499			
1,2-Dibromoethane	5	+	_		0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
2-Chlorotoluene	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
4-Chlorotoluene	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
tert butylbenzene sec butylbenzene	5	20	0.00	0.00	0.00	0.00				-		-	0.00499			0.00499			0.00499	0.00499			0.00499			
Isopropyltoluene	5	20	0.00	0.00	0.00	0.00				_		-	0.00499			0.00499			0.00499	0.00499			0.00499			
n butylbenzene	5	20	0.00	0.00	0.00	0.00				_		-	0.00499			0.00499			0.00499	0.00499			0.00499			
1,2-Dibromo-3-chloropropane	10	20	0.01	0.01	0.01	0.01				-		-	0.00999			0.00999			0.00999	0.00999			0.00999			
Other SVOC Suite Substances which	h do not hav	e a GAC																								
Bis(2-chloroethyl)ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
Nitrobenzene	0.1	20	0.09	0.10	0.10	0.10				-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
Isophorone 2-Nitrophenol	0.1	20	0.09	0.10	0.10	0.10				-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
Bis(2-chloroethoxy)methane	0.1	20	0.09	0.10	0.10	0.10	_			-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
4-Chloro-3-methylphenol	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
2,4,5-Trichlorophenol	0.15	20	0.15	0.15	0.15	0.15	_			-		-	0.149			0.149			0.149	0.149			0.149			
2-Methylnaphthalene Dimethyl phthalate	0.1	20	0.09	0.20	0.29	0.10	_			-		-	0.0999			0.0999			0.2	0.0999			0.0999			
Dibenzofuran	0.1	20	0.09	0.50	0.15	0.10				-		-	0.0999			0.0999			0.1	0.0999			0.0999			
4-Chlorophenyl phenyl ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
4-Nitroaniline	0.1	20	0.09	0.10	0.10	0.10				-		-	0.0999			0.0999			0.0999	0.0999			0.0999			
Azobenzene Promonhonyl phonyl ether	0.1	20	0.09	0.10	0.10	0.10	_			-	<u> </u>	-	0.0999			0.0999			0.0999	0.0999			0.0999			
Bromophenyl phenyl ether Carbazole	0.1	20	0.09	0.10	0.10	0.10		-		-	<u> </u>	<u>-</u>	0.0999	<u> </u>		0.0999			0.2	0.0999			0.0999			
TPH Additivity Check	312			FOR EACH F		3.20																				
												Ali	iph 0.000000825	0.000000825		0.000000825	0.000000825	0.000000825	0.000000825	0.000000825	0.000000825		0.000000825			
												Ali	iph 1.2475E-06	1.2475E-06		1.2475E-06	1.2475E-06	1.2475E-06	1.2475E-06	1.2475E-06	1.2475E-06		1.2475E-06			
													oha 0.000181727	0.031272727		0.000181727	0.000181727	0.000181727	0.000181727	0.000181727	0.000181727		0.000181727			
							Conside	ered additive				Alipl	ha 4.25319E-05	0.002595745		4.25319E-05	4.25319E-05	4.25319E-05	4.25319E-05	4.25319E-05	4.25319E-05		4.25319E-05			
					L							Alipl	ha 3.33222E-05	0.000288889		3.33222E-05	3.33222E-05	3.33222E-05	3.33222E-05	3.33222E-05	3.33222E-05		0.000122222			
												Aliph	hat 0.000005555	0.000005555		0.000005555	0.000005555	0.000005555	0.000005555	0.000005555	0.000005555		0.000005555			
												Aliph	nat 0.000005555	0.000005555		0.000005555	0.000005555	0.000005555	0.000005555	0.000005555	0.000005555		0.000005555			
												A	roi 1.15116E-07	1.15116E-07		1.0814E-05	4.65116E-07	1.15116E-07	1.86047E-06	1.16279E-07	1.15116E-07		4.65116E-07			
												Arc	or 2.77222E-07	2.77222E-07		2.16667E-06	2.77222E-07	2.77222E-07	7.2222E-07	2.77222E-07	2.77222E-07		2.77222E-07			
												Aroi	ma 0.000117588	0.024470588		0.000117588	0.000117588	0.000117588	0.000117588	0.000117588	0.000117588		0.000117588			
							Conside	ered additive				Aron	na 5.87941E-05	0.024794118		0.000176471	5.87941E-05	5.87941E-05	0.000147059	5.87941E-05	5.87941E-05		5.87941E-05			
						_						Aron	na 5.26053E-05	0.003026316		0.000131579	5.26053E-05	5.26053E-05	0.000105263	5.26053E-05	5.26053E-05		0.000131579			
							Conside	ered additive				Aron	na 0.000107107	0.00075		0.000357143	0.000107107	0.000107107	0.000285714	0.000107107	0.000107107		0.000535714			
							Soliside	- 3 54411170				Aron	na 0.000357107	0.000357107		0.00125	0.000357107	0.000357107	0.000357107	0.000357107	0.000357107		0.001678571			
												Arom	nat 0.000357107	0.000357107		0.000357107	0.000357107	0.000357107	0.000357107	0.000357107	0.000357107		0.000357107			
													dex 0.000257581	0.034157361		0.000257581	0.000257581	0.000257581	0.000257581	0.000257581	0.000257581		0.000346481			
					Hazard In	ndex table	e - HI or HQ greate	r than 1 highl	ghted with oran	ge shading.		Hazard Inde	ex 0.000228988	0.052291022		0.000425638	0.000228988	0.000228988	0.00036991	0.000228988	0.000228988		0.000307961			



16 of 20 01/12/2023, 09:42

Risk parameter:	Default -	- Human F	lealth -	commercia	al (6%SOI	M)																
Client:							Data Filters															
Site:							Zone	All			lidrock											
Job no.:							Strata	All		HYC	arock											
Lab. report no(s).:	23-12154	/ 23-1238	2				epth Min (m bgl)	0.1							l							
						De	epth Max (m bgl)	5.5				Central Limit Theorem Statistical Assessment (after CL:AIRE 2020)	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
						Data	set mean SOM%	6.16				ASSESSMENT (LITTER SELFANCE 2020)	TP09	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP10	TP10
kg unless otherwise stated							Scenario SOM%	6					1	3	2	3	0.2	0.5	0.85	1	2.1	2.6
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	Soil Saturation Limit @6% SOM	GAC	GAC Source	Results of Significance Test	MG	AFD	MG	AFD	MG	MG	MG	MG	MG	AFD
Asbestos																						
Asbestos Identified	Y/N	64	-	-	-	-	No. of detects:	3	-	-	-	-	N	Υ	N	N	N	N	N	N	N	N
Asbestos Screen Name		3	-	-	-	-	-		-	-	-	-		Chrysotile								
Asbestos Quant. Total	0.001	3	0.001	0.005	0.003	0.002	No. > LOD:	3	-	-	-	-		0.001								
Hydrock Default Suite - FOC / SOM	1 / pH								-													
FOC (dimensionless)	0.001	35	0.001	0.090	0.036	0.032	0.02		-	-	-	-	0.048	0.014			0.044	0.032		0.05		0.013
SOM (calculated)	0.1724	35	0.16	15.52	6.16	5.52	4.11		-	-	-	-	8.2752	2.4136			7.5856	5.5168		8.62		2.2412
pH (su)	0.1	57	6.90	11.90	9.41	9.70	1.23		-	-	-	-	10.5	8.9	8.9	10.4	10.2	10.9	9.2	9.4		7.4
Hydrock Default Suite - Metals & PA	AH																					
Arsenic	2	35	1.99	58.00	14.00	12.00	9.68	0	NR	640	C4SL - CL:AIRE 2014	Potentially Suitable for Use	17	8			11	23		21		13
Beryllium	0.5	35	0.49	2.30	0.88	0.80	0.43	0	NR	12	Hydrock Derived	Potentially Suitable for Use	0.9	0.49			0.5	1		0.8		1
Boron	1	35	0.99	2.20	1.08	0.99	0.29	0	NR	240000	Hydrock Derived	Potentially Suitable for Use	0.99	0.99			0.99	0.99		0.99		1.9
Cadmium	0.2	35	0.19	1.30	0.38	0.30	0.25	0	NR	410	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.3	0.19			0.4	0.6		0.8		0.19
Chromium (III)	2	35	5.00	715.00	145.23	74.00	168.99	0	NR	8400	Hydrock Derived	Potentially Suitable for Use	435	91			24	31		74		18
Chromium (VI)	2	35	1.90	1.99	1.99	1.99	0.02	0	NR	49	C4SL - CL:AIRE 2014	Potentially Suitable for Use	1.99	1.99			1.99	1.99		1.99		1.99
Copper	4	35	3.99	503.00	59.26	38.00	86.16	0	NR	68000	Hydrock Derived	Potentially Suitable for Use	73	19			27	56		83		11
Lead	3	35	2.99	48000.00	1570.97	98.00	8088.89	1	NR	2300	C4SL - CL:AIRE 2014	Further Assessment Required	126	36			46	238		196		15
Mercury, inorganic	1	35	0.99	0.99	0.99	0.99	0.00	0	NR	1100	Hydrock Derived	Potentially Suitable for Use	0.99	0.99			0.99	0.99		0.99		0.99
Nickel	3	35	6.00	43.00	15.89	15.00	8.13	0	NR	980	Hydrock Derived	Potentially Suitable for Use	20	14			9	20		39		18
Selenium	2	35	1.99	7.20	2.15	1.99	0.88	0	NR	12000	Hydrock Derived	Potentially Suitable for Use	1.99	1.99			1.99	1.99		1.99		1.99
Vanadium	1	35	5.00	797.00	200.60	109.00	218.03	0	NR	9000	Hydrock Derived	Potentially Suitable for Use	617	111			38	42		102		26
Zinc	3	35	15.00	537.00	160.11	119.00	128.67	0	NR	730000	Hydrock Derived	Potentially Suitable for Use	217	109			132	310	<u> </u>	440		116
Cyanide (free)	1	35	0.99	0.99	0.99	0.99	0.00	0	NR	24	Acute Risk - SoBRA 2020	Potentially Suitable for Use	0.99	0.99			0.99	0.99		0.99		0.99
Total Phenols (Monohydric)	2	35	1.99	2.00	1.99	1.99	0.00	0	70308	1300	Hydrock Derived	Potentially Suitable for Use	1.99	1.99			1.99	1.99		1.99		1.99
Acenaphthene	0.1	35	0.09	3.36	0.21	0.09	0.56	0	336	110000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09			0.09	0.09		0.09		0.09
Acenaphthylene	0.1	35	0.09	0.18	0.09	0.09	0.02	0	506	110000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09			0.09	0.09		0.09		0.09
Anthracene	0.1	35	0.09	1.18	0.26	0.11	0.28	0	6.96	540000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09			0.3	0.42		0.26		0.09
Benz(a)anthracene	0.1	35	0.09	4.81	0.90	0.58	1.05	0	10.27	180	Hydrock Derived	Potentially Suitable for Use	0.51	0.44			1.14	1.91		2.06		0.09
Benzo(a)pyrene	0.1	35	0.09	3.17	0.69	0.52	0.75	0	5.46	77	C4SL - CL:AIRE 2014	Potentially Suitable for Use	0.46	0.26			0.88	1.81		2.08		0.09
Benzo(b)fluoranthene	0.1	35	0.09	5.16	0.95	0.70	1.10	0	7.29	45	Hydrock Derived	Potentially Suitable for Use	0.64	0.43			1.15	2.33		2.63		0.09
Benzo(ghi)perylene	0.1	35	0.09	1.43	0.33	0.09	0.41	0	0.09	4000	Hydrock Derived	Potentially Suitable for Use	0.34	0.16			0.09	1.03		1.41		0.09
Benzo(k)fluoranthene	0.1	35	0.09	1.35	0.35	0.26	0.33	0	4.12	1200	Hydrock Derived	Potentially Suitable for Use	0.21	0.13	1		0.42	0.54		1.22		0.09
Chrysene	0.1	35	0.09	5.38	0.92	0.62	1.10	0	2.64	360	Hydrock Derived	Potentially Suitable for Use	0.49	0.46			1.12	1.97		2.44		0.09
Dibenz(ah)anthracene	0.1	35	0.09	0.79	0.14	0.09	0.15	0	0.024	3.6	Hydrock Derived	Potentially Suitable for Use	0.09	0.09			0.09	0.09		0.52		0.09
Fluoranthene 	0.1	35	0.09	8.64	1.42	0.86	1.86	0	113	23000	Hydrock Derived	Potentially Suitable for Use	0.75	0.73			1.48	2.94		2.94		0.09
Fluorene	0.1	35	0.09	1.07	0.15	0.09	0.23	0	183	72000	Hydrock Derived	Potentially Suitable for Use	0.09	0.09			0.09	0.09		0.09		0.09
Indeno(123cd)pyrene	0.1	35	0.09	2.10	0.43	0.09	0.53	0	0.37	510	Hydrock Derived	Potentially Suitable for Use	0.35	0.16						1.55		0.09
Naphthalene	0.1	35	0.09	19.80	1.43	0.27	3.67	0	432	7800	Hydrock Derived	Potentially Suitable for Use	0.56	0.25	<u> </u>		0.09	0.56		0.39		0.09
Phenanthrene	0.1	35	0.09	5.81	0.89	0.52	1.24	0	214	23000	Hydrock Derived	Potentially Suitable for Use	0.49	0.48	<u> </u>		1.24	2.3		2.02	-	0.09
Pyrene PALLAG Total	0.1	35	0.09	5.83	1.10	0.71	1.30	0	13.2	55000	Hydrock Derived	Potentially Suitable for Use	5.4	0.52	<u> </u>		9.2	18.9		21.3		1.59
PAH 16 Total	1.6	35	1.59	64.70	9.90	6.80	12.28			-		-	J.4	7			J.2	10.3		21.3		1.33
TPH fractions	0.01	30	0.01	0.01	0.01	0.01	0.000		1150	13000	Hoder-to D. 1. 1		0.0099	0.0099						0.0099		0.0099
FPH ali EC05-EC06	0.01	30	0.01	0.01	0.01	0.01	0.000	0	736	12000 40000	Hydrock Derived	-	0.0099	0.0099						0.0099		0.0099
FPH ali >EC06-EC08 FPH ali >EC08-EC10	0.05	30	0.05 1.99	344.00	0.05 15.03	2.00	0.000 62.340	0	451	11000	Hydrock Derived Hydrock Derived	-	1.999	1.999						1.999		1.999
	2	30	1.99	122.00	8.33	2.00	22.86	0	283	47000	Hydrock Derived Hydrock Derived	-	1.999	1.999						1.999		1.999
TPH ali >EC10-EC12	2	_	2.99	26.00	5.10	3.00	5.15	0	142	90000	Hydrock Derived Hydrock Derived	-	2.999	2.999						2.999		2.999
FPH ali >EC12-EC16 FPH ali >EC16-EC35	10	30	+		_	10.00		0			Hydrock Derived Hydrock Derived	-	9.999	9.999						33		9.999
-	10	30	9.99	83.00	21.60	10.00	22.62		51	1800000	Hydrock Derived Hydrock Derived	-	9.999	9.999						9.999		9.999
TPH ali >EC35-EC44	10	30	9.99	-	_	+		0	51		Hydrock Derived	-	29.99	29.99						33		29.99
TDH ali SECT ECAA	20	20	20.00	10100	FO 1.3	101 000	UL L11			-		<u>-</u>			1	1		1	1	. 55	1	23.33
TPH ali >EC5-EC44 TPH aro EC05-EC07	0.01	30	29.99	491.00 12.60	58.43 0.53	29.99	85.69 2.29	0	4708	86000	Hydrock Derived		0.01	0.0099						0.02	—	0.0099

Risk parameter:	Default	- Human F	lealth -	commercia	al (6% SO)	M)							TP09 @ 1	TP09 @ 3	TP09 @ 2	TP09 @ 3	TP10 @ 0.2	TP10 @ 0.5	TP10 @ 0.85	TP10 @ 1	TP10 @ 2.1	TP10 @ 2.6
Client:							Data Filters															
Site:							Zone	All			lrock											
Job no.:							Strata	All		Hyc	irock											
Lab. report no(s).:	23-12154	. / 23-1238	2				epth Min (m bgl) epth Max (m bgl)					Central Limit Theorem Statistical	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
												Assessment (after CL:AIRE 2020)										
							set mean SOM%						TP09	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP10	TP10
/kg unless otherwise stated	П	<u> </u>		1			Scenario SOM%	1	Soil				1	3	2	3	0.2	0.5	0.85	1	2.1	2.6
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	Soil Saturation Limit @6% SOM	GAC	GAC Source	Results of Significance Test	MG	AFD	MG	AFD	MG	MG	MG	MG	MG	AFD
TPH aro >EC08-EC10	2	30	1.99	416.00	18.76	2.00	75.53	0	3578	17000	Hydrock Derived	-	1.999	1.999						1.999		1.999
TPH aro >EC10-EC12	2	30	1.99	843.00	34.50	2.00	153.26	0	2149	34000	Hydrock Derived	-	1.999	1.999						1.999		1.999
TPH aro >EC12-EC16	2	30	1.99	115.00	7.57	2.00	20.48	0	1004	38000	Hydrock Derived	-	1.999	1.999						3		1.999
TPH aro >EC16-EC21	3	30	2.99	78.00	12.03	8.00	15.53	0	321	28000	Hydrock Derived	-	8	4						15		2.999
TPH aro >EC21-EC35	10	30	9.99	165.00	31.00	10.00	36.55	0	29	28000	Hydrock Derived	-	34	9.999						66		9.999
TPH aro >EC35-EC44	10	30	9.99	18.00	10.26	10.00	1.46	0	29	28000	Hydrock Derived	-	9.999	9.999						9.999		9.999
TPH aro >EC5-EC44	30	30	29.90	1395.00	106.79	38.00	249.61			-		-	42	29.99						83		29.99
Total TPH >EC5-EC44	60	30	59.90	1886.00	159.92	60.00	334.35			-		-	59.999	59.999						116		59.999
VOCs - BTEX & MTBE													0.044	0.005						0.010		0.004
Benzene	2	30	0.00	12.59	0.53	0.02	2.29	0	4708	98	C4SL - CL:AIRE 2014	-	0.011	0.006						0.018		0.004
Toluene	5	30	0.00	0.39	0.05	0.00	0.09	0	4357	180000	Hydrock Derived	-	0.007	0.004999						0.015		0.004999
Ethylbenzene	2	30	0.00	17.16	0.62	0.00	3.13	0	2844	27000	Hydrock Derived	-	0.001999	0.001999						0.004		0.001999
Xylene, o-	2	30	0.00	9.78 58.53	0.35	0.00	1.78	0	2618 3167	33000	Hydrock Derived	-	0.001939	0.001999						0.004		0.001999
Xylene, p- (or combined m & p) MTBE	5	30	0.00	0.00	0.00	0.01	0.00	0	62749	22000	Hydrock Derived Hydrock Derived	-	0.004999	0.001939						0.004999		0.001999
VOCs - other benzenes	3	30	0.00	0.00	0.00	0.00	0.00		02743	22000	Trydrock Derived	-	0.001333	0.00 1333						0.00 1333		0.00 1333
Iso-propylbenzene	5	20	0.00	0.01	0.01	0.00	0.00	0	2255	54000	Hydrock Derived		0.004999	0.004999						0.004999		0.004999
Propylbenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	2332	100000	Hydrock Derived	_	0.004999	0.004999						0.004999		0.004999
1,2,4-Trimethylbenzene	5	20	0.00	0.15	0.02	0.00	0.04	0	3245	9.5	Hydrock Derived	_	0.004999	0.004999						0.004999		0.004999
1,3,5-Trimethylbenzene	5	20	0.00	0.16	0.02	0.00	0.04	0	1304	9.5	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
VOCs - chlorobenzenes																						
Bromobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	4579	490	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
Chlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3494	290	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
1,2-Dichlorobenzene	5	7	0.00	0.00	0.00	0.00	0.00	0	3239	11000	Hydrock Derived	-										
1,3-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	3011	170	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
1,4-Dichlorobenzene	5	20	0.00	0.00	0.00	0.00	0.00	0	1275	21000	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
Hexachlorobenzene	0.1	20	0.09	0.09	0.09	0.09	0.00	0	1.19	120	Hydrock Derived	-	0.09	0.09						0.09		0.09
1,2,4-trichlorobenzene	0.1	20	0.00	0.00	0.00	0.00	0.00	0	1876	1300	Hydrock Derived	-	0.00009	0.00009						0.00009		0.00009
VOCs - chloroalkanes & alkanes																						
Bromodichloromethane	5	20	0.00	0.00	0.00	0.00	0.00	0	6571	7.1	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
Chloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5709	2000	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
Chloroethene (aka vinyl chloride)	5	20	0.00	0.00	0.00	0.00	0.00	0	2688	2.2	C4SL - CL:AIRE 2021	-	0.004999	0.004999						0.004999		0.004999
Chloromethane	10	20	0.01	0.01	0.01	0.01	0.00	0	2987	1.5	Hydrock Derived	-	0.00999	0.00999						0.00999		0.00999
1,1-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	5605	800	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
1,2-Dichloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	7361	29	C4SL - CL:AIRE 2021	-	0.004999	0.004999						0.004999		0.004999
1,1-Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7944	87	Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
Cis 1,2 Dichloroethene Trans 1,2 Dichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	12856 12594	76	Hydrock Derived Hydrock Derived	-	0.004999	0.004999						0.004999		0.004999
1,1,1,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	14017	560	Hydrock Derived	<u>-</u>	0.004999	0.004999						0.004999		0.004999
1,1,2,2-Tetrachloroethane	5	20	0.00	0.00	0.00	0.00	0.00	0	11983	1100	Hydrock Derived	<u>-</u>	0.004999	0.004999						0.004999		0.004999
Trichloroethene	5	20	0.00	0.00	0.00	0.00	0.00	0	7138	3.4	C4SL - CL:AIRE 2021	-	0.004999	0.004999						0.004999		0.004999
1,1,1-Trichloroethane	5	18	0.00	0.00	0.00	0.00	0.00	0	6392	3000	Hydrock Derived	-	0.004999	0.004999						-		
Other phenols & chlorophenols											,											
Phenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	70308	1300	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
2-Chlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	306526	4300	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
2,4-Dichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	23348	4200	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
2,4-Dimethylphenol	0.15	20	0.15	0.15	0.15	0.15	0.00	0	7238	30000	Hydrock Derived	-	0.149999	0.149999						0.149999		0.149999
2,4,6-Trichlorophenol	0.1	20	0.09	0.10	0.10	0.10	0.00	0	4679	4300	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
Phthalates																						
Diethyl Phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	65	280000	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
Di-n-octyl phthalate	0.1	20	0.09	0.10	0.10	0.10	0.00	0	196	89000	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
Other organics																						
2,4-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	3800	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999

Risk parameter:	Default -	- Human H	lealth - (commercia	al (6%SOI	M)							TP09 @ 1	TP09 @ 3	TP09 @ 2	TP09 @ 3	TP10 @ 0.2	TP10 @ 0.5	TP10 @ 0.85	TP10 @ 1	TP10 @ 2.1	TP10 @ 2.6
Client:							Data Filters	·														
Site:							Zone	All			lrock											
Job no.:							Strata	All		HVC	drock											
Lab. report no(s).:	23-12154	/ 23-12382	2				epth Min (m bgl pth Max (m bgl			<i>-</i>			29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23
												Central Limit Theorem Statistical Assessment (after CL:AIRE 2020)										
							set mean SOM%						TP09	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP10	TP10
/kg unless otherwise stated				l			Scenario SOM%	т —	Soil				1	3	2	3	0.2	0.5	0.85	1	2.1	2.6
Chemical of Potential Concern	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	Soil Saturation Limit @6% SOM	GAC	GAC Source	Results of Significance Test	MG	AFD	MG	AFD	MG	MG	MG	MG	MG	AFD
2,6-Dinitrotoluene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	1403	1900	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
Styrene	5	20	0.00	0.00	0.00	0.00	0.00	0	3347	23000	Hydrock Derived	-	0.00499	0.00499						0.00499		0.00499
2-Chloronaphthalene	0.1	20	0.09	0.10	0.10	0.10	0.00	0	669	2100	Hydrock Derived	-	0.0999	0.0999						0.0999		0.0999
Other VOC Suite Substances which	do not have a	a GAC																				
Bromomethane	10	20	0.01	0.01	0.01	0.01	0.00			-		-	0.00999	0.00999						0.00999		0.00999
Trichlorofluoromethane	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
2,2-Dichloropropane	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
1,1-Dichloropropene	10	20	0.01	0.01	0.01	0.01	0.00	1		-		-	0.00999	0.00999						0.00999		0.00999
Dibromomethane Cis-1 2-dichloropropene	5	20	0.00	0.00	0.00	0.00	0.00	-		-		-	0.00499	0.00499						0.00499		0.00499
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
1,3-Dichloropropane	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
Dibromochloromethane	5	20	0.00	0.00	0.00	0.00	0.00	1		-		-	0.00499	0.00499						0.00499		0.00499
1,2-Dibromoethane	5	20	0.00	0.00	0.00	0.00	0.00			_		<u> </u>	0.00499	0.00499						0.00499		0.00499
2-Chlorotoluene	5	20	0.00	0.00	0.00	0.00	0.00	1		-		-	0.00499	0.00499						0.00499		0.00499
4-Chlorotoluene	5	20	0.00	0.00	0.00	0.00	0.00			-			0.00499	0.00499						0.00499		0.00499
tert butylbenzene	5	20	0.00	0.00	0.00	0.00	0.00			-		_	0.00499	0.00499						0.00499		0.00499
sec butylbenzene	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
Isopropyltoluene	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
n butylbenzene	5	20	0.00	0.00	0.00	0.00	0.00			-		-	0.00499	0.00499						0.00499		0.00499
1,2-Dibromo-3-chloropropane	10	20	0.01	0.01	0.01	0.01	0.00			-		-	0.00999	0.00999						0.00999		0.00999
Other SVOC Suite Substances which	do not have	a GAC																				
Bis(2-chloroethyl)ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
Nitrobenzene Isophorone	0.1	20	0.09	0.10	0.10 0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
2-Nitrophenol	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
Bis(2-chloroethoxy)methane	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
4-Chloro-3-methylphenol	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
2,4,5-Trichlorophenol 2-Methylnaphthalene	0.15	20	0.15	0.15	0.15	0.15	0.00			-		-	0.149	0.149						0.149		0.149
Dimethyl phthalate	0.1	20	0.09	0.20	0.29	0.10	0.02			-		- -	0.0999	0.0999						0.0999		0.0999
Dibenzofuran	0.1	20	0.09	0.50	0.15	0.10	0.12			-		-	0.0999	0.0999						0.1		0.0999
4-Chlorophenyl phenyl ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
4-Nitroaniline	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
Azobenzene Bromophenyl phenyl ether	0.1	20	0.09	0.10	0.10	0.10	0.00			-		-	0.0999	0.0999						0.0999		0.0999
Carbazole	0.1	20	0.09	0.50	0.17	0.10	0.12			-		-	0.0999	0.3						0.3		0.0999
TPH Additivity Check		HAZARD QU	JOTIENTS	FOR EACH F	RACTION																	
												Alipl	b 0.000000825	0.000000825						0.000000825		0.000000825
												Alipl	h 1.2475E-06	1.2475E-06						1.2475E-06		1.2475E-06
												Aliph	o.000181727	0.000181727						0.000181727		0.000181727
							Conside	ered additive				Alipha	a 4.25319E-05	4.25319E-05						4.25319E-05		4.25319E-05
												Alipha	a 3.33222E-05	3.33222E-05						3.33222E-05		3.33222E-05
												Alipha	at 0.000005555	0.000005555						1.83333E-05		0.000005555
												Alipha	at 0.000005555	0.000005555						0.000005555		0.000005555
													1.16279E-07	1.15116E-07						2.32558E-07		1.15116E-07
													↑ 2.77222E-07	2.77222E-07						2.77222E-07		2.77222E-07
													0.000117588	0.000117588						0.000117588		0.000117588
							Conside	ered additive					a 5.87941E-05	5.87941E-05						5.87941E-05		5.87941E-05
												Aroma	a 5.26053E-05	5.26053E-05						7.89474E-05		5.26053E-05
							Conside	ered additive				Aroma	a 0.000285714	0.000142857						0.000535714		0.000107107
													0.001214286	0.000357107						0.002357143		0.000357107
													at 0.000357107	0.000357107						0.000357107		0.000357107
													0.000257581	0.000257581						0.000257581		0.000257581
					Hazard In	dex table -	HI or HQ greate	er than 1 highli	ighted with orar	nge shading.		Hazard Index	0.000228988	0.000228988						0.00025533		0.000228988

20 of 20 01/12/2023, 09:42

Phytotoxic GQRA

Assessment of Chemicals of Potential Concern to Plant Life

	Risk parameter	r:	Phytotox	cic pH >7										TP01 @ 0.3	TP01 @ 0.6	€ TP01 @ 1.2	: TP01 @ 1.7	TP01 @ 1.7	7 TP02 @ 0.15	TP02 @ 1.6 T	ΓP02 @ 2.5	TP02 @ 2.5	TP02 @ 2.9	TP03 @ 0.4	TP03 @ 1.4	TP03 @ 2.4	TP03 @ 2.5	ξTP04 @ 0.2	2 TP04 @ 0.	3 TP04@1	TP04 @ 1	TP04 @ 1.2	TP04 @ 1.2	TP04 @ 1
	Client	t:	Morgan S						Data Filters			-																						
	Site	e:	SWITCH						Zone	All																								
	Job no.	:	26279						Strata	ALL	Hy	drock																						
	Lab. report no(s).		23-12154	/ 23-1238	32			De	epth Min (m bgl)	0.1	_																							
								De	pth Max (m bgl)	5.5			Date	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	26/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23
													Zone																					
								Da	ataset mean pH	9.41			Location	TP01	TP01	TP01	TP01	TP01	TP02	TP02	TP02	TP02	TP02	TP03	TP03	TP03	TP03	TP04	TP04	TP04	TP04	TP04	TP04	TP04
All values in	mg/kg unless otherwise stated								Scenario pH	>7			Depth (m bgl)	0.3	0.65	1.2	1.7	1.7	0.15	1.6	2.5	2.5	2.9	0.4	1.4	2.4	2.55	0.2	0.3	1	1	1.2	1.2	1.2
CAS No / P Code	Chemical of Potential Concern	Units	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	GAC	GAC Source	Strata	MG	MG	MG	MG	MG	MG	MG	MG	MG	TFD	MG	MG	MG	TFD	MG	MG	MG	MG	MG	MG	MG
,	Hydrock Default Suite - FOC / SOM	I / pH																																
P1334	pH (su)	pH Units	0.1	57	6.90	11.90	9.41	9.70	1.23		-	-		10.7		8.6	9.1		10.2	9.5	9.8		7.7	7.7	9	7.3	6.9	11	10.7	9.9	9.9	9.7		9.9
-	Hydrock Default Suite - Metals & PA	ΛΗ																																
7440-38-2	Arsenic	mg/kg	2	35	1.99	58.00	14.00	12.00	9.68	0	250	MAFF 1998		14		23				12			13	6	13	7	9	10		8				
7440-42-8	Boron	mg/kg	1	35	0.99	2.20	1.08	0.99	0.29	0	5	Nable, et al. 1997		0.99		0.99				0.99			1.2	0.99	0.99	0.99	0.99	0.99		0.99				
16065-83-1	Chromium (III)	mg/kg	2	35	5.00	715.00	145.23	74.00	168.99	3	400	MAFF 1998 (Cr(T))		118		98				250			28	25	175	36	11	210		284				
18540-29-9	Chromium (VI)	mg/kg	2	35	1.90	1.99	1.99	1.99	0.02	0	25	ICRCL 70/90 1990		1.99		1.99				1.99			1.9	1.99	1.99	1.99	1.99	1.99		1.99				
7440-50-8	Copper	mg/kg	4	35	3.99	503.00	59.26	38.00	86.16	1	200	BS3882 2015		91		177				51			13	15	62	16	19	35		36				
7440-02-0	Nickel	mg/kg	3	35	6.00	43.00	15.89	15.00	8.13	0	110	BS3882 2015		19		43				16			12	21	16	6	11	10		12				
7440-66-6	Zinc	mg/kg	3	35	15.00	537.00	160.11	119.00	128.67	5	300	BS3882 2015		228		537				119			51	68	160	479	63	107		93				
Template Vo 1.06: 20/07/		MG TFD AFD	Made Grou Tidal Flat D Alluvial Fan	eposits		<0.02 0.02 64.00 '<10 Y - +	the detect estimate. Value great Value excitemperativalue excitemperat	ion limit for the ater than, or elect saturation recorded from states and determination in the saturation of the saturat	ne purposes of sta qual to, the gener in limit and substar atistical analysis and that was not te	t and are considered a tistical analysis, as a cr ic assessment criterior nce is liquid or solid at ested. d in the current filter s	onservative n (GAC). ambient																							

1 of 3

26/11/2023, 20:05

Assessment of Chemicals of Potential Concern to Plant Life

Risk paramete	r:	Phyto	otoxic	pH >7									TP04 @ 1.	8 TP04@2	BH01 @ 0	2 TP05 @ 0.2	2 TPo5 @ o.;	3 TP05@1	TP05 @ 1	TP05 @ 2	TP05 @ 2	TP05 @ 2.8	8 TPo6 @ 0.3	TP06 @ 0.5	5 TP06@1	TP06 @ 1.5	; TPo6 @ 2.5	TP07 @ 0.2	2 TPo7 @ o	.5 TP07@1	TP07 @ 2	2 TP07 @ 2.0	6 TP07@3	TP07 @ 3	BH01 @ 1.1	1 BH01
Clien	t:		an Sind						Data Filte	rs		_																								
Site	e:	SWIT	CH						Zor	e All	l	ydrock																								
Job no		26279	9						Stra		H	ydrock																								
Lab. report no(s)		23-12	154 / 2	3-12382				С	epth Min (m bo		l '	•																								
								D	epth Max (m bo	D 5.5			27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	27/09/23	29/09/23	29/09.
											•																									
								[Dataset mean p	H 9.41			TP04	TP04	BH01	TP05	TPo5	TP05	TPo5	TPo5	TPo5	TP05	TPo6	TPo6	TPo6	TPo6	TPo6	TP07	TP07	TP07	TP07	TP07	TP07	TP07	BH01	BHos
ng/kg unless otherwise stated									Scenario p				1.8	2	0.2	0.2	0.3	1	1	2	2	2.8	0.3	0.5	1	1.5	2.5	0.2	0.5	1	2	2.6	3	3	1.1	3
	П			No.	Min.	Max.			Standard	No. Samples			_																							+
Chemical of Potential Concern	Units	s Loi	s	amples	Value	Value	Mean	Median	Deviation	>= GAC & > LoD	GAC	GAC Source	MG	MG	MG	MG	MG	MG	MG	MG	MG	TFD	MG	MG	MG	MG	MG	MG	MG	MG	MG	TFD	AFD	AFD	MG	AFD
Hydrock Default Suite - FOC / SOM	1 / pH																																			
pH (su)	pH U	nits 0.:		57	6.90	11.90	9.41	9.70	1.23		-	-	8.7	9.4	10.6	10.6	10.4	11.9	10.6	9.2	8.8	7.5	11.3	9.6	10.1	9.8		10.4	8.3	10.4	10	7.4	7.4	7.6	10.3	8.2
Hydrock Default Suite - Metals & PA	AΗ																																			
Arsenic	mg/	kg 2		35	1.99	58.00	14.00	12.00	9.68	0	250	MAFF 1998	21		9	17		14			19	6		24		11		11		13		58	7		22	1.99
Boron	mg/	kg 1		35	0.99	2.20	1.08	0.99	0.29	0	5	Nable, et al. 1997	0.99		0.99	0.99		0.99			1.9	0.99		0.99		0.99		0.99		0.99		2.2	0.99		0.99	0.99
Chromium (III)	mg/	kg 2		35	5.00	715.00	145.23	74.00	168.99	3	400	MAFF 1998 (Cr(T))	187		25	79		715			216	11		65		175		57		283		66	18		330	11
Chromium (VI)	mg/	kg 2		35	1.90	1.99	1.99	1.99	0.02	0	25	ICRCL 70/90 1990	1.99		1.99	1.99		1.99			1.99	1.99		1.99		1.99		1.99		1.99		1.99	1.99		1.99	1.99
Copper	mg/	kg 4		35	3.99	503.00	59.26	38.00	86.16	1	200	BS3882 2015	58		19	82		64			51	10		63		38		26		503		142	11		76	3.99
Nickel	mg/	kg 3		35	6.00	43.00	15.89	15.00	8.13	0	110	BS3882 2015	15		7	12		20			16	12		17		13		9		14		17	6		29	7
Zinc	mg/	kg 3		35	15.00	537.00	160.11	119.00	128.67	5	300	BS3882 2015	107		88	156		163			117	45		230		82		150		164		366	28		183	19
												_																								
Legend:	MG	Made	Ground			<0.02				nit and are considere tatistical analysis, as a	-																									
	TFD	Tidal F	lat Depo	sits			estimate.	UOTI UITIIL TOI	trie purposes or s	tatisticat ariatysis, as	CONSERVATIVE	*																								
	AFD	Alluvia	l Fan De	posits		0.02	Value gre	ater than, or	equal to, the gen	eric assessment crite	rion (GAC).																									
						64.00	Value exc temperat		on limit and subst	ance is liquid or solid	at ambient																									
						*<10			statistical analysis																											
						Y	Text resu	lt																												
ion:						-	Represen	ts a determin	nand that was not	tested.																										
}						•	represent	s a data poin	t that is not inclu	ded in the current filte	er settings																									

2 of 3

26/11/2023, 20:05

Assessment of Chemicals of Potential Concern to Plant Life

3 of 3

Risk paramete	r:	Phytoto	xic pH >7									BH01 @ 5.5	5 BH02 @ 1	BH02 @ 2.8	3BH02 @ 3.7	7 TP08 @ 0.1	. TP08 @ 1	TP08 @ 1	TP08 @ 1.5	5 TP08 @ 1.5	TP09@1	TPog@3	TP09@2	: TPog@3	TP10 @ 0.	2 TP10 @ 0.	TP10 @ 0.8	TP10 @ 1	TP10 @ 2.1	1 TP10 @ 2
Clier	t:	Morgan S						Data Filters	:																					
Sit	e:	SWITCH						Zone	All																					
Job no	o.:	26279						Strata	ALL	H	/drock																			
Lab. report no(s).:	23-12154	/ 23-12382	2			D€	epth Min (m bgl)	0.1	,																				
							De	pth Max (m bgl)	5.5			29/09/23	28/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/23	29/09/2
							D	ataset mean pH	9.41			BH01	BH02	BH02	BH02	TPo8	TPo8	TPo8	TPo8	TPo8	TP09	TP09	TP09	TP09	TP10	TP10	TP10	TP10	TP10	TP10
ng/kg unless otherwise stated								Scenario pH	>7			5.5	1	2.8	3.7	0.1	1	1	1.5	1.5	1	3	2	3	0.2	0.5	0.85	1	2.1	2.6
Chemical of Potential Concern	Units	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	GAC	GAC Source	AFD	MG	TFD	AFD	MG	MG	MG	MG	MG	MG	AFD	MG	AFD	MG	MG	MG	MG	MG	AFD
Hydrock Default Suite - FOC / SOI	1 / pH																													
pH (su)	pH Units	0.1	57	6.90	11.90	9.41	9.70	1.23		-	-	7.4	11.1	7.9	10	8.4	10.2		10.3	9	10.5	8.9	8.9	10.4	10.2	10.9	9.2	9.4		7.4
Hydrock Default Suite - Metals & P	АН																													
Arsenic	mg/kg	2	35	1.99	58.00	14.00	12.00	9.68	0	250	MAFF 1998	1.99	17	12	5		12				17	8			11	23		21		13
Boron	mg/kg	1	35	0.99	2.20	1.08	0.99	0.29	0	5	Nable, et al. 1997	0.99	0.99	0.99	0.99		0.99				0.99	0.99			0.99	0.99		0.99		1.9
Chromium (III)	mg/kg	2	35	5.00	715.00	145.23	74.00	168.99	3	400	MAFF 1998 (Cr(T))	5	580	27	24		301				435	91			24	31		74		18
Chromium (VI)	mg/kg	2	35	1.90	1.99	1.99	1.99	0.02	0	25	ICRCL 70/90 1990	1.99	1.99	1.99	1.99		1.99				1.99	1.99			1.99	1.99		1.99		1.99
Copper	mg/kg	4	35	3.99	503.00	59.26	38.00	86.16	1	200	BS3882 2015	3.99	59	19	8		53				73	19			27	56		83		11
Nickel	mg/kg	3	35	6.00	43.00	15.89	15.00	8.13	0	110	BS3882 2015	6	18	14	20		18				20	14			9	20		39		18
Zinc	mg/kg	3	35	15.00	537.00	160.11	119.00	128.67	5	300	BS3882 2015	15	123	47	56		236				217	109			132	310		440		116
Legend:	MG	Made Grou	ınd		<0.02				t and are considered	-]																			
	TFD	Tidal Flat D	eposits			estimate.			itistical analysis, as a o																					
	AFD	Alluvial Far	n Deposits		0.02	-			ic assessment criterio																					
					64.00	temnerati	ire		nce is liquid or solid a	t ambient																				
					*<10			atistical analysis																						
					Y	Text result		and that was not to	netad																					
sion:					-				estea. ed in the current filter	- attimus																				

26/11/2023, 20:05

Controlled waters GQRA

Hydrock Scenario: Scenario B - EQS (inland) 2013/39/EU Annex I RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance Water body receptor(s): Groundwater **PH** = priority hazardous substances WFD Designation (2015 Directions) Secondary receptor(s): OP = Other substance identical to previous legislation Data set: Leachate PNEC calculated Client: Morgan (inland EQS) SP = Specific Pollutant Sindall **JAGDAG Hazardous Substances Determination (UK)** Site: SWITCH Job no: 26279 Hazardous substance Test Certificates(s): 23-12382 Non-hazardous pollutant Dataset ALL ZONES Not included in assessment Value Being **Water Quality** No. Samples No. Samples above **Summary of Sample Data Exceeding Water** LoD Exceeding Compared to Target Hazardous **Chemicals of Potential** WFD CAS / AGS Water Quality **Quality Target** Target = Substance Concern Number Designation No. of Maximum Inland Inland Inland 95-%ile Maximum Status No. of Limit of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Waters Samples > Waters Waters Value Samples Detection Value Value Value bioavailability or ABC. EQS LoD **EQS EQS** P1133 Hardness as mg/I CaCO₃ Representative hardness of receiving surface water environment used in some 7440-22-4 Silver (Ag) (dissolved) 0.129 0.2 0.1929 0.2 0.05 Aluminium (Al) (dissolved) 100 686 638.7 686 10 9.6 10 50 7440-38-2 Arsenic (As) (dissolved) 4.999 7440-42-8 NP 71 69.8 71 2000 Boron (B) (dissolved) 50 26 7440-39-3 Barium (Ba) (dissolved) 4.99 26 24.9 n/a 7440-43-9 Cadmium (Cd) (dissolved) 0.399 0.399 0.399 0.399 0.08 EQS (inland) dependent on hardness of receiving surface water environment 1.99 Cobalt (Co) (dissolved) 1.99 1.99 1.99 Chromium (VI) (Cr) (dissolved) 20 19.99 19.99 19.99 3.4 19.99 19.99 4.7 16065-83-1 Chromium (III) (Cr) (dissolved) 20 19.99 19.99 19.99 Chromium (Cr) (total) (dissolved) 7440-47-3 4.99 7440-50-8 Copper (Cu) (dissolved) NP 4.99 18 16.6991 18 Bioavailable EQS (inland) 1000 7439-89-6 Iron (Fe) (dissolved) 15 350 320 350 0.07 7439-97-6 0.66 Mercury (Hg) (dissolved) 0.05 0.049 0.66 0.636 Bioavailable EQS (inland) P1286 Manganese (Mn) (dissolved) 67 70 123 4.99 70 7440-23-5 Sodium (Na) (dissolved) 2.1 4.02 4.2 Nickel (Ni) (dissolved) 4.991 4.9929 4.993 Bioavailable EQS (inland) 4.993 7439-92-1 Lead (Pb) (dissolved) 4.994 4.996 4.9959 4.996 1.2 Bioavailable EQS (inland) 7440-36-0 4.997 4.999 4.999 4.9989 Antimony (Sb) (dissolved) 7782-49-2 NP Selenium (Se) (dissolved) 4.991 4.993 4.9929 4.993 25 4.996 7440-31-5 Tin (Sn) (dissolved) 4.994 4.996 4.9959 7440-62-2 Vanadium (V) (dissolved) 4.99 481 452 EQS (inland) dependent on hardness of receiving surface water environment Bioavailable EQS (inland) + ambient background concentration (ABC) 7440-66-6 Zinc (Zn) (dissolved) NP 23 21.2 23 12.3 4 P1095 Cyanide (free) (hydrogen 4.99 4.99 4.99 4.99 57-12-5 Cyanide (total) 11 10.399 11 n/a P1140 Ammonium (NH₄⁺) 50 3010 2759 3010 NP 300 P1238 Ammnoniacal Nitrogen (as N) 50 144 3010 2759 3010 Ammonia (unionised) (NH₃ as N) |SP P1720 0.5 0.49 0.49 0.49 0.49 n/a {free ammonia} 15541-45-4 Bromate (BrO₃) 8.0 0.799 0.799 0.799 0.799 Chloride (Cl⁻) 0.999 250000 16887-00-6 16984-48-8 Fluoride (F⁻) 0.5 0.499 0.499 0.499 0.499 1000 EQS (inland) dependent on hardness of receiving surface water environment 0.499 0.4999 P1348 Nitrate (NO₃ 0.5 < 0.5 < 0.5 P1349 0.499 0.499 Nitrite (NO₂⁻) 0.499 0.499 14808-79-8 Sulfate (SO₄²⁻) 13 12.7 13 400000 9.67 pH (min.) (su) P1134 7.5 9.7 9.67 9.7 pH (max.) (su) P1287 Electrical conductivity (µS/cm) 63 185 183.1 185 120-12-7 0.099 0.099 0.099 Anthracene 0.1 0.099 0.1 50-32-8 Benzo(a)pyrene Benzo(a)pyrene EQS used as marker substance for the group of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, 0.1 0.099 0.099 0.099 0.099 0.00017 benzo(g,h,i)perylene & indeno (1,2,3-cd)pyrene 0.099 0.0063 206-44-0 Fluoranthene 0.1 0.099 0.099 0.099 NP 0.099 0.34 0.3159 0.34 91-20-3 Naphthalene 0.1 GRP01 PAHs = sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3-0.16 0.159 0.46 0.4299 0.46 cd)pyrene P1877 0.099 0.099 0.099 7.7 Phenol NP 0.1 0.099 P1407 Ali EC5-EC6 9.99 9.99 9.99 9.99 10 n-hexane fall within this fraction P1408 Ali >EC6-EC8 9.99 9.99 9.99 9.99 10 n-heptane falls within this fraction P1409 Ali >EC8-EC10 9.99 9.99 9.99 9.99 10 n-octane and n-nonane fall within this fraction P1410 Ali >EC10-EC12 10 9.99 9.99 9.99 9.99 P1411 Ali >EC12-EC16 10 9.99 9.99 9.99 9.99 P1938 Ali >EC16-EC35 9.99 9.99 10 10 9.99 9.99 10 P1415 Ali >EC35-EC44 10 9.99 9.99 9.99 9.99 P1441 Aro EC5-EC7 10 9.99 9.99 9.99 9.99 10 Benzene wholly representative of this fraction P1355 Aro >EC7-EC8 10 9.99 9.99 9.99 9.99 10 Toluene wholly representative of this fraction

9.99

9.99

9.99

9.99

9.99

9.99

9.99

9.99

9.99

9.99

10

10

10

9.99

9.99

9.99

9.99

9.99

9.99

9.99

9.99

9.99

9.99

10

10

10

10

Ethylbenzene / xylene / trimethylbenzene representative of this range

2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction

Naphthalene often forms a reasonable percentage of this fraction

fluorene, anthracene, phenanthrene, pyrene falls within this range

Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene,

benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction

P1356

P1357

P1358

P1359

P1360

Aro >EC8-EC10

Aro >EC10-EC12

Aro > EC12-EC16

Aro >EC16-EC21

Aro >EC21-EC35

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples

Water body receptor(s): Groundwater
Secondary receptor(s):
Data set: Leachate
Client: Morgan
Sindall
Site: SWITCH
Job no: 26279

P= priority substance
PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation

SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK)

H Hazardous substance
NP Non-hazardous pollutant
(blank) Not included in assessment

	Job no: Test Certificates(s):													H NP	Hazardous substance
		ALL ZONES												(blank)	Non-hazardous pollutant Not included in assessment
	Chemicals of Potential		Hazardous			Summary of	Sample Data	ı		Value Being Compared to	Water Qua Target	-	No. Samples Exceeding Water	No. Samples above	
CAS / AGS Number	Concern (concentrations in μg/l)	WFD Designation	Substance Status	No. of Samples	No. of Samples >	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Target = Maximum Value	W	land aters	Quality Target Inland Waters	Water Quality Inland Waters	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1362	Aro >EC35-EC44			3	LoD	10	9.99	9.99	9.99	9.99		1 0	EQS	EQS 0	induranasiin, c. 7.20.
71-43-2	Benzene	P	Н	3	0	10	0.99	0.99	0.99	0.99		10	0	0	
108-88-3	Toluene	SP	Н	3	0	5	4.99	4.99	4.99	4.99		74	0	0	
100-41-4	Ethylbenzene		Н	3	0	5	4.99	4.99	4.99	4.99		20	0	0	Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4. EA 2001
95-47-6	o-Xylene		Н	3	0	5	4.99	4.99	4.99	4.99		30	0	0	EQS for total xylene
P1374 1634-04-04	m,p-Xylene Methyl tertiary butyl ether (MTBE)		H NP	3	0	10	9.99	9.99	9.99	9.99		30	0	0	EQS for total xylene
74.55.0	A A A Trible and the sec			3	0	10	9.99	9.99	9.99	9.99		n/a			
71-55-6 79-00-5	1,1,1-Trichloroethane 1,1,2-Trichloroethane		NP NP	3	0	5 10	4.99 9.99	4.99 9.99	4.99 9.99	4.99 9.99		100 400	0	0	
96-12-8	1,2-Dibromo-3-chloropropane		NP	3	0	10	9.99	9.99	9.99	9.99		400 n/a	U	U	
106-93-4	1,2-Dibromoethane		Н	3	0	5	4.99	4.99	4.99	4.99		n/a			
95-50-1	1,2-Dichlorobenzene		Н	3	0	5	4.99	4.99	4.99	4.99		20	0	0	
107-06-2	1,2-Dichloroethane (EDC)	P	NP	3	0	10	9.99	9.99	9.99	9.99		10	0	0	
156-59-2	cis 1,2-Dichloroethene (cis 1,2 DCE)		NP	3	0	5	4.99	4.99	4.99	4.99		n/a			
156-60-5	trans 1,2-Dichloroethene (trans 1,2 DCE)		NP	3	0	5	4.99	4.99	4.99	4.99		n/a			
78-87-5	1,2-Dichloropropane		Н	3	0	5	4.99	4.99	4.99	4.99		n/a			
10061-01-5	cis 1,3-Dichloropropene		Н	3	0	5	4.99	4.99	4.99	4.99		n/a			
10061-02-6	trans 1,3-Dichloropropene		H	3	0	5	4.99	4.99	4.99	4.99		n/a			
106-46-7 75-27-4	1,4-Dichlorobenzene		H	3	0	5	4.99	4.99	4.99	4.99		20	0	0	
75-27-4 75-01-4	Bromodichloromethane Chloroethene (vinyl chloride)		L	3	0	5 5	4.99 4.99	4.99 4.99	4.99 4.99	4.99 4.99		n/a n/a			
124-48-1 25321-22-6	Dibromochloromethane Dichlorobenzenes (1,2-, 1,3- &			3	0	5	4.99	4.99	4.99	4.99		n/a			
75-09-2	1,4-) Dichloromethane	P	NP	3	0	5	4.99	4.99	4.99	4.99		20	0	0	
87-68-3	Hexachlorobutadiene (HCBD)	PH	H	3	0	5	4.99	4.99	4.99	4.99		0.6	3	0	
100-42-5	Styrene		H	3	0	5	4.99	4.99	4.99	4.99		50	0	0	
25322-20-7	Tetrachloroethane (PCA)	SP		3	0	5	4.99	4.99	4.99	4.99		140	0	0	
127-18-4	Tetrachloroethene (PCE)	OP	NP	3	0	5	4.99	4.99	4.99	4.99		10	0	0	
GRP02	Tetrachloroethene (PCE) and trichloroethene (TCE)			3	0	5	4.99	4.99	4.99	4.99		n/a			
56-23-5	Tetrachloromethane (Carbon Tetrachloride)	OP	H	3	0	5	4.99	4.99	4.99	4.99		12	0	0	
75-25-2	Tribromomethane (bromoform)			3	0	10	9.99	9.99	9.99	9.99		n/a			
12002-48-1	Trichlorobenzenes	P	NP	3	0	0.1	0.09	0.09	0.09	0.09		0.4	0	0	
79-01-6 67-66-3	Trichloroethene Trichloromethane (chloroform)	OP	H	3	0	5	4.99 4.99	4.99 4.99	4.99 4.99	4.99 4.99		10 2.5	0	0	
GRP03	Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane & bromodichloromethane			0		3	4.33	4.33	4.33	4.33		n/a			
88-06-2	2,4,6-Trichlorophenol		Н	3	0	0.1	0.09	0.09	0.09	0.09		n/a			
120-83-2	2,4-Dichlorophenol	SP	Н	3	0	0.1	0.09	0.09	0.09	0.09		4.2	0	0	
95-57-8 554-00-7	2-Chlorophenol 3,4-Dichloroaniline	SP	H	3	0	0.1	0.09	0.09	0.09	0.09		50	0	0	
108-43-0	3-Chlorophenol	34	Ш	0								0.2 50			
59-50-7	4-Chloro, 3-methylphenol		H	0								40			
106-48-9	4-Chlorophenol		Н	0								50			
85-68-7 117-81-7	Benzyl butyl phthalate Di(2-ethylhexylphthalate) (DEHP)	SP PH	NP	3	0	0.1	0.09	0.09	0.09	0.09		7.5	0	0	
				3	0	0.1	0.091	0.093	0.0929	0.093		1.3	0	0	
84-74-2	Dibutyl phthalate		NP	3	0	0.1	0.094	0.096	0.0959	0.096		8	0	0	
84-66-2	Diethyl phthalate (DEP)			3	0	0.1	0.09	0.098	0.0979	0.098		200	0	0	
131-11-3 117-84-0	Dimethyl phthalate (DMP) Dioctyl phthalates			3	0	0.1 0.1	0.09	0.09	0.09	0.09		800 20	0	0	
118-74-1		PH	H	3	0	0.1	0.09	0.09	0.09	0.09		0.05	3	0	
104-40-5 140-66-9		PH		0								0.3			
	-phenol))			0						necession of the second of the		0.1			
608-93-5		PH	Н	0			<u> </u>					.007			
123-91-1	1,4-dioxane			0								n/a			
79-06-1 92-52-4	Acrylamide Biphenyl		Н	0								n/a			
32534-81-9	(cyclochlorocyclohexane) Brominated diphenylethers (Sum	PH	Н	0								25			
	congeners 28,47,99,100,153,154)			0								0.14			

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Leachate

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: 26279 Hazardous substance Test Certificates(s): 23-12382 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment

	Datase	t ALL ZONES													(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance			Summary of	Sample Data	1		Value Being Compared to Target =	Water (get ed if Red	Exceed	ling Water y Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in µg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value		Inland Waters EQS		Inland Waters EQS	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
85535-84-8	Chloroalkanes C10-C13	PH	Н	0	LOD						1	0.4		LQJ	LQS	
25567-68-4	Chloronitrotoluenes		Н	0								10				
3252-43-5	Dibromoacetonitrile			0								n/a				
13425-80-4	Dichloroacetate			0								n/a				
3018-12-0	Dichloroacetonitrile	Bu		0								n/a				
GRP04	Dioxins and dioxin-like compounds	PH		0								n/o				
3194-55-6	Hexabromocyclododecanes	PH	Н	U								n/a				
0101000	(HBCDD)	l	• •	0								0.0016				
2163-68-0	Hydroxyatrazine			0								n/a				
	Microcystin-LR			0								n/a				
62-75-9	N-nitrosodimethylamine			0								n/a				
1763-23-1	Perfluroctane sulfonic acid	PH	Н	0								0.00005				
335-67-1	(PFOS) & derivatives Perfluorooctanoic Acid (PFOA)	PH		0								0.00065				
	, ,	FN		0								n/a				
1336-36-3	Polychlorinated Biphenyls (PCB)		Н	0								n/a				
2893-78-9	Sodium dichloroisoxyanurate	_		0								n/a				
126-73-8	Tributyl phosphate	lep	H	0						0000		50				
3380-34-5 7726-95-6	Triclosan Bromine (Br)	SP		0	Managaria Managa							0.1				+
7782-50-5	Chlorine (total free available)	SP	NP	0								2				
14866-68-3	Chlorate	0.		0								n/a				
	Chlorite			0								n/a				
60-00-4	EDTA (edetic acid)			0								400				
106-89-8	Epichlorohydrin		Н	0								n/a				
569-64-2	Malachite green		Н	0								0.5				
10599-90-3 79-11-8	Monochloramine Mononchloroacetate			0								n/a				
79-11-6	(Chloroacetic Acid)			0								n/a				
139-13-9	NTA (nitrilotriacetic acid)			0								1000				
76-03-9	Trichloroethanoic acid															
	(trichloroacetate)			0								n/a				
7440-61-1	U (dissolved)			0								n/a				
36643-28-4	Tributyl tin compounds	PH	Н	0								0.0002				
7783-06-4 14797-73-0	Hydrogen Sulphide Perchlorate			0								n/a				
GRP06	Total anions			0								250000				
93-76-5	2,4,5-T (2,4,5-		Н													
	Trichlorophenoxyacetic acid)			0								n/a				
94-75-7	2,4-D (2,4-Dichlorophenoxyacetic acid)	SP		0								0.0				
94-82-6	2,4-DB (4-(2,4-dichlorophenoxy			U								0.3				
34-02-0	butyric acid)			0								n/a				
71751-41-2	Abamectin			0								0.01				
	Aclinofen	P		0								0.12				
	Alachlor	P	Н	0								0.3				
116-06-3	Aldicarb		NP	0								n/a				
309-00-2 GRP07	Aldrin & dieldrin		H	0								n/a n/a	 			
1912-24-9	Atrazine	P	Н	0								0.6				
35575-96-3	Azamethiphos	1	· -	0								n/a				
2642-71-9	Azinphos ethyl		Н	0								n/a				
86-50-0	Azinphos-methyl		Н	0								0.01				
	Bentazone	<u> </u>	NP	0								500				
42576-02-3	Bifenox		H	0								0.012 100				
1689-84-5 10605-21-7	Bromoxynil Carbendazim	SP	Н	0				1				0.15				
1563-66-2	Carbofuran	1	NP	0								n/a				
57-74-9	Chlordane		Н	0				1				n/a	1			
470-90-6	Chlorofenvinphos	P	Н	0								0.1				
101-21-3	Chloropropham		Н	0								10				
2921-88-2	Chloropyrifos		H	0		-						0.03				
	Chlorothalonil Chlorotoluron	SP	Н	0								0.035				
	Chlorotoluron Clyclodiene pesticides, sum of	OP	H	U	- Annual Control Contr						100	2				
	Aldrin, Dieldrin, Endrin, Isodrin]		0								0.01				
56-72-4	Coumaphos	1	Н	0								0.01	1			
21725-46-2	Cyanazine		Н	0								n/a				
	Cybutryne	P		0								0.0025				
68359-37-5		-		0	and the same of th	-						0.001				
52315-07-8	Cypermethrin	P	Н	0	Tananananananananananananananananananan							0.00008				

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Leachate Client: Morgan (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: Hazardous substance Test Certificates(s): 23-12382 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding Hazardous Chemicals of Potential CAS / AGS WFD Target = **Quality Target** Water Quality Substance Concern Number Designation No. of Maximum Inland Inland Inland (concentrations in µg/l) Limit of Minimum Maximum 95-%ile No. of EQS compared to dissolved metals as an initial screen, with no adjustment for Status Waters Waters Waters Samples > Value bioavailability or ABC. Value Value Value Samples Detection EQS **EQS** EQS LoD GRP09 (dichlorodiphenylthrichloroethane) 0.025 0.5 8065-48-3 Demeton 333-41-5 Diazinon (sheep dip) 0.01 120-36-5 Dichloroprop 0.0006 62-73-7 Dichlorvos 115-32-2 Dicofol 0.0013 Dieldrin 60-57-1 35367-38-5 Diflubenzuron 0.001 60-51-5 Dimethoate 0.48 330-54-1 Diuron 0.2 117704-25- 3 Doramectin 0.001 0.005 115-29-7 Endosulfan 72-20-8 Endrin 299-84-3 Fenchlorphos 0.03 122-14-5 Fenitrothion 0.01 Fenoprop ((2,4,5trichlorophenoxy)propionic acid) 55-38-9 Fenthion 370-50-3 Flucofuron 50-00-0 Formaldehyde (methanal) 38641-94-0 Glyphosate 196 76-44-8 Heptachlor 2E-07 Heptachlor & Heptachlor epoxide PH 2E-07 1024-57-3 Heptachlor epoxide 2E-07 608-73-1 Hexachlorocyclohexane (inlcudes PH 0.02 lindane) 1689-83-4 10 loxynil 465-73-6 Isodrin 34123-69-6 Isoproturon NP 0.3 70288-86-7 Ivermectin 0.0001 330-55-2 0.5 Linuron 121-75-5 Malathion 0.01 NP 8018-01-07 Mancozeb 12427-38-2 Maneb NP MCPA (4-(2-methyl-4chlorophenoxy acetic acid)) 12 EQS inland dependant on pH. Default 12µg/l as conservative approach Mecoprop 93-65-2 2032-65-7 Methiocarb NP 0.01 72-43-5 Methoxychlor 51218-45-2 Metolachlor 7786-34-7 Mevinphos 0.02 2212-67-1 Molinate 0.01 1113-02-6 Omethoate 50-29-3 0.01 para-para-DDT 56-38-2 Parathion 298-00-0 Parathion-methyl n/a GRP11 PCSDs (cyfluthrin, sulcofuron, flucofuron 0.05 and permethrin) 40487-42-1 Pendimethalin 0.3 Pentachlorophenol 87-86-5 0.4 52645-53-1 Permethrin 0.001 Pesticides (individual) (other than aldrin, dieldrin, heptachlor & heptachlor epoxide) GRP13 Pesticides (total) n/a 1

0.015

0.03

100

0.15

25

0.065

n/a

23103-98-2 Pirimicarb

67747-09-5 Prochloraz 31218-83-4 Propetamphos

23950-58-5 Propyzamide

95737-68-1 Pyriproxyfen 124495-18-7 Quinoxyfen

122-34-9

3567-25-7

117-18-0

886-50-0

5915-41-3

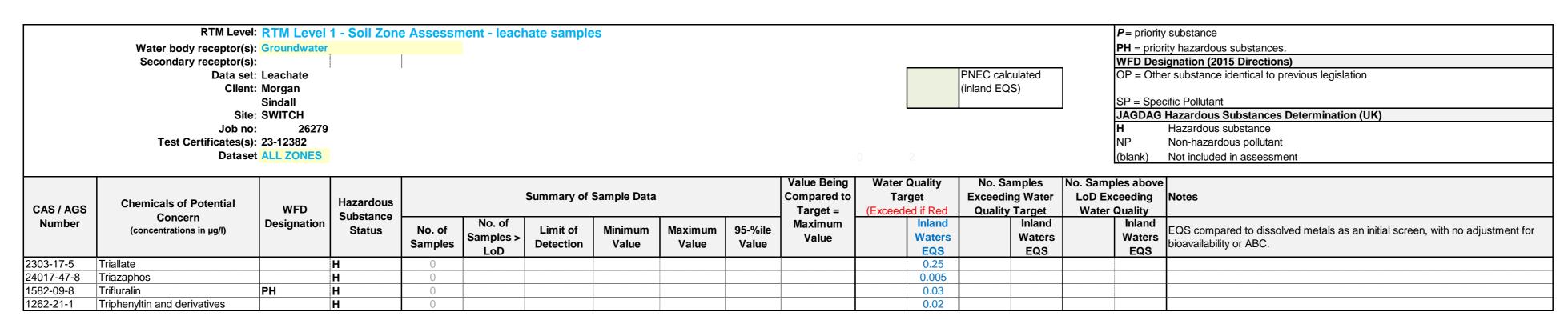
148-79-8

29232-93-7 Pirimiphos - methyl

Simazine

Sulcofuron

Tertbutryn


Tertbutylazine

Thiabendazole

Tecnazene (total)

NP

SWITCH RTM L1+L2 - DETS 23-12382.2, Summary 5 of 5

Hydrock Scenario: Scenario C - EQS (other) 2013/39/EU Annex I RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance Water body receptor(s): Groundwater **PH** = priority hazardous substances WFD Designation (2015 Directions) Secondary receptor(s): OP = Other substance identical to previous legislation Data set: Leachate PNEC calculated Client: Morgan (inland EQS) SP = Specific Pollutant Sindall **JAGDAG Hazardous Substances Determination (UK)** Site: SWITCH Hazardous substance Job no: Non-hazardous pollutant Test Certificates(s): 23-12382 Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above **Summary of Sample Data** Compared to **Exceeding Water** LoD Exceeding Target Hazardous **Chemicals of Potential** WFD CAS / AGS Water Quality **Quality Target** Target = Substance Concern Number Designation No. of Maximum Other Other 95-%ile Limit of Maximum Status No. of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Waters Samples > Waters Waters Value Samples Detection Value Value Value bioavailability or ABC. EQS LoD **EQS** EQS P1133 Hardness as mg/I CaCO₃ 7440-22-4 Silver (Ag) (dissolved) 0.13 0.129 0.2 0.1929 0.2 0.5 7429-90-5 Aluminium (AI) (dissolved) 100 686 638.7 686 10 9.6 10 25 7440-38-2 Arsenic (As) (dissolved) 2 4.999 7440-42-8 Boron (B) (dissolved) NP 71 69.8 71 7000 50 Barium (Ba) (dissolved) 7440-39-3 4.99 26 24.9 26 n/a 7440-43-9 Cadmium (Cd) (dissolved) 0.2 0.399 0.399 0.399 0.399 1.99 Cobalt (Co) (dissolved) 1.99 1.99 1.99 Chromium (VI) (Cr) (dissolved) 20 19.99 19.99 19.99 0.6 19.99 19.99 16065-83-1 Chromium (III) (Cr) (dissolved) 20 19.99 19.99 19.99 n/a Chromium (Cr) (total) (dissolved) 7440-47-3 4.99 7440-50-8 Copper (Cu) (dissolved) NP 4.99 18 16.6991 18 3.76 EQS (other) is a function of DOC and may exceed the stated value. 1000 7439-89-6 Iron (Fe) (dissolved) 15 350 320 350 0.07 7439-97-6 0.66 Mercury (Hg) (dissolved) 0.05 0.049 0.66 0.636 P1286 Manganese (Mn) (dissolved) 67 70 4.99 70 n/a 7440-23-5 Sodium (Na) (dissolved) 2.1 4.02 4.2 7440-02-0 Nickel (Ni) (dissolved) 4.991 4.993 4.9929 4.993 8.6 7439-92-1 Lead (Pb) (dissolved) 4.994 4.996 4.9959 4.996 1.3 7440-36-0 4.997 4.9989 4.999 4.999 Antimony (Sb) (dissolved) 7782-49-2 NP Selenium (Se) (dissolved) 4.991 4.993 4.9929 4.993 10 4.994 4.996 7440-31-5 Tin (Sn) (dissolved) 4.996 4.9959 7440-62-2 Vanadium (V) (dissolved) 4.99 481 452 100 7440-66-6 Zinc (Zn) (dissolved) NP 23 21.2 23 7.9 EQS (other) + ambient background concentration (ABC) 4 P1095 Cyanide (free) (hydrogen 4.99 4.99 4.99 4.99 57-12-5 Cyanide (total) 11 10.399 11 3010 P1140 Ammonium (NH₄⁺) 50 3010 2759 n/a Ammnoniacal Nitrogen (as N) NP P1238 50 144 3010 2759 3010 n/a Ammonia (unionised) (NH₃ as N) |SP P1720

RTM Level Priority substance
Water body receptor(s): Groundwater
Secondary receptor(s): Groundwater
Secondary receptor(s): Data set: Leachate
Client: Morgan
Sindall
Site: SWITCH
Job no: 26279
Test Certificates(s): 23-12382
Dataset ALL ZONES

RTM Level 1 - Soil Zone Assessment - leachate samples

PH = priority substance
PH = priority substances.
WFD Designation (2015 Directions)
OP = Other substance identical to previous legislation
SP = Specific Pollutant
JAGDAG Hazardous Substances Determination (UK)
H Hazardous substance
NP = priority substances.

WFD Designation (2015 Directions)
OP = Other substance identical to previous legislation
SP = Specific Pollutant
JAGDAG Hazardous Substances Determination (UK)
H Hazardous substance
NP Non-hazardous pollutant
(blank) Not included in assessment

	Datasci	ALL ZUNES												(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous			Summary of	Sample Data			Value Being Compared to Target =	Taı	Quality rget ed if Red	No. Samples Exceeding Water Quality Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in µg/l)	Designation	Substance Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	(EXCOCC	Other Waters EQS	Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1362	Aro >EC35-EC44		**************************************	3	0	10	9.99	9.99	9.99	9.99		10	0	0	
71-43-2	Benzene	P	Н	3	0	1	0.99	0.99	0.99	0.99		8	0	0	
108-88-3	Toluene	SP	Н	3	0	5	4.99	4.99	4.99	4.99	***************************************	74	0	0	
100-41-4	Ethylbenzene		H		0	_	4.00	4.00	4.00	4.00		20			Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4.
95-47-6	o-Xylene		L	3	0	5 5	4.99 4.99	4.99 4.99	4.99 4.99	4.99 4.99	~	20 30	0	0	EA 2001 EQS for total xylene
P1374	m,p-Xylene		H	3	0	10	9.99	9.99	9.99	9.99		30	0	0	EQS for total xylene
1634-04-04	Methyl tertiary butyl ether (MTBE)		NP			10						00			2 do for total Aylone
				3	0	10	9.99	9.99	9.99	9.99		n/a			
71-55-6	1,1,1-Trichloroethane		NP	3	0	5	4.99	4.99	4.99	4.99		100	0	0	
79-00-5 96-12-8	1,1,2-Trichloroethane 1,2-Dibromo-3-chloropropane		NP	3	0	10 10	9.99 9.99	9.99 9.99	9.99 9.99	9.99 9.99		300	0	0	
106-93-4	1,2-Dibromoethane		H	3	0	5	4.99	4.99	4.99	4.99		n/a n/a			
95-50-1	1,2-Dichlorobenzene		H	3	0	5	4.99	4.99	4.99	4.99		20	0	0	
107-06-2	1,2-Dichloroethane (EDC)	P	NP	3	0	10	9.99	9.99	9.99	9.99		10	0	0	
156-59-2	cis 1,2-Dichloroethene (cis 1,2		NP												
	DCE)		<u> </u>	3	0	5	4.99	4.99	4.99	4.99		n/a			
156-60-5	trans 1,2-Dichloroethene (trans		NP			_	4.00	4.00	4.00	4.99		2/0			
78-87-5	1,2 DCE) 1,2-Dichloropropane		L	3	0	5 5	4.99 4.99	4.99 4.99	4.99 4.99	4.99		n/a n/a			
10061-01-5	cis 1,3-Dichloropropene		H	3	0	5	4.99	4.99	4.99	4.99		n/a			
10061-02-6	trans 1,3-Dichloropropene		H	3	0	5	4.99	4.99	4.99	4.99		n/a			
106-46-7	1,4-Dichlorobenzene		Н	3	0	5	4.99	4.99	4.99	4.99		20	0	0	
75-27-4	Bromodichloromethane			3	0	5	4.99	4.99	4.99	4.99	***************************************	n/a			
75-01-4	Chloroethene (vinyl chloride)		Н	3	0	5	4.99	4.99	4.99	4.99		n/a			
124-48-1	Dibromochloromethane			3	0	5	4.99	4.99	4.99	4.99		n/a			
25321-22-6	Dichlorobenzenes (1,2-, 1,3- & 1,4-)			3	0	5	4.99	4.99	4.99	4.99		20		0	
75-09-2	Dichloromethane	P	NP	0	0	3	4.99	4.99	4.33	4.99		20		0	
87-68-3	Hexachlorobutadiene (HCBD)	PH	H	3	0	5	4.99	4.99	4.99	4.99		0.6	3	0	
100-42-5	Styrene		Н	3	0	5	4.99	4.99	4.99	4.99		50	0	0	
25322-20-7	Tetrachloroethane (PCA)	SP		3	0	5	4.99	4.99	4.99	4.99	***************************************	n/a			
127-18-4	Tetrachloroethene (PCE)	OP	NP	3	0	5	4.99	4.99	4.99	4.99		10	0	0	
GRP02	Tetrachloroethene (PCE) and					_	4.00	4.00	4.00	4.00		,			
56-23-5	trichloroethene (TCE) Tetrachloromethane (Carbon	OP	U	3	0	5	4.99	4.99	4.99	4.99		n/a			
30-23-3	Tetrachloride)	OP	П	3	0	5	4.99	4.99	4.99	4.99		12	0	0	
75-25-2	Tribromomethane (bromoform)			3	0	10	9.99	9.99	9.99	9.99		n/a			
12002-48-1	Trichlorobenzenes	P	NP	3	0	0.1	0.09	0.09	0.09	0.09		0.4	0	0	
79-01-6	Trichloroethene	OP	Н	3	0	5	4.99	4.99	4.99	4.99	***************************************	10	0	0	
67-66-3	Trichloromethane (chloroform)	P	Н	3	0	5	4.99	4.99	4.99	4.99		2.5	3	0	
GRP03	Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane &														
00.00.0	bromodichloromethane			0		0.4	0.00	0.00	0.00	0.00		n/a			
88-06-2 120-83-2	2,4,6-Trichlorophenol 2,4-Dichlorophenol	SP	Н	3	0	0.1 0.1	0.09	0.09	0.09	0.09		n/a 0.42	0	0	
95-57-8	2-Chlorophenol	OF .	H	3	0	0.1	0.09	0.09	0.09	0.09		50	0	0	
554-00-7	3,4-Dichloroaniline	SP		0		<u> </u>	0.00	0.00	0.00	0.00		0.2			
108-43-0	3-Chlorophenol		Н	0								50			
59-50-7	4-Chloro, 3-methylphenol		Н	0								40			
106-48-9	4-Chlorophenol		Н	0		0.4	0.00	0.00	0.00	0.00		50			
85-68-7 117-81-7	Benzyl butyl phthalate Di(2-ethylhexylphthalate) (DEHP)	SP PH	NP	3	0	0.1	0.09	0.09	0.09	0.09		0.75	0	0	
84-74-2	Dibutyl phthalate		NP	3	0	0.1	0.091	0.093	0.0929	0.095		1.3	0	0	
84-66-2	Diethyl phthalate (DEP)		141	3	0	0.1	0.09	0.098	0.0979	0.098		200	0	0	
131-11-3	Dimethyl phthalate (DMP)		I	3	0	0.1	0.09	0.09	0.09	0.09		800	0	0	
117-84-0	Dioctyl phthalates			3	0	0.1	0.09	0.09	0.09	0.09		20	0	0	
118-74-1	Hexachlorobenzene	PH	Н	3	0	0.1	0.09	0.09	0.09	0.09		0.05	3	0	
104-40-5	Nonylphenol (4-Nonylphenol)	PH		0								0.3			
140-66-9	Octylphenol ((4-(1,1', 3,3'-tetramethylbutyl) -phenol))	P		0								0.01			
608-93-5	Pentachlorobenzene	PH	H	0					District Control of Co			0.007			
123-91-1	1,4-dioxane	1		0					The second	000000000000000000000000000000000000000		n/a			
79-06-1	Acrylamide		Н	0					E parameter			n/a			
92-52-4	Biphenyl														
	(cyclochlorocyclohexane)			0					Banana and Andreas			25			
32534-81-9	Brominated diphenylethers (Sum	PH	Н						PARAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMA						
	congeners 28,47,99,100,153,154)			0					Panananananan			0.014			
	20,71,00,100,100,104)	1	1	U					1	1		0.014		1	

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Leachate

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: 26279 Hazardous substance Test Certificates(s): 23-12382 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment

	Datase	t ALL ZONES													(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance			Summary of	Sample Data	l		Value Being Compared to Target =	Water C Tarç (Exceede	get	No. Sa Exceedir Quality	ng Water	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in µg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value		Other Waters EQS		Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
85535-84-8	Chloroalkanes C10-C13	PH	Н	0	LOD							0.4		LWO	LWO	
25567-68-4	Chloronitrotoluenes		H	0								10				
3252-43-5	Dibromoacetonitrile			0								n/a				
13425-80-4	Dichloroacetate			0								n/a				
3018-12-0	Dichloroacetonitrile			0								n/a				
GRP04	Dioxins and dioxin-like	PH														
	compounds			0								n/a				
3194-55-6	Hexabromocyclododecanes (HBCDD)	PH	Н	0								0.0008				
2163-68-0	Hydroxyatrazine			0								n/a				
	Microcystin-LR			0								n/a				
62-75-9	N-nitrosodimethylamine			0								n/a				
1763-23-1	Perflurooctane sulfonic acid	PH	Н													
	(PFOS) & derivatives			0								0.00013				
335-67-1	Perfluorooctanoic Acid (PFOA)	PH		_												
4000 00 0	Dali rabla sinasta di Dirab ara da (DCD)		U	0								n/a				
1336-36-3	Polychlorinated Biphenyls (PCB)		П	0								n/a				
2893-78-9	Sodium dichloroisoxyanurate			0						W W W W W W W W W W W W W W W W W W W		n/a				
126-73-8	Tributyl phosphate		Н	0								50				
3380-34-5	Triclosan	SP		0								0.1				
7726-95-6	Bromine (Br)			0				-				10	ļ			
7782-50-5	Chlorine (total free available)	SP	NP	0								10				
14866-68-3 14998-27-7	Chlorate Chlorite			0								n/a				
60-00-4	EDTA (edetic acid)			0								n/a 400				
106-89-8	Epichlorohydrin		Н	0								n/a				
569-64-2	Malachite green		H	0								0.5				
10599-90-3	Monochloramine			0								n/a				
79-11-8	Mononchloroacetate															
•	(Chloroacetic Acid)			0								n/a				
139-13-9	NTA (nitrilotriacetic acid)			0								3000				
76-03-9	Trichloroethanoic acid			0								/				
7440-61-1	(trichloroacetate) U (dissolved)			0								n/a n/a				
36643-28-4	Tributyl tin compounds	PH	Н	0								0.0002				
7783-06-4	Hydrogen Sulphide			0								10				
14797-73-0	Perchlorate			0								n/a				
GRP06	Total anions			0								n/a				
93-76-5	2,4,5-T (2,4,5-		Н									,				
94-75-7	Trichlorophenoxyacetic acid) 2,4-D (2,4-Dichlorophenoxyacetic	L CD		0								n/a				
94-75-7	acid)	134		0								0.3				
94-82-6	2,4-DB (4-(2,4-dichlorophenoxy			0								0.5				
0.020	butyric acid)			0								n/a				
71751-41-2	Abamectin			0								0.003				
74070-46-5	Aclinofen	P		0								0.012				
15972-60-8	Alachlor	P	H	0								0.3	ļ			
116-06-3	Aldicarb		NP	0								n/a	-			
309-00-2 GRP07	Aldrin & dieldrin	-	H	0		-			-			n/a n/a	-			
1912-24-9	Atrazine	P	H	0	Control of the Contro							0.6				
35575-96-3	Azamethiphos	† -		0								n/a				
2642-71-9	Azinphos ethyl		Н	0								n/a				
86-50-0	Azinphos-methyl		Н	0								0.01				
25057-89-0	Bentazone		NP	0								500	ļ			
42576-02-3	Bifenox	P	H	0		-						0.0012				
1689-84-5 10605-21-7	Bromoxynil Carbendazim	SP	H	0	To a constant	-						100				
10605-21-7 1563-66-2	Carbendazim	ISF	H NP	0								n/a n/a				
57-74-9	Chlordane		H	0				+		THE STATE OF THE S		n/a	†			
470-90-6	Chlorofenvinphos	P	H	0								0.1				
101-21-3	Chloropropham		Н	0								10				
2921-88-2	Chloropyrifos		H	0						To a second seco		0.03				
1897-45-6 15545-48-9	Chlorothalonil	SP	Н	0								n/a				
15545-48-9 GRP08	Chlorotoluron Clyclodiene pesticides, sum of	OP	H	U	AND							2				
JIN 00	Aldrin, Dieldrin, Endrin, Isodrin		•	0	Tananananananananananananananananananan							0.005				
56-72-4	Coumaphos		Н	0						T CONTRACTOR CONTRACTO		0.003				
21725-46-2	Cyanazine		Н	0								n/a				
	Cybutryne	P		0								0.0025				
68359-37-5				0	and the second s	-						0.001				
52315-07-8	Cypermethrin	P	Н	0	remands.				To a constant			8000008	I			

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Leachate Client: Morgan (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: Hazardous substance Test Certificates(s): 23-12382 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment No. Samples No. Samples above Value Being Water Quality **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding Hazardous Chemicals of Potential CAS / AGS WFD Target = **Quality Target** Water Quality Concern Substance Other Number Designation No. of Maximum Other (concentrations in µg/l) Limit of Minimum Maximum 95-%ile EQS compared to dissolved metals as an initial screen, with no adjustment for Status No. of Waters Waters Waters Samples > Value bioavailability or ABC. Detection Value Value Value **Samples** EQS **EQS** EQS LoD GRP09 (dichlorodiphenylthrichloroethane) 0.025 0.5 8065-48-3 Demeton 333-41-5 Diazinon (sheep dip) 0.01 120-36-5 Dichloroprop 0.00006 62-73-7 Dichlorvos 115-32-2 Dicofol 0.00003 Dieldrin 60-57-1 0.005 35367-38-5 Diflubenzuron 0.48 60-51-5 Dimethoate 330-54-1 Diuron 0.2 117704-25- 3 Doramectin 0.001 0.0005 115-29-7 Endosulfan 72-20-8 Endrin 0.03 299-84-3 Fenchlorphos 122-14-5 Fenitrothion 0.01 Fenoprop ((2,4,5trichlorophenoxy)propionic acid) n/a 55-38-9 Fenthion 370-50-3 Flucofuron 1 50-00-0 Formaldehyde (methanal) NP n/a 38641-94-0 Glyphosate 196 76-44-8 Heptachlor 1E-08 Heptachlor & Heptachlor epoxide PH 1E-08 1024-57-3 Heptachlor epoxide 1E-08 608-73-1 Hexachlorocyclohexane (inlcudes PH 0.002 lindane) 1689-83-4 10 loxynil 465-73-6 Isodrin 34123-69-6 Isoproturon NP 0.3 70288-86-7 Ivermectin 0.001 330-55-2 0.5 Linuron 121-75-5 Malathion 0.02 8018-01-07 Mancozeb NP 12427-38-2 Maneb NP MCPA (4-(2-methyl-4-80 chlorophenoxy acetic acid)) Mecoprop 18 93-65-2 2032-65-7 Methiocarb NP 72-43-5 Methoxychlor 51218-45-2 Metolachlor 7786-34-7 Mevinphos 2212-67-1 Molinate n/a 1113-02-6 Omethoate n/a 0.01 50-29-3 para-para-DDT 56-38-2 Parathion 298-00-0 Parathion-methyl n/a GRP11 PCSDs (cyfluthrin, sulcofuron, flucofuron 0.05 and permethrin) 40487-42-1 Pendimethalin Pentachlorophenol 0.4 87-86-5 52645-53-1 Permethrin 0.0002 Pesticides (individual) (other than aldrin, dieldrin, heptachlor & heptachlor epoxide) GRP13 Pesticides (total) n/a 1 23103-98-2 Pirimicarb 29232-93-7 Pirimiphos - methyl 0.015 67747-09-5 Prochloraz 4 31218-83-4 Propetamphos 0.03 23950-58-5 Propyzamide 100 95737-68-1 Pyriproxyfen n/a 124495-18-7 Quinoxyfen 0.015 Simazine 122-34-9 25 3567-25-7 Sulcofuron 117-18-0 Tecnazene (total)

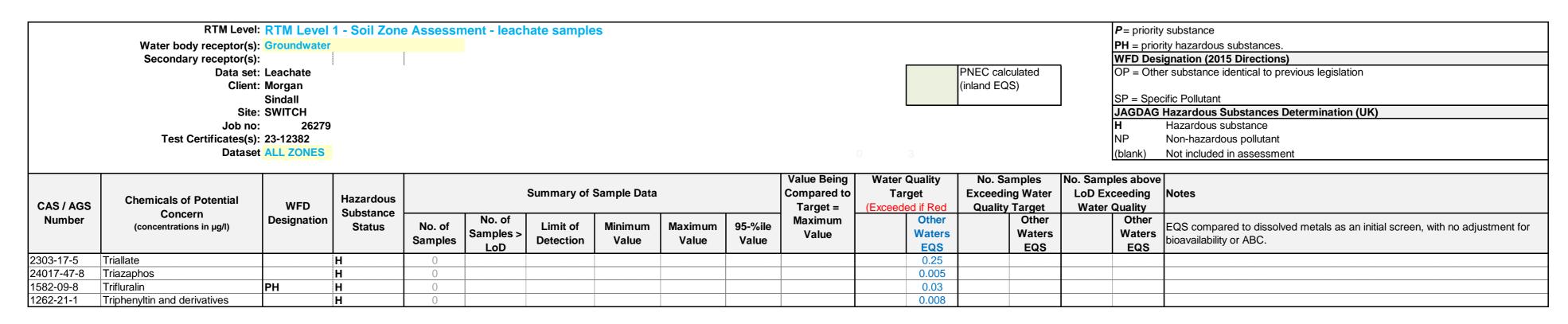
0.0065

n/a

886-50-0

5915-41-3

148-79-8


Tertbutryn

Tertbutylazine

Thiabendazole

NP

SWITCH RTM L1+L2 - DETS 23-12382.2, Summary 5 of 5

Hydrock Scenario: Scenario B - EQS (inland) 2013/39/EU Annex I RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance Water body receptor(s): Groundwater **PH** = priority hazardous substances WFD Designation (2015 Directions) Secondary receptor(s): OP = Other substance identical to previous legislation Data set: Leachate PNEC calculated (inland EQS) Client: Morgan SP = Specific Pollutant Sindall Site: SWITCH JAGDAG Hazardous Substances Determination (UK) Job no: Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-12154.3 Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above **Summary of Sample Data** Compared to **Exceeding Water** LoD Exceeding Target Hazardous **Chemicals of Potential** WFD CAS / AGS Water Quality **Quality Target** Target = Substance Concern Number Designation No. of Maximum Inland Inland Inland 95-%ile Maximum Status No. of Limit of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Waters Samples > Waters Waters Value Samples Detection Value Value Value bioavailability or ABC. **EQS** EQS LoD EQS P1133 Hardness as mg/I CaCO₃ Representative hardness of receiving surface water environment used in some 7440-22-4 Silver (Ag) (dissolved) 0.13 0.129 0.129 0.129 0.129 0.05 Aluminium (AI) (dissolved) 215 446 438.3 446 28 26.3 28 50 7440-38-2 Arsenic (As) (dissolved) 3 6 7440-42-8 NP 63 68 2000 Boron (B) (dissolved) 68 68 24.6 7440-39-3 Barium (Ba) (dissolved) 26 26 11 n/a 7440-43-9 Cadmium (Cd) (dissolved) 0.397 0.399 0.3989 0.399 0.08 EQS (inland) dependent on hardness of receiving surface water environment 4.99 Cobalt (Co) (dissolved) 4.97 4.99 4.989 Chromium (VI) (Cr) (dissolved) 20 19.99 19.99 19.99 3.4 19.99 19.99 4.7 16065-83-1 Chromium (III) (Cr) (dissolved) 20 19.99 19.99 19.99 7440-47-3 Chromium (Cr) (total) (dissolved) 4.97 4.99 4.99 4.989 Bioavailable EQS (inland) 7440-50-8 Copper (Cu) (dissolved) NP 29 27 29 27 97 1000 7439-89-6 Iron (Fe) (dissolved) 97 94.3 0.07 7439-97-6 0.61 Mercury (Hg) (dissolved) 0.05 0.18 0.61 0.589 Bioavailable EQS (inland) P1286 Manganese (Mn) (dissolved) 12 11.299 12 123 4.99 7440-23-5 Sodium (Na) (dissolved) 1.5 3.2 3.1 3.2 Nickel (Ni) (dissolved) 4.99 4.99 Bioavailable EQS (inland) 4.99 7439-92-1 Lead (Pb) (dissolved) 4.99 4.99 4.99 4.99 1.2 Bioavailable EQS (inland) 7440-36-0 4.99 4.99 4.99 4.99 Antimony (Sb) (dissolved) 7782-49-2 Selenium (Se) (dissolved) NP 4.99 4.99 4.99 4.99 25 4.99 4.99 7440-31-5 Tin (Sn) (dissolved) 4.99 4.99 7440-62-2 Vanadium (V) (dissolved) 199 559.6 20 EQS (inland) dependent on hardness of receiving surface water environment Bioavailable EQS (inland) + ambient background concentration (ABC) 7440-66-6 Zinc (Zn) (dissolved) NP 7 6.9 12.3 P1095 Cyanide (free) (hydrogen 4.99 4.99 4.99 4.99 57-12-5 Cyanide (total) 25 23 25 n/a 232 578 P1140 Ammonium (NH₄⁺) 50 596 596 NP 300 P1238 Ammnoniacal Nitrogen (as N) 50 232 596 578 596 Ammonia (unionised) (NH₃ as N) |SP P1720 232 596 578 596 50 n/a {free ammonia} 15541-45-4 Bromate (BrO₃) 8.0 0.79 0.79 0.79 0.79 16887-00-6 Chloride (Cl⁻) 250000 2.9 16984-48-8 Fluoride (F⁻) 0.49 1000 0.49 0.49 0.49 EQS (inland) dependent on hardness of receiving surface water environment 0.49 0.49 0.49 0.49 P1348 Nitrate (NO₃ P1349 0.679 0.7 Nitrite (NO₂⁻) 0.49 0.7 14808-79-8 Sulfate (SO₄²⁻) 400000 pH (min.) (su) 7.7 P1134 7.7 7.7 7.7 pH (max.) (su) P1287 Electrical conductivity (µS/cm) 164 200 197.6 200 120-12-7 0.01 0.2 Anthracene 0.2 0.188 50-32-8 Benzo(a)pyrene Benzo(a)pyrene EQS used as marker substance for the group of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, 0.009 0.04 0.0369 0.04 0.00017 benzo(g,h,i)perylene & indeno (1,2,3-cd)pyrene 0.39 0.0063 206-44-0 Fluoranthene 0.05 0.39 0.357 NP 91-20-3 1.83 2.49 2.436 2.49 Naphthalene PAHs = sum of GRP01 benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3cd)pyrene 2.23 5.18 5.03 5.18 P1877 0.09 0.09 0.09 0.09 7.7 Phenol NP P1407 Ali EC5-EC6 10 n-hexane fall within this fraction P1408 Ali >EC6-EC8 10 n-heptane falls within this fraction P1409 Ali >EC8-EC10 10 n-octane and n-nonane fall within this fraction P1410 Ali >EC10-EC12 10 P1411 Ali >EC12-EC16 10 10 P1938 Ali >EC16-EC35 10 P1415 Ali >EC35-EC44 P1441 Aro EC5-EC7 10 Benzene wholly representative of this fraction P1355 Aro >EC7-EC8 10 Toluene wholly representative of this fraction P1356 Aro >EC8-EC10 10 Ethylbenzene / xylene / trimethylbenzene representative of this range P1357 Aro >EC10-EC12 10 Naphthalene often forms a reasonable percentage of this fraction P1358 Aro > EC12-EC16 2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction 10

10

fluorene, anthracene, phenanthrene, pyrene falls within this range Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene,

benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction

P1359

P1360

Aro >EC16-EC21

Aro >EC21-EC35

RTM Level 1 - Soil Zone Assessment - leachate samples

Water body receptor(s): Groundwater

Secondary receptor(s):

Data set: Leachate
Client: Morgan
Sindall
Site: SWITCH
Job no: 26279
Test Certificates(s): 23-12154.3
Dataset ALL ZONES

RTM Level 1 - Soil Zone Assessment - leachate samples

P = priority substance
PH = priority substances.

WFD Designation (2015 Directions)
OP = Other substance identical to previous legislation
SP = Specific Pollutant
JAGDAG Hazardous Substances Determination (UK)
H Hazardous substances
NP Non-hazardous pollutant
(blank) Not included in assessment

	Dataset	ALL ZONES											(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous			Summary of	Sample Data	1		Value Being Compared to Target =	Water Quality Target (Exceeded if Red	No. Samples Exceeding Water Quality Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in μg/l)	Designation	Substance Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS	Inland	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1362	Aro >EC35-EC44			0							10			
71-43-2	Benzene	Г	H	3	3	0	0.99	17	15.399	17	10	1	1	
108-88-3 100-41-4	Toluene Ethylbenzene	SP	Н	3	3	0	4.99	4.99	4.99	4.99	74	0	0	Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4.
100-41-4	Luiyiberizerie		П	3	3	0	4.99	4.99	4.99	4.99	20	0	0	EA 2001
95-47-6	o-Xylene		Н	3	3	0	4.99	4.99	4.99	4.99	30	0	0	EQS for total xylene
P1374	m,p-Xylene		Н	3	3	0	9.99	9.99	9.99	9.99	30	0	0	EQS for total xylene
1634-04-04	Methyl tertiary butyl ether (MTBE)		NP	3	3	0	9.99	9.99	9.99	9.99	n/a			
71-55-6	1,1,1-Trichloroethane		NP	3	3	0	4.99	4.99	4.99	4.99	100	0	0	
79-00-5	1,1,2-Trichloroethane		NP	3	3	0	9.99	9.99	9.99	9.99	400	0	0	
96-12-8	1,2-Dibromo-3-chloropropane		.,	3	3	0	9.99	9.99	9.99 4.99	9.99 4.99	n/a			
106-93-4 95-50-1	1,2-Dibromoethane 1,2-Dichlorobenzene		H	3	3	0	4.99 4.99	4.99 4.99	4.99	4.99	n/a 20	0	0	
107-06-2	1,2-Dichloroethane (EDC)		NP	3	3	0	9.99	9.99	9.99	9.99	10	0	0	
156-59-2	cis 1,2-Dichloroethene (cis 1,2		NP											
156-60-5	trans 1,2-Dichloroethene (trans		NP	3	3	0	4.99	4.99	4.99	4.99	n/a			
70.07.5	1,2 DCE)		Н	3	3	0	4.99	4.99	4.99	4.99	n/a			
78-87-5 10061-01-5	1,2-Dichloropropane cis 1,3-Dichloropropene		П	3	3	0	4.99 4.99	4.99 4.99	4.99 4.99	4.99 4.99	n/a n/a			
10061-01-5	trans 1,3-Dichloropropene		H	3	3	0	4.99	4.99	4.99	4.99	n/a			
106-46-7	1,4-Dichlorobenzene		H	3	3	0	4.99	4.99	4.99	4.99	20	0	0	
75-27-4	Bromodichloromethane			3	3	0	4.99	4.99	4.99	4.99	n/a			
75-01-4	Chloroethene (vinyl chloride)		Н	3	3	0	4.99	4.99	4.99	4.99	n/a			
124-48-1 25321-22-6	Dibromochloromethane Dichlorobenzenes (1,2-, 1,3- &			3	3	0	4.99	4.99	4.99	4.99	n/a			
75-09-2	1,4-) Dichloromethane	P	NP	3	3	0	4.99	4.99	4.99	4.99	20 20	0	0	
87-68-3	Hexachlorobutadiene (HCBD)		Н	3	3	0	4.99	4.99	4.99	4.99	0.6	3	3	
100-42-5	Styrene		H	3	3	0	4.99	4.99	4.99	4.99	50	0	0	
25322-20-7	Tetrachloroethane (PCA)	SP		0							140			
127-18-4	Tetrachloroethene (PCE)	OP	NP	0							10			
GRP02	Tetrachloroethene (PCE) and trichloroethene (TCE)			0							n/a			
56-23-5	Tetrachloromethane (Carbon Tetrachloride)	OP	Н	0							12			
75-25-2	Tribromomethane (bromoform)			0							n/a			
12002-48-1	Trichlorobenzenes	P	NP	0							0.4			
79-01-6	Trichloroethene	OP	Н	0							10			
67-66-3	Trichloromethane (chloroform)	P	Н	0							2.5			
GRP03	Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane &													
	bromodichloromethane			0							n/a			
88-06-2	2,4,6-Trichlorophenol		Н	0							n/a			
120-83-2	2,4-Dichlorophenol	SP	H	0						000	4.2			
95-57-8 554-00-7	2-Chlorophenol 3,4-Dichloroaniline	SP	П	0							50 0.2			
108-43-0	3-Chlorophenol		H	0							50			
59-50-7	4-Chloro, 3-methylphenol		H	0							40	1		
106-48-9	4-Chlorophenol		Н	0							50			
85-68-7 117-81-7	Benzyl butyl phthalate Di(2-ethylhexylphthalate) (DEHP)	SP PH	NP	0							7.5			
84-74-2	Dibutyl phthalate		NP	0							1.3			
84-66-2	Diethyl phthalate (DEP)	-		0							200			
131-11-3 117-84-0	Dimethyl phthalate (DMP) Dioctyl phthalates			0							800 20			
118-74-1	Hexachlorobenzene	PH	H	0							0.05			
104-40-5	Nonylphenol (4-Nonylphenol)	PH		0							0.3			
140-66-9	Octylphenol ((4-(1,1', 3,3'-tetramethylbutyl)	Р												
	-phenol))	<u> </u>		0							0.1			
608-93-5		PH	Н	0					Table and the same		0.007			
123-91-1 79-06-1	1,4-dioxane Acrylamide		Ц	0							n/a			
92-52-4	Biphenyl		11	U							n/a			
32534-81-9	(cyclochlorocyclohexane) Brominated diphenylethers (Sum	PH	Н	0							25			
	congeners 28,47,99,100,153,154)			0							0.14			

Summary of Remedial Targets Methodology Screening RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Leachate Client: Morgan (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: Hazardous substance Test Certificates(s): 23-12154.3 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding Hazardous Chemicals of Potential CAS / AGS WFD Target = **Quality Target** Water Quality Substance Concern Number Designation No. of Maximum Inland Inland Inland (concentrations in µg/l) Limit of Minimum Maximum 95-%ile EQS compared to dissolved metals as an initial screen, with no adjustment for No. of Status Waters Waters Waters Samples > Value bioavailability or ABC. Value Value Value **Samples** Detection **EQS** EQS EQS LoD 85535-84-8 Chloroalkanes C10-C13 0.4 25567-68-4 Chloronitrotoluenes 10 3252-43-5 Dibromoacetonitrile n/a 13425-80-4 Dichloroacetate n/a 3018-12-0 Dichloroacetonitrile n/a Dioxins and dioxin-like compounds 3194-55-6 Hexabromocyclododecanes 0.0016 (HBCDD) 2163-68-0 Hydroxyatrazine n/a 101043-37-2 Microcystin-LR n/a N-nitrosodimethylamine n/a Perflurooctane sulfonic acid 1763-23-1 (PFOS) & derivatives 0.00065 Perfluorooctanoic Acid (PFOA) 1336-36-3 Polychlorinated Biphenyls (PCB) Sodium dichloroisoxyanurate 50 126-73-8 Tributyl phosphate Triclosan 0.1 Bromine (Br) 7782-50-5 Chlorine (total free available) 14866-68-3 Chlorate 14998-27-7 Chlorite EDTA (edetic acid) 400 106-89-8 Epichlorohydrin Malachite green 0.5 10599-90-3 Monochloramine n/a Mononchloroacetate (Chloroacetic Acid) NTA (nitrilotriacetic acid) 1000 Trichloroethanoic acid (trichloroacetate)

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Leachate Client: Morgan (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: Hazardous substance Test Certificates(s): 23-12154.3 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding Hazardous Chemicals of Potential CAS / AGS WFD Target = **Quality Target** Water Quality Substance Concern Number Designation No. of Maximum Inland Inland Inland (concentrations in µg/l) Limit of Minimum Maximum 95-%ile No. of EQS compared to dissolved metals as an initial screen, with no adjustment for Status Waters Waters Waters Samples > Value bioavailability or ABC. Value Value Value Samples Detection EQS **EQS** EQS LoD GRP09 (dichlorodiphenylthrichloroethane) 0.025 0.5 8065-48-3 Demeton 333-41-5 Diazinon (sheep dip) 0.01 120-36-5 Dichloroprop 0.0006 62-73-7 Dichlorvos 115-32-2 Dicofol 0.0013 Dieldrin 60-57-1 35367-38-5 Diflubenzuron 0.001 60-51-5 Dimethoate 0.48 330-54-1 Diuron 0.2 117704-25- 3 Doramectin 0.001 0.005 115-29-7 Endosulfan 72-20-8 Endrin 299-84-3 Fenchlorphos 0.03 122-14-5 Fenitrothion 0.01 Fenoprop ((2,4,5trichlorophenoxy)propionic acid) 55-38-9 Fenthion 370-50-3 Flucofuron 50-00-0 Formaldehyde (methanal) 38641-94-0 Glyphosate 196 76-44-8 Heptachlor 2E-07 Heptachlor & Heptachlor epoxide PH 2E-07 1024-57-3 Heptachlor epoxide 2E-07 608-73-1 Hexachlorocyclohexane (inlcudes PH 0.02 lindane) 1689-83-4 10 loxynil 465-73-6 Isodrin 34123-69-6 Isoproturon NP 0.3 70288-86-7 Ivermectin 0.0001 330-55-2 0.5 Linuron 121-75-5 Malathion 0.01 NP 8018-01-07 Mancozeb 12427-38-2 Maneb NP MCPA (4-(2-methyl-4chlorophenoxy acetic acid)) 12 EQS inland dependant on pH. Default 12µg/l as conservative approach Mecoprop 93-65-2 2032-65-7 Methiocarb NP 0.01 72-43-5 Methoxychlor 51218-45-2 Metolachlor 7786-34-7 Mevinphos 0.02 2212-67-1 Molinate 0.01 1113-02-6 Omethoate 50-29-3 0.01 para-para-DDT 56-38-2 Parathion 298-00-0 Parathion-methyl n/a GRP11 PCSDs (cyfluthrin, sulcofuron, flucofuron 0.05 and permethrin) 40487-42-1 Pendimethalin 0.3 87-86-5 Pentachlorophenol 0.4 52645-53-1 Permethrin 0.001 Pesticides (individual) (other than aldrin, dieldrin, heptachlor & heptachlor epoxide) GRP13 Pesticides (total) n/a 1 23103-98-2 Pirimicarb 29232-93-7 Pirimiphos - methyl 0.015 67747-09-5 Prochloraz 31218-83-4 Propetamphos 0.03 23950-58-5 Propyzamide 100 95737-68-1 Pyriproxyfen

0.15

25

0.065

n/a

124495-18-7 Quinoxyfen

122-34-9

3567-25-7

117-18-0

886-50-0

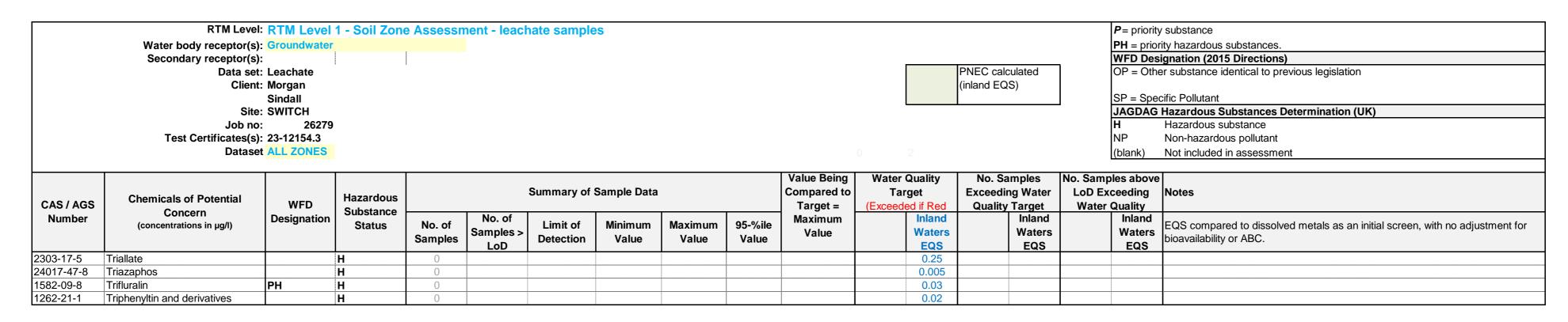
5915-41-3

148-79-8

Simazine

Sulcofuron

Tertbutryn


Tertbutylazine

Thiabendazole

Tecnazene (total)

NP

5 of 5

Hydrock Scenario: Scenario C - EQS (other) 2013/39/EU Annex I RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance Water body receptor(s): Groundwater PH = priority hazardous substances. WFD Designation (2015 Directions) Secondary receptor(s): OP = Other substance identical to previous legislation Data set: Leachate PNEC calculated (inland EQS) Client: Morgan SP = Specific Pollutant Sindall Site: SWITCH JAGDAG Hazardous Substances Determination (UK) Job no: Hazardous substance Test Certificates(s): 23-12154.3 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above LoD Exceeding **Summary of Sample Data** Compared to **Exceeding Water** Target Hazardous **Chemicals of Potential** WFD CAS / AGS Water Quality **Quality Target** Target = Substance Concern Number Designation No. of Maximum Other Other Other 95-%ile Limit of Maximum Status No. of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Waters Waters Waters Samples > Value Samples Detection Value Value Value bioavailability or ABC. **EQS** EQS LoD EQS P1133 Hardness as mg/I CaCO₃ Silver (Ag) (dissolved) 0.13 0.129 0.129 0.129 0.129 0.5 7429-90-5 Aluminium (Al) (dissolved) 215 446 438.3 446 28 26.3 28 25 7440-38-2 Arsenic (As) (dissolved) 3 6 7440-42-8 NP 63 68 7000 Boron (B) (dissolved) 68 68 7440-39-3 24.6 Barium (Ba) (dissolved) 26 26 11 n/a 7440-43-9 Cadmium (Cd) (dissolved) 0.2 0.397 0.399 0.3989 0.399 4.97 4.99 Cobalt (Co) (dissolved) 4.99 4.989 18540-29-9 Chromium (VI) (Cr) (dissolved) 0.6 20 19.99 19.99 19.99 19.99 19.99 16065-83-1 Chromium (III) (Cr) (dissolved) 20 19.99 19.99 19.99 n/a 7440-47-3 Chromium (Cr) (total) (dissolved) 4.97 4.99 4.99 4.989 7440-50-8 Copper (Cu) (dissolved) NP 29 27 29 3.76 EQS (other) is a function of DOC and may exceed the stated value. 27 97 1000 7439-89-6 Iron (Fe) (dissolved) 97 94.3 0.07 7439-97-6 Mercury (Hg) (dissolved) 0.61 0.05 0.18 0.61 0.589 P1286 Manganese (Mn) (dissolved) 12 11.299 12 4.99 n/a 7440-23-5 Sodium (Na) (dissolved) 1.5 3.2 3.1 3.2 7440-02-0 Nickel (Ni) (dissolved) 4.99 4.99 4.99 8.6 4.99 7439-92-1 Lead (Pb) (dissolved) 4.99 4.99 4.99 4.99 1.3 7440-36-0 Antimony (Sb) (dissolved) 4.99 4.99 4.99 4.99 7782-49-2 Selenium (Se) (dissolved) NP 4.99 4.99 4.99 4.99 10 Tin (Sn) (dissolved) 4.99 4.99 7440-31-5 4.99 4.99 7440-62-2 Vanadium (V) (dissolved) 199 559.6 100 7440-66-6 Zinc (Zn) (dissolved) NP 7 6.9 7 7.9 EQS (other) + ambient background concentration (ABC) P1095 Cyanide (free) (hydrogen 4.99 4.99 4.99 4.99 57-12-5 Cyanide (total) 25 23 25 232 578 P1140 Ammonium (NH₄⁺) 50 596 596 n/a NP P1238 Ammnoniacal Nitrogen (as N) 50 232 596 578 596 n/a Ammonia (unionised) (NH₃ as N) |SP P1720 232 596 578 596 50 {free ammonia} 15541-45-4 Bromate (BrO₃) 8.0 0.79 0.79 0.79 0.79 n/a 16887-00-6 Chloride (Cl⁻) 2.9 16984-48-8 Fluoride (F⁻) 0.49 0.49 0.49 0.49 5000 0.49 0.49 0.49 0.49 P1348 Nitrate (NO₃ P1349 0.679 0.7 Nitrite (NO₂⁻) 0.49 0.7 n/a 14808-79-8 Sulfate (SO₄²⁻) n/a pH (min.) (su) 7.7 P1134 7.7 7.7 7.7 8.5 pH (max.) (su) P1287 Electrical conductivity (µS/cm) 164 200 197.6 200 120-12-7 0.01 0.2 0.1 Anthracene 0.2 0.188 50-32-8 Benzo(a)pyrene 0.009 0.04 0.0369 0.04 0.00017 0.39 0.0063 206-44-0 Fluoranthene 0.05 0.39 0.357 NP 91-20-3 1.83 2.49 2.436 2.49 Naphthalene PAHs = sum of GRP01 benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3cd)pyrene 2.23 5.18 5.03 5.18 P1877 0.09 0.09 0.09 0.09 7.7 Phenol NP P1407 Ali EC5-EC6 10 n-hexane fall within this fraction P1408 Ali >EC6-EC8 10 n-heptane falls within this fraction P1409 Ali >EC8-EC10 10 n-octane and n-nonane fall within this fraction P1410 Ali >EC10-EC12 10

10

10

10

10

10

10

10

10

Benzene wholly representative of this fraction

Toluene wholly representative of this fraction

Ethylbenzene / xylene / trimethylbenzene representative of this range

2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction

Naphthalene often forms a reasonable percentage of this fraction

fluorene, anthracene, phenanthrene, pyrene falls within this range

Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction

P1411

P1938

P1415

P1441

P1355

P1356

P1357

P1358

P1359

P1360

Ali >EC12-EC16

Ali >EC16-EC35

Ali >EC35-EC44

Aro EC5-EC7

Aro >EC7-EC8

Aro >EC8-EC10

Aro >EC10-EC12

Aro > EC12-EC16

Aro >EC16-EC21

Aro >EC21-EC35

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Leachate

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: 26279 Hazardous substance Test Certificates(s): 23-12154.3 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment

Dataset ALL ZONES (blank) Not included in assessment												Not included in assessment				
CAS / AGS	Chemicals of Potential Concern (concentrations in µg/l)	WFD	Hazardous Substance			Summary of	Sample Data			Value Being Compared to Target =	Water Quality Target (Exceeded if Red		No. Samples Exceeding Water Quality Target		No. Samples above LoD Exceeding Water Quality	Notes
Number		Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	·	Other Waters EQS	N N	Other /aters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1362	Aro >EC35-EC44			0	LOD				The state of the s			10		LWJ	LWS	
71-43-2	Benzene	P	Н	3	3	0	0.99	17	15.399	17		8		1	1	
108-88-3 100-41-4	Toluene Ethylbenzene	SP	Н	3	3	0	4.99	4.99	4.99	4.99		74		0	0	Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4.
100-41-4	Linyiberizerie			3	3	0	4.99	4.99	4.99	4.99	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20		0	0	EA 2001
95-47-6	o-Xylene		Н	3	3	0	4.99	4.99	4.99	4.99		30		0	0	EQS for total xylene
P1374	m,p-Xylene		H	3	3	0	9.99	9.99	9.99	9.99		30		0	0	EQS for total xylene
1634-04-04	Methyl tertiary butyl ether (MTBE)		NP	3	3	0	9.99	9.99	9.99	9.99	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	n/a				
71-55-6	1,1,1-Trichloroethane		NP	3	3	0	4.99	4.99	4.99	4.99	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100		0	0	
79-00-5	1,1,2-Trichloroethane		NP	3	3	0	9.99	9.99	9.99	9.99		300		0	0	
96-12-8 106-93-4	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane		H	3	3	0	9.99 4.99	9.99 4.99	9.99 4.99	9.99 4.99		n/a n/a				
95-50-1	1,2-Distribution 1,2-Di		H	3	3	0	4.99	4.99	4.99	4.99		20		0	0	
107-06-2	1,2-Dichloroethane (EDC)	P	NP	3	3	0	9.99	9.99	9.99	9.99		10		0	0	
156-59-2	cis 1,2-Dichloroethene (cis 1,2		NP	0			4.00	4.00	4.00	4.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- / -				
156-60-5	DCE) trans 1,2-Dichloroethene (trans		NP	3	3	0	4.99	4.99	4.99	4.99		n/a				
100 00 0	1,2 DCE)			3	3	0	4.99	4.99	4.99	4.99		n/a				
78-87-5	1,2-Dichloropropane		Н	3	3	0	4.99	4.99	4.99	4.99		n/a				
10061-01-5	cis 1,3-Dichloropropene		H	3	3	0	4.99	4.99	4.99	4.99		n/a				
10061-02-6 106-46-7	trans 1,3-Dichloropropene 1,4-Dichlorobenzene		H	3	3	0	4.99 4.99	4.99 4.99	4.99 4.99	4.99 4.99	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	n/a 20		0	0	
75-27-4	Bromodichloromethane			3	3	0	4.99	4.99	4.99	4.99		n/a				
75-01-4	Chloroethene (vinyl chloride)		Н	3	3	0	4.99	4.99	4.99	4.99		n/a				
124-48-1 25321-22-6	Dibromochloromethane Dichlorobenzenes (1,2-, 1,3- &			3	3	0	4.99	4.99	4.99	4.99	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	n/a				
25521-22-0	1,4-)			3	3	0	4.99	4.99	4.99	4.99		20		0	0	
75-09-2	Dichloromethane	P	NP	0								20				
87-68-3	Hexachlorobutadiene (HCBD)	PH	H	3	3	0	4.99	4.99	4.99	4.99		0.6		3	3	
100-42-5 25322-20-7	Styrene Tetrachloroethane (PCA)	SP	H	3	3	0	4.99	4.99	4.99	4.99		50 n/a		0	0	
127-18-4	Tetrachloroethene (PCE)	OP	NP	0								10				
GRP02	Tetrachloroethene (PCE) and															
FC 00 F	trichloroethene (TCE)	OP	U	0								n/a				
56-23-5	Tetrachloromethane (Carbon Tetrachloride)	OP	H	0								12				
75-25-2	Tribromomethane (bromoform)			0								n/a				
12002-48-1	Trichlorobenzenes	P	NP	0								0.4				
79-01-6 67-66-3	Trichloroethene Trichloromethane (chloroform)	OP	H	0								10 2.5				
GRP03	Trihalomethanes, sum of		П	U								2.5				
	trichloromethane,										8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
	tribromomethane,										8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
	dibromchloromethane & bromodichloromethane			0							8 8 8 9 9 9 9 9	n/a				
88-06-2	2,4,6-Trichlorophenol		Н	0								n/a				
120-83-2	2,4-Dichlorophenol	SP	Н	0								0.42				
95-57-8 554-00-7	2-Chlorophenol 3,4-Dichloroaniline	SP	H	0								50 0.2				
108-43-0	3-Chlorophenol	JOF THE STREET	H	0		_						50				
59-50-7	4-Chloro, 3-methylphenol		Н	0								40				
106-48-9	4-Chlorophenol	CD	Н	0								50				
85-68-7 117-81-7	Benzyl butyl phthalate Di(2-ethylhexylphthalate) (DEHP)	SP PH	NP	0								0.75				
117 01-7	DILE GUISHIONSIPHUIAIAIG) (DELIF)	' ' '	131	0								1.3				
84-74-2	Dibutyl phthalate		NP	0								8				
84-66-2	Diethyl phthalate (DEP)			0								200				
131-11-3 117-84-0	Dimethyl phthalate (DMP) Dioctyl phthalates			0								800 20				
118-74-1	Hexachlorobenzene	PH	H	0								0.05				
104-40-5	Nonylphenol (4-Nonylphenol)	PH		0								0.3				
140-66-9	Octylphenol ((4-(1,1', 3,3'-tetramethylbutyl)	IP														
	-phenol))			0								0.01				
608-93-5	Pentachlorobenzene	PH	Н	0								0.0007				
123-91-1	1,4-dioxane		U	0								n/a				
79-06-1 92-52-4	Acrylamide Biphenyl		H	0								n/a				
- 02 -	(cyclochlorocyclohexane)			0								25				
32534-81-9	Brominated diphenylethers (Sum	PH	Н													
	congeners			0								0.044				
	28,47,99,100,153,154)	<u> </u>	5 8 8	0	***				Managara (Managara)	· ·		0.014				

RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Leachate

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant

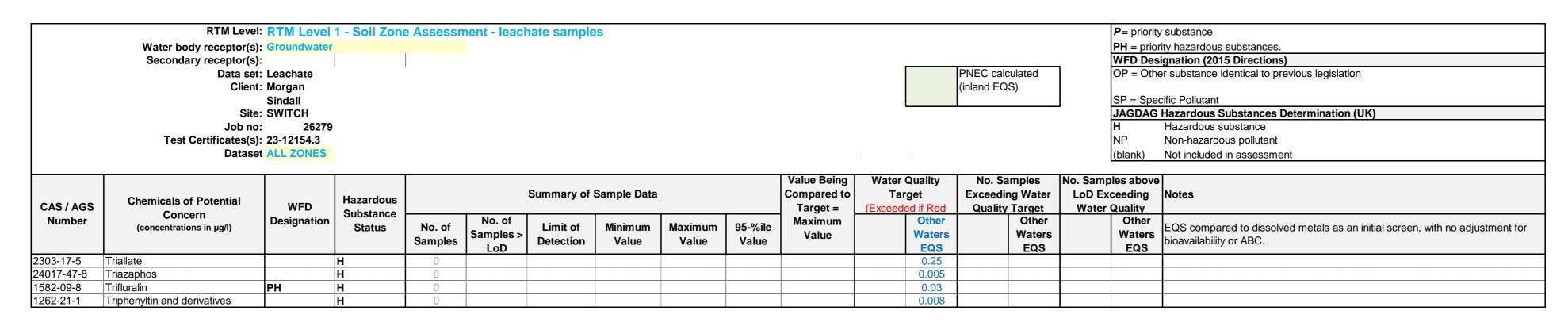
JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: 26279 Hazardous substance Test Certificates(s): 23-12154.3 Non-hazardous pollutant (blank) Not included in assessment Dataset ALL ZONES

	Dataset	ALL ZUNES													(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance			Summary of	Sample Data			Value Being Compared to Target =			No. Samples Exceeding Water Quality Target		Water Quality	Notes
Number	Concern (concentrations in μg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Othe Wate EQ:	ers		Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
85535-84-8	Chloroalkanes C10-C13	PH	Н	0							0.4					
	Chloronitrotoluenes		Н	0							10					
3252-43-5	Dibromoacetonitrile			0							n/a					
13425-80-4	Dichloroacetate			0							n/a					
	Dichloroacetonitrile			0							n/a					
GRP04		PH		0							/-					
3194-55-6		PH	Н	0							n/a					
	(HBCDD) Hydroxyatrazine			0							0.000 n/a					
	Microcystin-LR			0							n/a					
	N-nitrosodimethylamine		1	0							n/a					
1763-23-1		PH	Н	0							0.000	40				
335-67-1	(PFOS) & derivatives Perfluorooctanoic Acid (PFOA)	PH		0							0.000					
1336-36-3	Polychlorinated Biphenyls (PCB)		Н	0							n/a					
	Sodium dichloroisoxyanurate			0							n/a n/a					
126-73-8	Tributyl phosphate		Н	0			-				50					
	Triclosan	SP		0						DOMESTIC STATE OF THE STATE OF	0.1	-				
	Bromine (Br)		l No	0							10					
7782-50-5	Chlorine (total free available)	SP	NP	0			-			en e	10					
14998-27-7	Chlorate Chlorite			0							n/a n/a					
	EDTA (edetic acid)			0			-				400					
	Epichlorohydrin		H	0							n/a					
	Malachite green Monochloramine		Н	0							0.5					
10599-90-3 79-11-8	Mononchloroacetate			U							n/a					
	(Chloroacetic Acid)			0							n/a					
	NTA (nitrilotriacetic acid)			0							300	0				
76-03-9	Trichloroethanoic acid (trichloroacetate)			0							n/a					
7440-61-1	U (dissolved)			0							n/a					
	Tributyl tin compounds Hydrogen Sulphide	PH	Н	0							0.000					
	Perchlorate			0							n/a					
	Total anions			0						name of the state	n/a					
	2,4,5-T (2,4,5- Trichlorophenoxyacetic acid)		Н	0							n/a					
	2,4-D (2,4-Dichlorophenoxyacetic acid)	SP		0							0.3					
	2,4-DB (4-(2,4-dichlorophenoxy butyric acid)			0							n/a					
	Abamectin			0							0.00					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Aclinofen	P		0							0.01					
15972-60-8	Alachlor	P	Н	0							0.3					
116-06-3	Aldicarb		NP	0							n/a					
	Aldrin		H	0							n/a					
	Aldrin & dieldrin		H	0			-				n/a					
	Atrazine		Н	0			-			500 mm m m m m m m m m m m m m m m m m m	0.6					
	Azamethiphos Azinphos ethyl	<del> </del>	Н	0			-		The state of the s	Parallel de la constante de la	n/a n/a					
86-50-0	Azinphos-methyl		H	0					-		0.0					
25057-89-0	Bentazone Bifenox		NP H	0							500	)				
1689-84-5	Bromoxynil		Н	0							100	)				
	Carbendazim Carbofuran	SP	H NP	0							n/a n/a					
57-74-9	Chlordane		Н	0							n/a					
	Chlorofenvinphos	P	Н	0							0.1					
	Chloropropham	<u> </u>	H	0							10					
	Chloropyrifos	<b>P</b>	Н	0						- Parameter - Para	0.0					
15545-48-9	Chlorotoluron		H	0							n/a 2					
	Clyclodiene pesticides, sum of Aldrin, Dieldrin, Endrin, Isodrin	OP	Н	0							0.00	5				
56-72-4	Coumaphos		Н	0							0.0	3				
28159-98-0	Cyanazine Cybutryne	P	Н	0							0.002	25				
68359-37-5	Cyfluthrin			0							0.00					
52315-07-8	Cypermethrin	P	Н	0						and the second	0.000	800				



RTM Level: RTM Level 1 - Soil Zone Assessment - leachate samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Leachate Client: Morgan (inland EQS) SP = Specific Pollutant

JAGDAG Hazardous Substances Determination (UK) Sindall Site: SWITCH Job no: Hazardous substance Test Certificates(s): 23-12154.3 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment No. Samples No. Samples above Value Being Water Quality **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding Hazardous Chemicals of Potential CAS / AGS WFD Target = **Quality Target** Water Quality Concern Substance Other Number Designation No. of Maximum Other (concentrations in µg/l) Limit of Minimum Maximum 95-%ile EQS compared to dissolved metals as an initial screen, with no adjustment for Status No. of Waters Waters Waters Samples > Value bioavailability or ABC. Detection Value Value Value **Samples** EQS **EQS** EQS LoD GRP09 (dichlorodiphenylthrichloroethane) 0.025 0.5 8065-48-3 Demeton 333-41-5 Diazinon (sheep dip) 0.01 120-36-5 Dichloroprop 0.00006 62-73-7 Dichlorvos 115-32-2 Dicofol 0.00003 Dieldrin 60-57-1 0.005 35367-38-5 Diflubenzuron 0.48 60-51-5 Dimethoate 330-54-1 Diuron 0.2 117704-25- 3 Doramectin 0.001 0.0005 115-29-7 Endosulfan 72-20-8 Endrin 0.03 299-84-3 Fenchlorphos 122-14-5 Fenitrothion 0.01 Fenoprop ((2,4,5trichlorophenoxy)propionic acid) n/a 55-38-9 Fenthion 370-50-3 Flucofuron 1 50-00-0 Formaldehyde (methanal) NP n/a 38641-94-0 Glyphosate 196 76-44-8 Heptachlor 1E-08 Heptachlor & Heptachlor epoxide PH 1E-08 1024-57-3 Heptachlor epoxide 1E-08 608-73-1 Hexachlorocyclohexane (inlcudes PH 0.002 lindane) 1689-83-4 10 loxynil 465-73-6 Isodrin 34123-69-6 Isoproturon NP 0.3 70288-86-7 Ivermectin 0.001 330-55-2 0.5 Linuron 121-75-5 Malathion 0.02 8018-01-07 Mancozeb NP 12427-38-2 Maneb NP MCPA (4-(2-methyl-4-80 chlorophenoxy acetic acid)) Mecoprop 18 93-65-2 2032-65-7 Methiocarb NP 72-43-5 Methoxychlor 51218-45-2 Metolachlor 7786-34-7 Mevinphos 2212-67-1 Molinate n/a 1113-02-6 Omethoate n/a 0.01 50-29-3 para-para-DDT 56-38-2 Parathion 298-00-0 Parathion-methyl n/a GRP11 PCSDs (cyfluthrin, sulcofuron, flucofuron 0.05 and permethrin) 40487-42-1 Pendimethalin Pentachlorophenol 0.4 87-86-5 52645-53-1 Permethrin 0.0002 Pesticides (individual) (other than aldrin, dieldrin, heptachlor & heptachlor epoxide) GRP13 Pesticides (total) n/a 1 23103-98-2 Pirimicarb 29232-93-7 Pirimiphos - methyl 0.015 67747-09-5 Prochloraz 4 31218-83-4 Propetamphos 0.03 23950-58-5 Propyzamide 100 95737-68-1 Pyriproxyfen n/a 124495-18-7 Quinoxyfen 0.015 Simazine 122-34-9 25 3567-25-7 Sulcofuron 117-18-0 Tecnazene (total) 886-50-0 Tertbutryn 0.0065 5915-41-3 Tertbutylazine


148-79-8

Thiabendazole

NP

n/a





SWITCH RTM L1+L2 DETS 23-12154.4, Summary 5 of 5



Hydrock Scenario: Scenario B - EQS (inland) 2013/39/EU Annex I RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance Water body receptor(s): Groundwater **PH** = priority hazardous substances WFD Designation (2015 Directions) Secondary receptor(s): OP = Other substance identical to previous legislation Data set: Groundwater PNEC calculated (inland EQS) Client: Morgan SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Test Certificates(s): 23-12620 Non-hazardous pollutant Dataset ALL ZONES Not included in assessment Value Being No. Samples No. Samples above **Water Quality Summary of Sample Data** Compared to **Exceeding Water** LoD Exceeding Target Hazardous **Chemicals of Potential** WFD CAS / AGS Target = Quality Target Water Quality Substance Concern Number Designation No. of Maximum Inland Inland (concentrations in µg/l) 95-%ile Status No. of Limit of Minimum Maximum EQS compared to dissolved metals as an initial screen, with no adjustment for Samples > Waters Waters Waters Value Value Value Value bioavailability or ABC. Samples Detection LoD **EQS EQS** EQS 0.009 0.0092 0.0092 91-20-3 Naphthalene NP 0.01 0.00919 PAHs = sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3-0.16 0.158 0.159 0.15895 0.159 cd)pyrene 7.7 Phenol NP 0.096 0.096 0.1 0.09 0.0957 Ali EC5-EC6 9.998 9.999 9.99895 9.999 10 n-hexane fall within this fraction Ali >EC6-EC8 10 P1408 10 9.998 9.9997 9.999615 9.9997 n-heptane falls within this fraction 10 P1409 Ali >EC8-EC10 9.997 9.997 9.997 9.997 n-octane and n-nonane fall within this fraction Ali >EC10-EC12 10 P1410 10 9.996 9.996 9.996 9.996 10 P1411 Ali >EC12-EC16 10 9.995 9.995 9.995 9.995 Ali >EC16-EC35 10 P1938 9.994 9.994 9.994 9.994 P1415 Ali >EC35-EC44 10 9.993 9.993 9.993 9.993 10 Benzene wholly representative of this fraction P1441 Aro EC5-EC7 9.992 9.998 9.9977 9.998 10 P1355 Aro >EC7-EC8 9.993 10 9.991 9.993 9.9929 Toluene wholly representative of this fraction P1356 Aro >EC8-EC10 9.988 9.99 10 Ethylbenzene / xylene / trimethylbenzene representative of this range 9.99 9.9899 P1357 Aro >EC10-EC12 9.983 9.989 9.9887 9.989 10 Naphthalene often forms a reasonable percentage of this fraction P1358 Aro > EC12-EC16 9.988 9.988 9.988 9.988 10 2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction Aro >EC16-EC21 P1359 10 9.987 9.987 9.987 9.987 10 fluorene, anthracene, phenanthrene, pyrene falls within this range P1360 Aro >EC21-EC35 Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, 9.986 9.986 9.986 9.986 benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction 10 P1362 Aro >EC35-EC44 10 9.99 9.99 9.99 9.99 71-43-2 Benzene 0.98 0.99 0.9895 0.99 10 108-88-3 Toluene 4.99 4.998 4.9976 4.998 74 Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4. 100-41-4 Ethylbenzene 20 EA 2001 4.98 4.99 4.9895 4.99 95-47-6 o-Xylene 4.996 4.999 4.99885 4.999 EQS for total xylene 9.997 9.998 30 EQS for total xylene 9.998 9.99795 m,p-Xylene 1634-04-04 Methyl tertiary butyl ether (MTBE) NP 9.99 9.99 71-55-6 1,1,1-Trichloroethane NP 4.998 100 4.99 4.998 4.9976 1,1,2-Trichloroethane 79-00-5 NP 10 9.99 9.998 9.9976 9.998 400 96-12-8 1,2-Dibromo-3-chloropropane 10 9.98 9.997 9.99615 9.997 4.991 106-93-4 1,2-Dibromoethane 4.99 4.991 4.99095 95-50-1 4.99 4.998 4.9976 4.998 20 1,2-Dichlorobenzene 107-06-2 1,2-Dichloroethane (EDC) NP 9.98 9.9895 9.99 10 9.99 NP 156-59-2 cis 1,2-Dichloroethene (cis 1,2 4.98 4.99 4.9895 4.99 trans 1,2-Dichloroethene (trans 1,2 DCE) 1,2-Dichloropropane 4.98 4.991 4.99045 4.991 10061-01-5 cis 1,3-Dichloropropene 4.998 4.999 4.99895 4.999 10061-02-6 trans 1,3-Dichloropropene 4.99 4.998 4.9976 4.998 106-46-7 1,4-Dichlorobenzene 4.982 4.997 4.99625 4.997 20 75-27-4 Bromodichloromethane 4.974 4.996 4.9949 4.996 n/a 75-01-4 Chloroethene (vinyl chloride) 4.966 4.995 4.99355 4.995 n/a 124-48-1 Dibromochloromethane 4.958 4.994 4.9922 4.994 n/a 25321-22-6 Dichlorobenzenes (1,2-, 1,3- & 20 1,4-) 75-09-2 Dichloromethane 20 Hexachlorobutadiene (HCBD) 87-68-3 4.974 4.996 4.9949 4.996 0.6 4.998 4.998 50 100-42-5 Styrene 4.994 4.9978 25322-20-7 Tetrachloroethane (PCA) 4.999 140 4.999 4.999 4.999 127-18-4 Tetrachloroethene (PCE) 4.97 4.98 4.9795 4.98 10 Tetrachloroethene (PCE) and trichloroethene (TCE) n/a 56-23-5 Tetrachloromethane (Carbon Tetrachloride) 12 75-25-2 Tribromomethane (bromoform) 9.977 9.997 9.996 9.997 Trichlorobenzenes 12002-48-1 0.099 0.09895 0.4 0.1 0.098 0.099 79-01-6 Trichloroethene 4.98 4.99 4.9895 4.99 10 2.5 67-66-3 Trichloromethane (chloroform) 4.997 4.998 4.99795 4.998 GRP03 Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane & bromodichloromethane 2,4,6-Trichlorophenol 0.09 0.099 0.09855 0.099 0.1 4.2 2,4-Dichlorophenol

0.098

0.098 0.098

0.1

0.098



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Groundwater

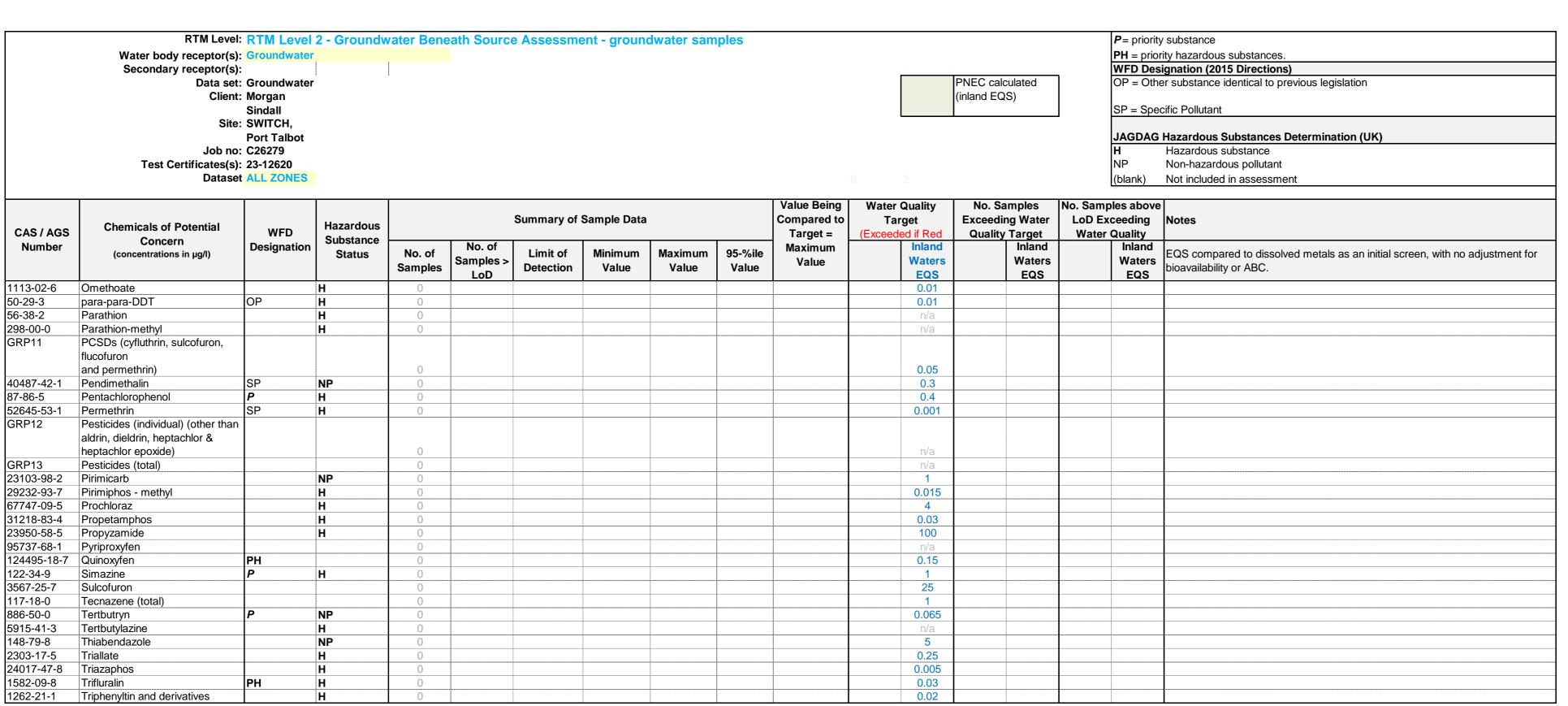
Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Test Certificates(s): 23-12620 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment

	Dataset	ALL ZONES												(1	lank)	Not included in assessment
CAS / AGS	Chemicals of Potential Concern (concentrations in µg/l)	WFD	Hazardous Substance		Summary of Sample Data					Value Being Compared to Target =	Water Quality Target (Exceeded if Red	Exceedi	amples ing Water y Target	No. Samples above LoD Exceeding Water Quality	eding ality	Notes
Number		Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS		Inland Waters EQS	l l	Inland Vaters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
	2-Chlorophenol		Н	2	0	0.1	0.09	0.097	0.09665	0.097	50		0		0	
	3,4-Dichloroaniline	SP		0							0.2					
	3-Chlorophenol		H	0		0.4	0.000	0.007	0.00005	0.007	50					
	4-Chloro, 3-methylphenol 4-Chlorophenol		H	<b>2</b>	0	0.1	0.096	0.097	0.09695	0.097	40 50		0		0	
85-68-7		SP	П	2	0	0.1	0.096	0.099	0.09885	0.099	7.5		0		0	
117-81-7	Di(2-ethylhexylphthalate) (DEHP)	_	NP			0	0.000	0.000	0.0000	0.000						
				0							1.3					
84-74-2	Dibutyl phthalate		NP	2	0	0.1	0.096	0.097	0.09695	0.097	8		0		0	
84-66-2	Diethyl phthalate (DEP)			2	0	0.1	0.098	0.099	0.09895	0.099	200		0		0	
131-11-3 117-84-0	Dimethyl phthalate (DMP)			2	0	0.1	0.09	0.099	0.09855	0.099	800		0		0	
118-74-1	Dioctyl phthalates Hexachlorobenzene	PH	Н	2	0	0.1	0.096	0.098	0.0979	0.098	0.05		2		0	
		PH	1 1	0	0	0.1	0.000	0.030	0.0373	0.000	0.3					
	Octylphenol ((4-(1,1', 3,3'-tetramethylbutyl)	P		0												
608-93-5	1	PH	Н	0							0.1					
123-91-1	1,4-dioxane	1		0						000000000000000000000000000000000000000	n/a					<del> </del>
79-06-1	Acrylamide		Н	0							n/a					
92-52-4	Biphenyl (cyclochlorocyclohexane)			0							25					
32534-81-9	Brominated diphenylethers (Sum congeners 28,47,99,100,153,154)	РН	Н	0							0.14					
		PH	Н	0							0.4					
25567-68-4	Chloronitrotoluenes		Н	0							10					
13425-80-4	Dibromoacetonitrile Dichloroacetate			0							n/a n/a					
	Dichloroacetonitrile Dioxins and dioxin-like compounds	PH		0							n/a n/a					
3194-55-6		PH	Н	0							0.0016					
101043-37-2	Hydroxyatrazine Microcystin-LR			0							n/a n/a					
	(PFOS) & derivatives	PH PH	H	0							0.00065					
1336-36-3	Polychlorinated Biphenyls (PCB)		Н	0							n/a					
2893-78-9	Sodium dichloroisoxyanurate			0							n/a					
	Tributyl phosphate	<u> </u>	Н	0							n/a <b>50</b>					
	Triclosan	SP		0							0.1					
7726-95-6	Bromine (Br)			0							2					
		SP	NP	0							2					
	Chlorite			0							n/a		-			
	Chlorite EDTA (edetic acid)			0							n/a 400					
	Epichlorohydrin		Н	0							n/a					
	Malachite green		H	0							0.5					
10599-90-3	Monochloramine			0							n/a					
79-11-8	Mononchloroacetate (Chloroacetic Acid)			0							n/a					
	NTA (nitrilotriacetic acid)			0							1000					
76-03-9	Trichloroethanoic acid (trichloroacetate)			0							n/a					
	U (dissolved) Tributyl tin compounds Hydrogen Sulphide	PH	Н	0 0							n/a 0.0002 0.25					
	Perchlorate			0							0.25 n/a					
GRP06	Total anions	<u> </u>		0							250000					
93-76-5	2,4,5-T (2,4,5- Trichlorophenoxyacetic acid)		Н	0							n/a					
	2,4-D (2,4-Dichlorophenoxyacetic acid) 2,4-DB (4-(2,4-dichlorophenoxy	ISP		0							0.3					
	butyric acid)			0							n/a 0.01					
74070-46-5		P		0							0.12					



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)


OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Groundwater

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-12620

	Dataset	ALL ZONES											(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential Concern (concentrations in µg/l)	WFD	Hazardous Substance			Summary of	Sample Data	ì		Value Being Compared to Target =	Water Quality Target (Exceeded if Red	No. Samples Exceeding Water Quality Target	Water Quality	Notes
Number		Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS	Inland Waters EQS	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
	Madrillor		Н	0							0.3			
116-06-3 309-00-2	Aldicarb Aldrin		NP L	0							n/a n/a			
GRP07	Aldrin & dieldrin		H	0							n/a			
1912-24-9	Atrazine	P	Н	0							0.6			
35575-96-3	Azamethiphos			0							n/a			
2642-71-9 86-50-0	Azinphos ethyl Azinphos-methyl		H	0							n/a 0.01			
25057-89-0	Bentazone		ΝP	0							500			
42576-02-3	Bifenox	P	H	0							0.012			
1689-84-5	Bromoxynil		Н	0							100			
10605-21-7 1563-66-2	Carbendazim Carbofuran	SP	H NP	0							0.15			
57-74-9	Chlordane		H	0							n/a n/a			
470-90-6	Chlorofenvinphos	P	H	0					<del> </del>		0.1			
101-21-3	Chloropropham		Н	0							10			
2921-88-2 1897-45-6	Chloropyrifos Chlorothalonil	<b>P</b> SP	Н	0							0.03			
15545-48-9	Chlorotoluron	OF .	Н	0							0.035			
GRP08	Clyclodiene pesticides, sum of	ОР	H											
	Aldrin, Dieldrin, Endrin, Isodrin			0							0.01			
56-72-4	Coumaphos		Н	0							0.01			
21725-46-2 28159-98-0	Cyanazine Cybutryne	P	H	0							n/a 0.0025			
68359-37-5	Cyfluthrin		1 1 2 1 1 1 1 1 1	0							0.0023			
52315-07-8	Cypermethrin	P	Н	0							0.00008			
GRP09	DDT total	OP	Н											
	(dichlorodiphenylthrichloroethane)		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0							0.025			
8065-48-3	Demeton		H	0							0.5			
333-41-5	Diazinon (sheep dip)	SP	Н	0							0.01			
	Dichloroprop	_	Н	0							n/a			
62-73-7 115-32-2	Dichlorvos Dicofol	<b>P</b> PH	H	0							0.0006 0.0013			
60-57-1	Dieldrin		H	0							n/a			
35367-38-5	Diflubenzuron		Н	0							0.001			
60-51-5	Dimethoate	SP P	H	0							0.48			
330-54-1 117704-25- 3	Diuron Doramectin	P	<u> </u>	0							0.2			
115-29-7		PH	Н	0							0.005			
72-20-8	Endrin		Н	0							n/a			
299-84-3	Fenchlorphos		H	0							0.03			
122-14-5 93-72-1	Fenitrothion Fenoprop ((2,4,5-		<u>Н</u>	0							0.01			
00 72 1	trichlorophenoxy)propionic acid)													
				0							n/a			
55-38-9	Fenthion Flucofuron		H	0							n/a <b>1</b>			
370-50-3 50-00-0	Formaldehyde (methanal)		NP	0							5			
38641-94-0	Glyphosate	SP		0							196			
76-44-8	Heptachlor		Н	0							2E-07			
GRP10	Heptachlor & Heptachlor epoxide	PH	Н	0							2E-07			
1024-57-3	Heptachlor epoxide			0						<u> </u>	2E-07 2E-07			
608-73-1	Hexachlorocyclohexane (inlcudes	PH	Н											
4000 00 :	lindane)			0							0.02			
1689-83-4 465-73-6	loxynil Isodrin		Н	0							10 n/a			
34123-69-6	Isoproturon	P	NP	0							0.3			
70288-86-7	Ivermectin			0							0.0001			
330-55-2	Linuron	SP	H	0							0.5			
121-75-5 8018-01-07	Malathion Mancozeb	ļ	H NP	0					-	<u> </u>	0.01	-	-	
	Maneb		NP	0							3			
94-74-6	MCPA (4-(2-methyl-4-													
02 GE 2	chlorophenoxy acetic acid))	SD.	ND	0							12			EQS inland dependant on pH. Default 12µg/l as conservative approach
93-65-2 2032-65-7	Mecoprop  Methiocarb		NP NP	0						<u> </u>	0.01			
72-43-5	Methoxychlor		- <b></b>	0						<u> </u>	n/a			
51218-45-2	Metolachlor			0							n/a			
7786-34-7	Mevinphos		Н	0							0.02			
2212-67-1	Molinate	L		U					-	Supplies	n/a			





SWITCH RTM L1+L2 GW visit 1, Summary 4 of 4



Hydrock Scenario: Scenario C - EQS (other) 2013/39/EU Annex I RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance Water body receptor(s): Groundwater **PH** = priority hazardous substances WFD Designation (2015 Directions) Secondary receptor(s): OP = Other substance identical to previous legislation Data set: Groundwater PNEC calculated (inland EQS) Client: Morgan SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Test Certificates(s): 23-12620 Non-hazardous pollutant Dataset ALL ZONES Not included in assessment Value Being **Water Quality** No. Samples No. Samples above **Summary of Sample Data** Compared to **Exceeding Water** LoD Exceeding Target Hazardous **Chemicals of Potential** WFD CAS / AGS Target = **Quality Target** Water Quality Substance Concern Other Number Designation No. of Maximum (concentrations in µg/l) 95-%ile Status No. of Limit of Minimum Maximum EQS compared to dissolved metals as an initial screen, with no adjustment for Samples > Waters Waters Waters Value Value Value Value bioavailability or ABC. Samples Detection LoD **EQS EQS** EQS 0.009 0.0092 0.0092 91-20-3 Naphthalene NP 0.01 0.00919 PAHs = sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3-0.16 0.158 0.159 0.15895 0.159 cd)pyrene 7.7 Phenol NP 0.096 0.096 0.1 0.09 0.0957 Ali EC5-EC6 9.998 9.999 9.99895 9.999 10 n-hexane fall within this fraction Ali >EC6-EC8 10 P1408 10 9.998 9.9997 9.999615 9.9997 n-heptane falls within this fraction 10 P1409 Ali >EC8-EC10 9.997 9.997 9.997 9.997 n-octane and n-nonane fall within this fraction Ali >EC10-EC12 10 P1410 10 9.996 9.996 9.996 9.996 10 P1411 Ali >EC12-EC16 10 9.995 9.995 9.995 9.995 Ali >EC16-EC35 10 P1938 9.994 9.994 9.994 9.994 P1415 Ali >EC35-EC44 10 9.993 9.993 9.993 9.993 10 Benzene wholly representative of this fraction P1441 Aro EC5-EC7 9.992 9.998 9.9977 9.998 10 P1355 Aro >EC7-EC8 9.993 10 9.991 9.993 9.9929 Toluene wholly representative of this fraction P1356 Aro >EC8-EC10 9.988 9.99 10 Ethylbenzene / xylene / trimethylbenzene representative of this range 9.99 9.9899 P1357 Aro >EC10-EC12 9.983 9.989 9.9887 9.989 10 Naphthalene often forms a reasonable percentage of this fraction P1358 Aro > EC12-EC16 9.988 9.988 9.988 9.988 10 2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction Aro >EC16-EC21 P1359 10 9.987 9.987 9.987 9.987 10 fluorene, anthracene, phenanthrene, pyrene falls within this range P1360 Aro >EC21-EC35 Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, 9.986 9.986 9.986 9.986 benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction 10 P1362 Aro >EC35-EC44 10 9.99 9.99 9.99 9.99 71-43-2 Benzene 0.98 0.99 0.9895 0.99 108-88-3 Toluene 4.99 4.998 4.9976 4.998 74 Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4. 100-41-4 Ethylbenzene 20 EA 2001 4.98 4.99 4.9895 4.99 95-47-6 o-Xylene 4.996 4.999 4.99885 4.999 EQS for total xylene 9.997 9.998 30 EQS for total xylene 10 9.998 9.99795 m,p-Xylene 1634-04-04 Methyl tertiary butyl ether (MTBE) NP 9.99 9.9895 9.99 71-55-6 1,1,1-Trichloroethane NP 4.998 100 4.99 4.998 4.9976 1,1,2-Trichloroethane 79-00-5 NP 10 9.99 9.998 9.9976 9.998 300 96-12-8 1,2-Dibromo-3-chloropropane 10 9.98 9.997 9.99615 9.997 4.991 106-93-4 1,2-Dibromoethane 4.99 4.991 4.99095 95-50-1 4.99 4.998 4.9976 4.998 20 1,2-Dichlorobenzene 107-06-2 1,2-Dichloroethane (EDC) NP 9.98 9.9895 9.99 10 9.99 NP 156-59-2 cis 1,2-Dichloroethene (cis 1,2 4.98 4.99 4.9895 4.99 trans 1,2-Dichloroethene (trans 1,2 DCE) 1,2-Dichloropropane 4.98 4.991 4.99045 4.991 10061-01-5 cis 1,3-Dichloropropene 4.998 4.999 4.99895 4.999 10061-02-6 trans 1,3-Dichloropropene 4.99 4.998 4.9976 4.998 106-46-7 1,4-Dichlorobenzene 4.982 4.997 4.99625 4.997 20 75-27-4 Bromodichloromethane 4.974 4.996 4.9949 4.996 n/a 75-01-4 Chloroethene (vinyl chloride) 4.966 4.995 4.99355 4.995 n/a 124-48-1 Dibromochloromethane 4.958 4.994 4.9922 4.994 n/a 25321-22-6 Dichlorobenzenes (1,2-, 1,3- & 20 1,4-) 75-09-2 Dichloromethane 20 Hexachlorobutadiene (HCBD) 87-68-3 4.974 4.996 4.9949 4.996 0.6 4.998 4.998 50 100-42-5 Styrene 4.994 4.9978 25322-20-7 Tetrachloroethane (PCA) 4.999 4.999 4.999 4.999 10 127-18-4 Tetrachloroethene (PCE) 4.97 4.98 4.9795 4.98 Tetrachloroethene (PCE) and trichloroethene (TCE) n/a 56-23-5 Tetrachloromethane (Carbon Tetrachloride) 12 75-25-2 Tribromomethane (bromoform) 9.977 9.997 9.996 9.997 Trichlorobenzenes 12002-48-1 0.099 0.09895 0.4 0.1 0.098 0.099 79-01-6 Trichloroethene 4.98 4.99 4.9895 4.99 10 2.5 67-66-3 Trichloromethane (chloroform) 4.997 4.998 4.99795 4.998 GRP03 Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane & bromodichloromethane 2,4,6-Trichlorophenol 0.09 0.099 0.09855 0.099 0.1 0.42 2,4-Dichlorophenol 0.1 0.098 0.098 0.098 0.098



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Groundwater

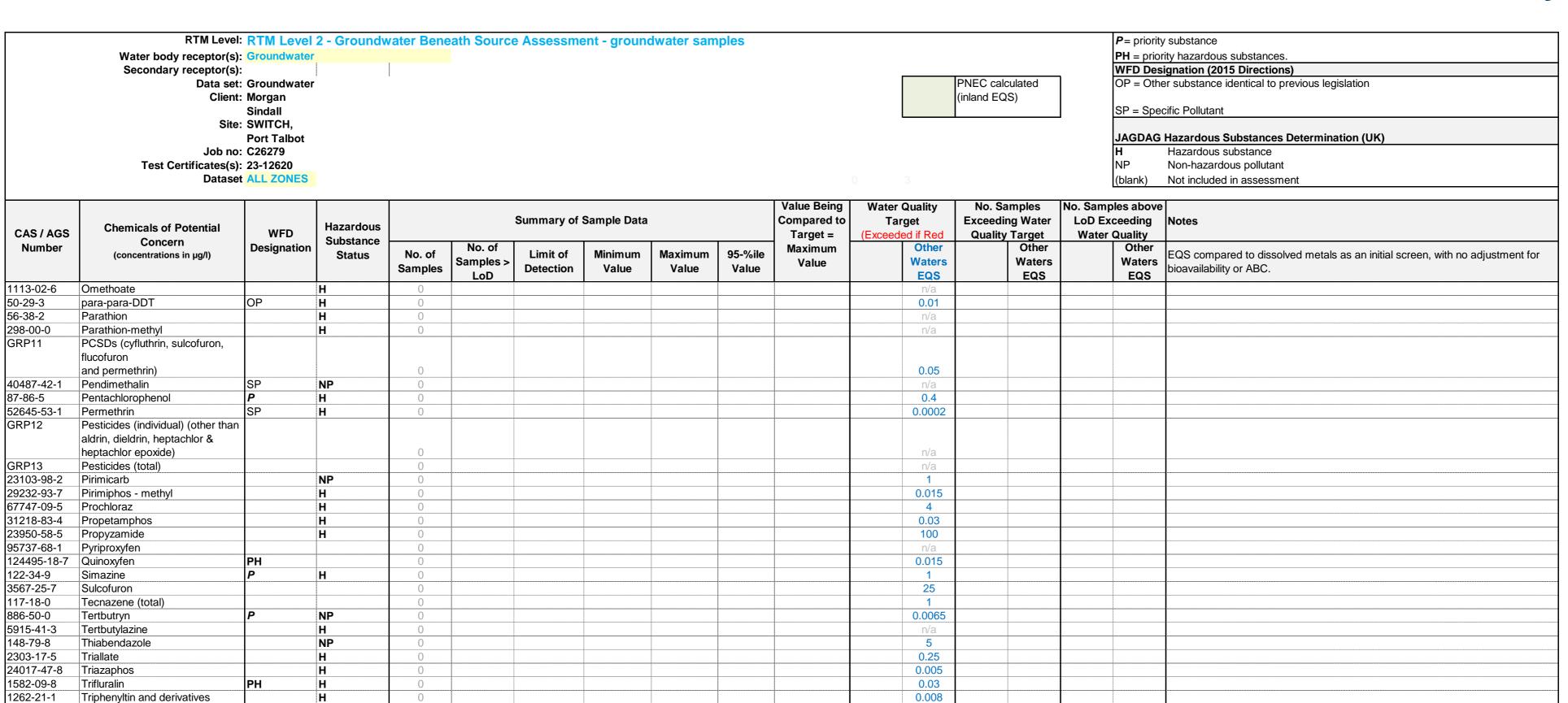
Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-12620

	Test Certificates(s): Dataset	23-12620 ALL ZONES												NP (blank)	Non-hazardous pollutant  Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous			Summary of	Sample Data	1		Value Being Compared to Target =	Ta	Quality rget	No. Samples Exceeding Water Quality Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in μg/l)	Designation	Substance Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	`	Other Waters EQS	Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
95-57-8	2-Chlorophenol		Н	2	0	0.1	0.09	0.097	0.09665	0.097		50	0	0	
554-00-7 108-43-0	3,4-Dichloroaniline 3-Chlorophenol	SP	L	0								0.2 50			
59-50-7	4-Chloro, 3-methylphenol		Н	2	0	0.1	0.096	0.097	0.09695	0.097		40	0	0	
106-48-9	4-Chlorophenol		Н	0								50			
85-68-7	Benzyl butyl phthalate	SP	ND	2	0	0.1	0.096	0.099	0.09885	0.099		0.75	0	0	
117-81-7	Di(2-ethylhexylphthalate) (DEHP)		NP	0	0	0.1	0.000	0.007	0.00005	0.007		1.3	0		
84-74-2 84-66-2	Dibutyl phthalate Diethyl phthalate (DEP)		NP	2 2	0	0.1	0.096 0.098	0.097 0.099	0.09695 0.09895	0.097 0.099		200	0	0	
131-11-3	Dimethyl phthalate (DMP)			2	0	0.1	0.09	0.099	0.09855	0.099		800	0	0	
117-84-0	Dioctyl phthalates			0								20			
118-74-1	Hexachlorobenzene	JPN	Н	2	0	0.1	0.096	0.098	0.0979	0.098		0.05	2	0	
104-40-5 140-66-9	Nonylphenol (4-Nonylphenol) Octylphenol ((4-(1,1', 3,3'-tetramethylbutyl)	<b>PH</b> P		0								0.3			
	-phenol))			0								0.01			
608-93-5 123-91-1	Pentachlorobenzene 1,4-dioxane	PH	Н	0	Management of the second of th							0.0007			
79-06-1	1,4-dioxane Acrylamide		H	0								n/a n/a			
92-52-4	Biphenyl (cyclochlorocyclohexane)			0								25			
32534-81-9	Brominated diphenylethers (Sum congeners	PH	Н									0.044			
85535-84-8	28,47,99,100,153,154) Chloroalkanes C10-C13	PH	Ш	0								0.014			
25567-68-4	Chloronitrotoluenes	IFN	Н	0								10			
3252-43-5	Dibromoacetonitrile			0								n/a			
13425-80-4	Dichloroacetate			0								n/a			
3018-12-0 GRP04	Dichloroacetonitrile Dioxins and dioxin-like compounds	PH		0								n/a n/a			
3194-55-6		PH	H	0								0.0008			
2163-68-0	Hydroxyatrazine			0								n/a			
101043-37-2	Microcystin-LR			0								n/a			
62-75-9 1763-23-1	N-nitrosodimethylamine Perflurooctane sulfonic acid	PH		0								n/a			
1705 25 1	(PFOS) & derivatives		••	0								0.00013			
335-67-1	, ,	PH		0								n/a			
1336-36-3	Polychlorinated Biphenyls (PCB)		Н	0								n/a			
2893-78-9	Sodium dichloroisoxyanurate			0								n/a			
126-73-8 3380-34-5	Tributyl phosphate Triclosan	SP	П	0								50 0.1			
7726-95-6	Bromine (Br)	, , , , , , , , , , , , , , , , , , ,		0								10			
7782-50-5 14866-68-3	Chlorine (total free available) Chlorate	SP	NP	0								10 n/a			
14998-27-7	Chlorite			0								n/a			
60-00-4 106-89-8	EDTA (edetic acid) Epichlorohydrin		н	0								<b>400</b> n/a			
569-64-2	Malachite green		Н	0								0.5			
10599-90-3	Monochloramine			0								n/a			
79-11-8	Mononchloroacetate (Chloroacetic Acid)			0								n/a			
139-13-9	NTA (nitrilotriacetic acid)			0								3000			
76-03-9	Trichloroethanoic acid (trichloroacetate)			0								n/a			
7440-61-1 36643-28-4 7783-06-4	U (dissolved) Tributyl tin compounds Hydrogen Sulphide	PH	H	0 0								n/a 0.0002 10			
14797-73-0	Perchlorate			0								n/a			
GRP06 93-76-5	Total anions 2,4,5-T (2,4,5-		Н	0	- Control of the Cont							n/a			
	Trichlorophenoxyacetic acid)			0								n/a			
94-75-7	2,4-D (2,4-Dichlorophenoxyacetic acid)	SP		0								0.3			
94-82-6	2,4-DB (4-(2,4-dichlorophenoxy butyric acid)			0								n/a			
71751-41-2	Adinofon	P		0								0.003			
74070-46-5	ACIIIIOIEII			U					***************************************			0.012	1		ı



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)


OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Groundwater

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-12620

	Test Certificates(s): Dataset	23-12620 ALL ZONES													NP (blank)	Non-hazardous pollutant  Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance			Summary of	Sample Data			Value Being Compared to Target =	Water Quality Target (Exceeded if Red	Exceed	ing Water y Target	No. Samp LoD Exc	eeding	Notes
Number	Concern (concentrations in µg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Other Waters EQS		Other Waters EQS		Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
15972-60-8 116-06-3	Alachlor Aldicarb		H NP	0							0.3					
309-00-2	Aldrin	•	H	0							n/a n/a					
GRP07	Aldrin & dieldrin		Н	0							n/a					
1912-24-9 35575-96-3	Atrazine Azamethiphos	P	Н	0							0.6 n/a					
2642-71-9	Azinphos ethyl		Н	0							n/a					
86-50-0	Azinphos-methyl		Н	0							0.01					
25057-89-0 42576-02-3	Bentazone Bifenox	P	NP H	0							500 0.0012					
1689-84-5	Bromoxynil	-	Н	0							100					
10605-21-7 1563-66-2	Carbendazim Carbofuran	SP	H NP	0							n/a					
57-74-9	Chlordane		H	0							n/a n/a					
470-90-6	Chlorofenvinphos	P	Н	0							0.1					
101-21-3 2921-88-2	Chloropropham Chloropyrifos	P	H	0							10 0.03					
1897-45-6		SP	H	0							n/a					
15545-48-9	Chlorotoluron		Н	0							2					
GRP08	Clyclodiene pesticides, sum of Aldrin, Dieldrin, Endrin, Isodrin	OP	Н	0					Value and the second se		0.005					
56-72-4	Coumaphos		Н	0							0.03					
21725-46-2	Cyanazine	В	Н	0							n/a					
28159-98-0 68359-37-5	Cybutryne Cyfluthrin	P		0							0.0025 0.001					
52315-07-8	Cypermethrin	P	Н	0							0.000008					
GRP09	DDT total (dichlorodiphenylthrichloroethane)	OP	Н	0							0.025					
8065-48-3	Demeton		Н	0							0.5					
333-41-5	Diazinon (sheep dip) Dichloroprop	SP	H	0							0.01					
120-36-5 62-73-7	<del></del>	P	Н	0							n/a 0.00006					
115-32-2	Dicofol	PH	Н	0							0.000032					
60-57-1 35367-38-5	Dieldrin Diflubenzuron		Н	0					and the second s		n/a 0.005					
60-51-5		SP	Н	0							0.48					
330-54-1	Diuron	P	Н	0							0.2					
117704-25- 3 115-29-7		PH	Н	0					manuscon programme and the second programme an		0.001 0.0005					
72-20-8	Endrin		Н	0							n/a					
299-84-3 122-14-5	Fenchlorphos Fenitrothion		H	0							0.03					
93-72-1	Fenoprop ((2,4,5-trichlorophenoxy)propionic acid)		H	0							n/a					
55-38-9 370-50-3	Fenthion Flucofuron		Н	0 0							n/a <b>1</b>					
50-00-0 38641-94-0	Formaldehyde (methanal) Glyphosate	SP	NP	0					The second secon		n/a 196					
76-44-8	Heptachlor		Н	0							1E-08					
GRP10	Heptachlor & Heptachlor epoxide	PH	Н	0							45.00				-	
1024-57-3	Heptachlor epoxide			0					Managara de la companio del la companio de la companio del la companio de la comp		1E-08 1E-08					
608-73-1	Hexachlorocyclohexane (inlcudes	PH	Н													
1689-83-4	lindane) loxynil		Н	0							0.002					
465-73-6	Isodrin		Н	0							n/a					
34123-69-6	Isoproturon	P	NP	0							0.3					
70288-86-7 330-55-2	Ivermectin Linuron	SP	Н	0							0.001					
121-75-5	Malathion		H	0							0.02					
8018-01-07	Mancozeb		NP	0							2					
12427-38-2 94-74-6	Maneb MCPA (4-(2-methyl-4-		NP	0							3					
	chlorophenoxy acetic acid))	SP	NP	0							80					
93-65-2 2032-65-7		SP	NP NP	0				8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			18 n/a					
72-43-5	Methoxychlor			0							n/a					
51218-45-2 7786-34-7	Metolachlor Mevinphos		Н	0							n/a					
2212-67-1	Molinate		П	0							n/a n/a					
	1				1					•			-			





SWITCH RTM L1+L2 GW visit 1, Summary 4 of 4



Hydrock Scenario: Scenario C - EQS (other) 2013/39/EU Annex I P= priority substance RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s): Data set: Groundwater PNEC calculated Client: Morgan (inland EQS) Sindall Site: SWITCH, SP = Specific Pollutant Port Talbot JAGDAG Hazardous Substances Determination (UK) Job no: C26279 Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-13124 Dataset ALL ZONES (hlank) Not included in assessment

	Dataset ALL ZONES							(blank) Not included in assessment								
CAS / AGS	Chemicals of Potential	WFD	Hazardous			Summary of	Sample Data	ı		Value Being Compared to Target =	Та	Quality rget led if Red	Exceedi	amples ng Water Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in µg/l)	Designation	Substance Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	`	Other Waters EQS		Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1133	Hardness as mg/l CaCO₃			_	_	_	10	_	_			-				
7440-22-4	Silver (Ag) (dissolved)			2	0	0.13	0.1299	0.12999	0.129986	0.12999		0.5		0	0	
7429-90-5	Aluminium (Al) (dissolved)			2	1	5	4.99	264	251.0495	264		n/a				
7440-38-2	Arsenic (As) (dissolved)	SP	Н	1	0	5						25		0	0	
7440-42-8	Boron (B) (dissolved)		NP	2	2	5	99	151	148.4	151		7000		0	0	
7440-39-3	Barium (Ba) (dissolved)	PH	NP	2	2	5	52.5	165	159.375	165		n/a				
7440-43-9	Cadmium (Cd) (dissolved)	РП	INP	2	0	0.4	0.398	0.399	0.39895	0.399		0.2		2	0	
7440-48-4	Cobalt (Co) (dissolved)		NP	2	0	5	4.98	4.99	4.9895	4.99		3		2	0	
18540-29-9	Chromium (VI) (Cr) (dissolved)	SP	H	2	0	20	19.97	19.99	19.989	19.99		0.6		2	0	
16065-83-1	Chromium (III) (Cr) (dissolved)	SP		2	0	20	19.98	19.999	19.99805			n/a				
7440-47-3	Chromium (Cr) (total) (dissolved)			_	0	_	4.00	4.000	4 00055	4 000		2/0				
7440-50-8	Copper (Cu) (dissolved)	SP	NP	2 2	1	5	4.99 4.99	4.999 34.2	4.99855 32.7395	4.999 34.2		n/a 3.76		2	1	EQS (other) is a function of DOC and may exceed the stated value.
7439-89-6	Iron (Fe) (dissolved)	SP	INI	2	2	5	6	78	74.4	78		1000		0	0	Lac (other) is a function of Boo and may exceed the stated value.
7439-97-6	Mercury (Hg) (dissolved)	PH	Н	2	1	0.05	0.049	0.25	0.23995	0.25		0.07		1	1	
P1286	Manganese (Mn) (dissolved)	SP		2	11	5	4.999	1880	1786.25	1880		n/a				
7440-23-5	Sodium (Na) (dissolved)			2	2	0.2	39.2	71.6	69.98	71.6		n/a				
7440-02-0	Nickel (Ni) (dissolved)	P	NP	2	1	5	4.99	5.9	5.8545	5.9		8.6		0	0	
7439-92-1	Lead (Pb) (dissolved)	P	H	2	0	5	4.997	4.998	4.99795	4.998		1.3	ļ	2	0	
7440-36-0	Antimony (Sb) (dissolved)		NP	2	0	5	4.998	4.999	4.99895	4.999		n/a				
7782-49-2	Selenium (Se) (dissolved)		NP	2 2	0	5	4.9979	4.9981	4.99809	4.9981		n/a		0	0	
7440-31-5 7440-62-2	Tin (Sn) (dissolved) Vanadium (V) (dissolved)				U	5	4.9972	4.9978	4.99777	4.9978		10		U	0	
7440 02 2	variation (v) (disserved)			2	0	5	4.9977	4.9993	4.99922	4.9993		100		0	0	
7440-66-6	Zinc (Zn) (dissolved)	SP	NP	2	0	2	1.99	1.999	1.99855	1.999		7.9		0	0	EQS (other) + ambient background concentration (ABC)
P1095	Cyanide (free) (hydrogen	SP	NP		Name and a second											
	cyanide)			2	0	5	4.98	4.99	4.9895	4.99		1		2	0	
57-12-5	Cyanide (total)		ND	2	2	5	11	106	101.25	106		n/a				
P1140	Ammonium (NH ₄ ⁺ )		NP NP	2	2	50	803	2210	2139.65	2210		n/a				
P1238 P1720	Ammnoniacal Nitrogen (as N) Ammonia (unionised) (NH ₃ as N)	SD.	NP NP	2	2	50	803	2210	2139.65	2210		n/a				
1720	(free ammonia)	Jor .	INF	2	2	50	803	2210	2139.65	2210		21		2	2	
15541-45-4	Bromate (BrO ₃ )			2	0	0.8	0.79	0.799	0.79855	0.799		n/a				
16887-00-6	Chloride (Cl ⁻ )			2	2	1	66	75	74.55	75		n/a				
16984-48-8	Fluoride (F ⁻ )															
				2	0	0.5	0.497	0.499	0.4989	0.499		5000		0	0	
P1348	Nitrate (NO ₃ ⁻ )			2	0	0.5	0.4979	0.498	0.497995			n/a				
P1349	Nitrite (NO ₂ ⁻ )			2	0	0.5	0.497	0.4988	0.49871	0.4988		n/a				
14808-79-8	Sulfate (SO ₄ ²⁻ )			2	2	1	46	73	71.65	73		n/a		0		
P1134 P1134	pH (min.) (su) pH (max.) (su)			2 2	0		7.8 7.8	11.1	10.935 10.935	11.1		8.5		1	0	
P1287	Electrical conductivity (µS/cm)			2	2	5	610	775	766.75	775		n/a		<u> </u>	U	
120-12-7	Anthracene	PH	H	2	0	0.01	0.009	0.0099	0.009855			0.1		0	0	
50-32-8	Benzo(a)pyrene	PH	H				0.000	0.000								
										Representation						
				2	0	0.01	0.0094	0.00991	0.009885			0.00017		2	0	
206-44-0	Fluoranthene	P	Н	2	0	0.01	0.009	0.0095	0.009475			0.0063		2	0	
91-20-3	Naphthalene	P	NP	2	2	0.01	0.02	82.45	78.3285	82.45		2		1	1	
GRP01	PAHs = sum of	P	H													
	benzo(b)fluoranthene, benzo(k)fluoranthene,															
	benzo(k)fluorantnene, benzo(ghi)perylene, indeno(1,2,3-	.[														
	cd)pyrene			2	1	0.16	0.159	82.63	78.50645	82.63		n/a				
P1877	Phenol	SP	NP	2	0	0.1	0.09	0.097	0.09665			7.7		0	0	
P1407	Ali EC5-EC6			2	0	10	9.998	9.999	9.99895	9.999		10		0	0	n-hexane fall within this fraction
P1408	Ali >EC6-EC8			2	0	10	9.998	9.9997	9.999615			10		0	0	n-heptane falls within this fraction
P1409	Ali >EC8-EC10			2	0	10	9.997	9.997	9.997	9.997		10		0	0	n-octane and n-nonane fall within this fraction
P1410	Ali >EC10-EC12			2	0	10	9.996	9.996	9.996	9.996		10		0	0	
P1411	Ali >EC12-EC16			2	0	10	9.995	9.995	9.995	9.995		10		0	0	
P1938	Ali > EC16-EC35			2	0	10	9.994	9.994	9.994	9.994		10		0	0	
P1415	Ali >EC35-EC44			2	1	10	9.993	9.993	9.993	9.993		10		4	0	Ranzana wholly ranzasantative of this fraction
P1441 P1355	Aro EC5-EC7 Aro >EC7-EC8			2 2	1 0	10	9.992 9.991	9.993	10.9496 9.9929	9.993		10	-	<u> </u>	<u>1</u>	Benzene wholly representative of this fraction  Toluene wholly representative of this fraction
P1355	Aro >EC8-EC10			2	1	10	9.991	187	178.1495			10		1	1	Ethylbenzene / xylene / trimethylbenzene representative of this range
P1357	Aro >EC10-EC12			2	1	10	9.989	168	160.0995			10	1	1	1	Naphthalene often forms a reasonable percentage of this fraction
P1358	Aro > EC12-EC16			2	0	10	9.988	9.988	9.988	9.988		10	1	0	0	2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction
P1359	Aro >EC16-EC21			2	0	10	9.987	9.987	9.987	9.987		10		0	0	fluorene, anthracene, phenanthrene, pyrene falls within this range



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Groundwater

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-13124

	Test Certificates(s) Datase	: 23-13124 t ALL ZONES													NP (blank)	Non-hazardous pollutant  Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance			Summary of	Sample Data	i		Value Being Compared to Target =	Water G Tarç (Exceede	get ed if Red	Exceed	amples ing Water y Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in µg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value		Other Waters EQS		Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1360	Aro >EC21-EC35			2	0	10	9.986	9.986	9.986	9.986		10		0	0	Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction
P1362	Aro >EC35-EC44	D		2	0	10	9.99	9.99	9.99	9.99		10		0	0	
71-43-2 108-88-3	Benzene Toluene	SP	H	2	0	5	0.99 4.98	4.985	10.4995 4.98475	4.985		8 74		0	0	
100-41-4	Ethylbenzene		Н			_									,	Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4.
95-47-6	o-Xylene		H	2	1 1	5 5	<b>4.99</b> <5	55 29	52.4995 27.8	55 29		20 30		0	1 0	EA 2001 EQS for total xylene
P1374	m,p-Xylene		Н	2	1	10	9.998	64	61.2999	64		30		1	1	EQS for total xylene
1634-04-04	Methyl tertiary butyl ether (MTBE)		NP	2	0	10	9.99	9.998	9.9976	9.998		n/a				
71-55-6	1,1,1-Trichloroethane		NP	2	0	5	4.99	4.998	4.9976	4.998		100		0	0	
79-00-5 96-12-8	1,1,2-Trichloroethane 1,2-Dibromo-3-chloropropane		NP	2	0	10	9.99 9.99	9.998 9.998	9.9976 9.9976	9.998 9.998		300 n/a		0	0	
106-93-4	1,2-Dibromoethane		Н	2	0	5	4.99	4.998	4.9976	4.998		n/a				
95-50-1	1,2-Dichlorobenzene	D	Н	2	0	5	4.99	4.998	4.9976	4.998		20		0	0	
107-06-2 156-59-2	1,2-Dichloroethane (EDC) cis 1,2-Dichloroethene (cis 1,2	<b>P</b>	NP NP	2	0	10	9.988	9.988	9.988	9.988		10		0	0	
156-60-5	DCE) trans 1,2-Dichloroethene (trans		NP	2	0	5	4.98	4.98	4.98	4.98		n/a				
	1,2 DCE)			2	0	5	4.98	4.999	4.99805	4.999		n/a				
78-87-5 10061-01-5	1,2-Dichloropropane cis 1,3-Dichloropropene		Н	2	0	5	4.985 4.97	4.99 4.991	4.98975 4.98995	4.99 4.991		n/a n/a				
10061-02-6	trans 1,3-Dichloropropene		H	2	0	5	4.95	4.9991	4.996645	4.9991		n/a				
106-46-7	1,4-Dichlorobenzene		Н	2	0	5	4.97	4.999	4.99755	4.999		20		0	0	
75-27-4 75-01-4	Bromodichloromethane Chloroethene (vinyl chloride)		Н	2	0	5	4.9 4.97	4.95 4.999	4.9475 4.99755	4.95 4.999		n/a n/a				
124-48-1 25321-22-6	Dibromochloromethane Dichlorobenzenes (1,2-, 1,3- &			2	0	5	4.99	4.99	4.99	4.99		n/a 20				
75-09-2	1,4-) Dichloromethane	P	NP	0								20				
87-68-3	Hexachlorobutadiene (HCBD)	PH	Н	2	0	5	4.98	4.991	4.99045	4.991		0.6		2	0	
100-42-5 25322-20-7	Styrene Tetrachloroethane (PCA)	SP	Н	2	0	5 5	4.98 4.969	4.99 4.999	4.9895 4.9975	4.99 4.999		50 n/a		0	0	
127-18-4	Tetrachloroethene (PCE)	OP	NP	2	0	5	4.909	4.98	4.9795	4.98		10		0	0	
GRP02	Tetrachloroethene (PCE) and trichloroethene (TCE)			0								n/a				
56-23-5	Tetrachloromethane (Carbon Tetrachloride)	OP	Н	0								12				
75-25-2	Tribromomethane (bromoform)			2	0	10	9.98	9.99	9.9895	9.99		n/a				
12002-48-1 79-01-6	Trichlorobenzenes Trichloroethene	<b>Р</b> ЮР	NP L	2	0	0.1 5	0.098 4.98	0.099 4.99	0.09895 4.9895	0.099 4.99		0.4		0	0	
67-66-3	Trichloromethane (chloroform)	<i>P</i>	Н	2	0	5	4.997	4.999	4.9989	4.999		2.5		2	0	
GRP03	Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane & bromodichloromethane			0								n/a				
88-06-2	2,4,6-Trichlorophenol		Н	2	0	0.1	0.098	0.099	0.09895	0.099		n/a				
120-83-2 95-57-8	2,4-Dichlorophenol 2-Chlorophenol	SP	H	2	0	0.1	0.098	0.0999 0.097	0.099805 0.09665	0.0999 0.097		0.42 50		0	0	
554-00-7	3,4-Dichloroaniline	SP		2	0	0.1	0.096	0.097	0.09695	0.097		0.2		0	0	
108-43-0 59-50-7	3-Chlorophenol 4-Chloro, 3-methylphenol		H	0								50 40				
106-48-9 85-68-7	4-Chlorophenol Benzyl butyl phthalate	SP	H	0 2	0	0.1	0.096	0.098	0.0979	0.098		50 0.75		0	0	
117-81-7	Di(2-ethylhexylphthalate) (DEHP)	PH	NP	0		0.1	0.000	0.000	0.0070	0.000		1.3				
84-74-2	Dibutyl phthalate		NP	2	0	0.1	0.096	0.097	0.09695	0.097		8		0	0	
84-66-2	Diethyl phthalate (DEP)			2	0	0.1	0.098	0.099	0.09895	0.099		200		0	0	
131-11-3 117-84-0	Dimethyl phthalate (DMP) Dioctyl phthalates			0	U	0.1	0.092	0.099	0.09865	0.099		800 20		U	U	
118-74-1	Hexachlorobenzene	PH	Н	2	0	0.1	0.098	0.099	0.09895	0.099		0.05		2	0	
104-40-5 140-66-9	Nonylphenol (4-Nonylphenol) Octylphenol ((4-(1,1', 3,3'-tetramethylbutyl)	<b>PH</b>		0								0.3				
609 02 5	-phenol))	DU	ш	0								0.01	-			
608-93-5 123-91-1	Pentachlorobenzene 1,4-dioxane	PH	Н	0								0.0007 n/a	-			
79-06-1	Acrylamide		Н	0								n/a				
92-52-4	Biphenyl (cyclochlorocyclohexane)			0								25				



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Groundwater Client: Morgan (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Hazardous substance Job no: C26279 Test Certificates(s): 23-13124 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Water Quality Value Being No. Samples No. Samples above **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding **Chemicals of Potential** Hazardous CAS / AGS WFD **Quality Target** Water Quality Target = Substance Concern Number Designation No. of Other Other Other Maximum Maximum 95-%ile No. of Limit of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Status Waters Waters Waters Samples > Value **Samples** Detection Value Value Value bioavailability or ABC. EQS **EQS** EQS LoD 32534-81-9 Brominated diphenylethers (Sum PH congeners 28,47,99,100,153,154) 0.014 85535-84-8 Chloroalkanes C10-C13 0.4 25567-68-4 Chloronitrotoluenes 10 3252-43-5 Dibromoacetonitrile n/a 13425-80-4 Dichloroacetate n/a 3018-12-0 Dichloroacetonitrile n/a GRP04 Dioxins and dioxin-like compounds n/a Hexabromocyclododecanes (HBCDD) 0.0008 2163-68-0 Hydroxyatrazine n/a 101043-37-2 Microcystin-LR n/a N-nitrosodimethylamine 1763-23-1 Perflurooctane sulfonic acid 0.00013 (PFOS) & derivatives Perfluorooctanoic Acid (PFOA) 1336-36-3 Polychlorinated Biphenyls (PCB) 2893-78-9 Sodium dichloroisoxyanurate 50 126-73-8 Tributyl phosphate 0.1 3380-34-5 Triclosan 7726-95-6 Bromine (Br) 10 Chlorine (total free available) 10 7782-50-5 14866-68-3 Chlorate 14998-27-7 Chlorite EDTA (edetic acid) 400 106-89-8 Epichlorohydrin



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples

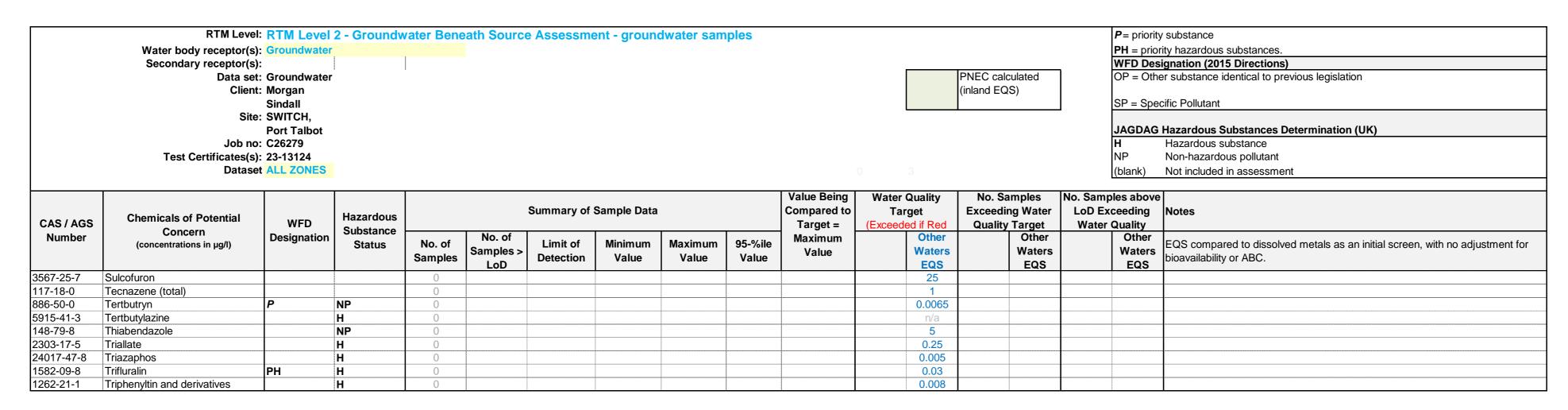
Water body receptor(s):

Secondary receptor(s):

Data set: Groundwater
Client: Morgan
Sindall
Site: SWITCH,
Port Talbot
Job no: C26279
Test Certificates(s): 23-13124
Dataset ALL ZONES

CAS/AGS
Chemicals of Potential
Concern
Ceptor(s):

WFD Designation (2015 Directions)
OP = Other substance substances.


WFD Designation (2015 Directions)
OP = Other substance identical to previous legislation
(inland EQS)

WFD Designation (2015 Directions)
OP = Other substance identical to previous legislation
Substances
OP = Other substance identical to previous legislation
Substance Substance Determination (UK)
H Hazardous Substance Determination (UK)
No included in assessment

Value Being Compared to Target Exceeding Water Quality Target Under Other Water Quality Target Water Quality Other Water Quality Other Water Quality Target Water Quality Other Other Water Quality Other Water Quali

	Test Certificates(s): Dataset	23-13124 ALL ZONES												NP (blank)	Non-hazardous pollutant  Not included in assessment
CAS / AGS	Chemicals of Potential	WFD	Hazardous Substance			Summary of	Sample Data	ì		Value Being Compared to Target =	Та	r Quality arget ded if Red	No. Samples Exceeding Water Quality Target	Water Quality	Notes
Number	Concern (concentrations in μg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value		Other Waters EQS	Other Waters EQS	Other Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
21725-46-2	Cyanazine		Н	0								n/a			
28159-98-0	Cybutryne	P		0								0.0025			
68359-37-5 52315-07-8	Cyfluthrin Cypermethrin	P	Н	0								0.001			
GRP09	DDT total	OP	H	0								0.000000			
	(dichlorodiphenylthrichloroethane)			0								0.025			
8065-48-3	Demeton		Н	0								0.5			
333-41-5	Diazinon (sheep dip)	SP	H	0								0.01			
120-36-5 62-73-7	Dichloroprop Dichlorvos	P	Н	0								n/a 0.00006			
115-32-2	Dicofol	PH	H	0								0.00008	,		
60-57-1	Dieldrin		H	0								n/a			
35367-38-5	Diflubenzuron		H	0								0.005			
60-51-5	Dimethoate	SP	Н	0								0.48			
330-54-1	Diuron	P	Н	0								0.2			
117704-25- 3				0								0.001			
115-29-7 72-20-8	Endosulfan Endrin	PH	H H	0								0.0005 n/a			
299-84-3	Fenchlorphos		Н	0								0.03			
122-14-5	Fenitrothion		Н	0								0.01			
93-72-1	Fenoprop ((2,4,5-trichlorophenoxy)propionic acid)		H	0								n/a			
55-38-9	Fenthion		Н	0								n/a			
370-50-3	Flucofuron			0								1			
50-00-0 38641-94-0	Formaldehyde (methanal) Glyphosate	SP	NP	0								n/a 196			
76-44-8	Heptachlor	01	Н	0								1E-08			
GRP10	Heptachlor & Heptachlor epoxide	PH	Н	0								1E-08			
1024-57-3	Heptachlor epoxide	BU		0								1E-08			
608-73-1	Hexachlorocyclohexane (inlcudes lindane)	PH	Н	0								0.002			
1689-83-4	loxynil		Н	0								10			
465-73-6	Isodrin		Н	0								n/a			
34123-69-6	Isoproturon	P	NP	0								0.3			
70288-86-7	Ivermectin	SP	••	0								0.001			
330-55-2 121-75-5	Linuron Malathion	58	П	0			-					0.5			
8018-01-07	Mancozeb		NP	0								2			
12427-38-2	Maneb		NP	0								3			
94-74-6	MCPA (4-(2-methyl-4- chlorophenoxy acetic acid))			0								80			
93-65-2	Mecoprop		NP	0								18			
2032-65-7	Methiocarb	SP	NP	0								n/a			
72-43-5	Methoxychlor			0								n/a			
51218-45-2 7786-34-7	Metolachlor Mevinphos		H	0								n/a n/a			
2212-67-1	Molinate		•	0			-					n/a			
1113-02-6	Omethoate		Н	0								n/a			
50-29-3	para-para-DDT	OP	Н	0								0.01			
56-38-2	Parathion		H	0								n/a			
298-00-0 GRP11	Parathion-methyl PCSDs (cyfluthrin, sulcofuron,		H	0								n/a			
GREIT	flucofuron and permethrin)			0								0.05			
40487-42-1	Pendimethalin		NP	0								n/a			
87-86-5	i dinadino opiidio	P	Н	0								0.4			
52645-53-1	Permethrin	SP	H	0								0.0002			
GRP12	Pesticides (individual) (other than aldrin, dieldrin, heptachlor & heptachlor epoxide)			0								n/a			
GRP13	heptachlor epoxide) Pesticides (total)			0								n/a			
23103-98-2 29232-93-7	Pirimicarb Pirimiphos - methyl		NP Li	0								0.015			
67747-09-5	Prochloraz		Н	0								0.015			+
31218-83-4	Propetamphos		Н	0								0.03			
23950-58-5	Propyzamide  Dyringou for		Н	0								100			
95737-68-1 124495-18-7	Pyriproxyfen Quinoxyfen	PH		0								n/a 0.015			
122-34-9	Simazine		Н	0								1			





5 of 5



Hydrock Scenario: Scenario B - EQS (inland) 2013/39/EU Annex I P= priority substance RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s): Data set: Groundwater PNEC calculated Client: Morgan (inland EQS) Sindall Site: SWITCH, SP = Specific Pollutant Port Talbot JAGDAG Hazardous Substances Determination (UK) Job no: C26279 Hazardous substance Non-hazardous pollutant Test Certificates(s): 23-13124

	Test Certificates(s): Dataset	ALL ZONES											(blank)	Not included in assessment
CAS / AGS	Chemicals of Potential Concern	WFD	Hazardous Substance			Summary of	Sample Data			Value Being Compared to Target =	Water Quality Target (Exceeded if Red	No. Samples Exceeding Water Quality Target	No. Samples above LoD Exceeding Water Quality	Notes
Number	Concern (concentrations in μg/l)	Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS	Inland Waters EQS	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1133	Hardness as mg/l CaCO ₃			_	_	_	10	_	_	_	_			Representative hardness of receiving surface water environment used in some inland EQS
7440-22-4	Silver (Ag) (dissolved)		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	0	0.13	0.1299	0.12999	0.129986	0.12999	0.05	2	0	Illiand EQO
7429-90-5	Aluminium (Al) (dissolved)			2	1	5	4.99	264	251.0495	264	n/a			
7440-38-2	Arsenic (As) (dissolved)	SP	Н	1	0	5					50	0	0	
7440-42-8	Boron (B) (dissolved)		NP	2	2	5	99	151	148.4	151	2000	0	0	
7440-39-3 7440-43-9	Barium (Ba) (dissolved) Cadmium (Cd) (dissolved)	PH	NP	2	2	5	52.5	165	159.375	165	n/a			
7440-43-9	Cadmidin (Cd) (dissolved)	FII	INF	2	0	0.4	0.398	0.399	0.39895	0.399	0.08	2	0	EQS (inland) dependent on hardness of receiving surface water environment
7440-48-4	Cobalt (Co) (dissolved)		NP	2	0	5	4.98	4.99	4.9895	4.99	3	2	0	240 (mana) dependent en maranese et recenting earlace mater en meninent
18540-29-9	Chromium (VI) (Cr) (dissolved)	SP	Н	2	0	20	19.97	19.99	19.989	19.99	3.4	2	0	
16065-83-1	Chromium (III) (Cr) (dissolved)	SP		2	0	20	19.98	19.999	19.99805	19.999	4.7	2	0	
7440-47-3	Chromium (Cr) (total) (dissolved)		5 5 6 8 8 8 8 8			_	4.00	4.000	4.00055	4 000	,			
7440-50-8	Copper (Cu) (dissolved)	SP	NP	2 2	0	5 5	4.99 4.99	4.999 34.2	4.99855 32.7395	4.999 34.2	n/a	2	1	Bioavailable EQS (inland)
7439-89-6	Iron (Fe) (dissolved)	SP	INF	2	2	5	4.99	78	74.4	78	1000	0	0	Bioavaliable EQS (Il lial id)
7439-97-6	Mercury (Hg) (dissolved)	PH	H	2	1	0.05	0.049	0.25	0.23995	0.25	0.07	1	1	
P1286	Manganese (Mn) (dissolved)	SP		2	1	5	4.999	1880	1786.25	1880	123	1	1	Bioavailable EQS (inland)
7440-23-5	Sodium (Na) (dissolved)			2	2	0.2	39.2	71.6	69.98	71.6	n/a			
7440-02-0	Nickel (Ni) (dissolved)	P	NP	2	1	5	4.99	5.9	5.8545	5.9	4	2	1	Bioavailable EQS (inland)
7439-92-1	Lead (Pb) (dissolved)	P	H	2	0	5	4.997	4.998	4.99795	4.998	1.2	2	0	Bioavailable EQS (inland)
7440-36-0	Antimony (Sb) (dissolved)		NP	2	0	5	4.998	4.999	4.99895	4.999	n/a			
7782-49-2 7440-31-5	Selenium (Se) (dissolved)		NP	2 2	0	5 5	4.9979 4.9972	4.9981 4.9978	4.99809 4.99777	4.9981 4.9978	n/a <b>25</b>	0	0	
7440-31-3	Tin (Sn) (dissolved) Vanadium (V) (dissolved)		8 8 8 8 8		U	<u> </u>	4.9972	4.9976	4.99777	4.9976	25	U	0	
7440 02 2	variation (v) (disserved)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	0	5	4.9977	4.9993	4.99922	4.9993	20	0	0	EQS (inland) dependent on hardness of receiving surface water environment
7440-66-6	Zinc (Zn) (dissolved)	SP	NP	2	0	2	1.99	1.999	1.99855	1.999	12.3	0	0	Bioavailable EQS (inland) + ambient background concentration (ABC)
P1095		SP	NP											
	cyanide)			2	0	5	4.98	4.99	4.9895	4.99	1	2	0	
57-12-5	Cyanide (total)			2	2	5	11	106	101.25	106	n/a			
P1140 P1238	Ammonium (NH ₄ ⁺ )		NP NP	2	2	50	803	2210	2139.65	2210	n/a	2		
P1238 P1720	Ammnoniacal Nitrogen (as N) Ammonia (unionised) (NH ₃ as N)	QD	NP	2	2	50	803	2210	2139.65	2210	300	2	2	
1720	(free ammonia)	Jor .	INF	2	2	50	803	2210	2139.65	2210	n/a			
15541-45-4	Bromate (BrO ₃ )			2	0	0.8	0.79	0.799	0.79855	0.799	n/a			
16887-00-6	Chloride (Cl ⁻ )			2	2	1	66	75	74.55	75	250000	0	0	
16984-48-8	Fluoride (F ⁻ )													
				2	0	0.5	0.497	0.499	0.4989	0.499	1000	0	0	EQS (inland) dependent on hardness of receiving surface water environment
P1348	Nitrate (NO ₃ ⁻ )			2	0	0.5	0.4979	0.498	0.497995	0.498	n/a			
P1349 14808-79-8	Nitrite (NO ₂ ⁻ ) Sulfate (SO ₄ ²⁻ )			2 2	2	0.5	0.497 46	0.4988 73	0.49871 71.65	0.4988 73	n/a 400000	0	0	
P1134	pH (min.) (su)			2	0	I	7.8	11.1	10.935	11.1	6	0	0	
P1134	pH (max.) (su)		5 8 8 8 8 8 8 8 8	2	0		7.8	11.1	10.935	11.1	9	1	0	
P1287	Electrical conductivity (µS/cm)			2	2	5	610	775	766.75	775	n/a			
120-12-7	Anthracene	PH	Н	2	0	0.01	0.009	0.0099	0.009855	0.0099	0.1	0	0	
50-32-8	Benzo(a)pyrene	PH	Н											Benzo(a)pyrene EQS used as marker substance for the group of
														benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene,
				2	0	0.01	0.0094	0.00991	0.009885	0.00991	0.00017		0	benzo(g,h,i)perylene & indeno (1,2,3-cd)pyrene
206-44-0	Fluoranthene	P	Н	2	0	0.01	0.009	0.0095	0.009475	0.0095	0.0063	2	0	
91-20-3 GRP01	Naphthalene PAHs = sum of	P	NP	2	2	0.01	0.02	82.45	78.3285	82.45	2	1	1	
GRPUI	benzo(b)fluoranthene,		П											
	benzo(k)fluoranthene,													
	benzo(ghi)perylene, indeno(1,2,3-													
	cd)pyrene			2	1	0.16	0.159	82.63	78.50645	82.63	n/a			
P1877	Phenol	SP	NP	2	0	0.1	0.09	0.097	0.09665	0.097	7.7	0	0	
P1407	Ali EC5-EC6			2	0	10	9.998	9.999	9.99895	9.999	10	0	0	n-hexane fall within this fraction
P1408	Ali >EC6-EC8		1 1 1 1 1	2	0	10	9.998	9.9997	9.999615	9.9997	10	0	0	n-heptane falls within this fraction
P1409	Ali >EC8-EC10			2	0	10	9.997	9.997	9.997	9.997	10	0	0	n-octane and n-nonane fall within this fraction
P1410 P1411	Ali >EC10-EC12 Ali >EC12-EC16		1 1 1 1	2 2	0	10 10	9.996 9.995	9.996 9.995	9.996 9.995	9.996 9.995	10 10	0	0	
P1411 P1938	Ali >EC12-EC16 Ali >EC16-EC35		1 1 1 1 1	2	0	10	9.995	9.995	9.995	9.995	10	0	0	
P1415	Ali >EC35-EC44		1 1 1 1 1	2	0	10	9.994	9.994	9.994	9.994	10	0	0	
P1441	Aro EC5-EC7			2	1	10	9.992	11	10.9496	11	10	1	1	Benzene wholly representative of this fraction
P1355	Aro >EC7-EC8			2	0	10	9.991	9.993	9.9929	9.993	10	0	0	Toluene wholly representative of this fraction
P1356	Aro >EC8-EC10			2	1	10	9.99	187	178.1495	187	10	1	1	Ethylbenzene / xylene / trimethylbenzene representative of this range
P1357	Aro >EC10-EC12		1 1 1 1 1 1 1 1 1 1 1 1	2	1	10	9.989	168	160.0995	168	10	1	1	Naphthalene often forms a reasonable percentage of this fraction
P1358	Aro > EC12-EC16			2	0	10	9.988	9.988	9.988	9.988	10	0	0	2-methylnaphthalene, acenpthylene, acenapthene falls within this fraction
P1359	Aro >EC16-EC21	1		2	0	10	9.987	9.987	9.987	9.987	10	0	0	fluorene, anthracene, phenanthrene, pyrene falls within this range

1 of 5



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances.

WFD Designation (2015 Directions)

OP = Other substance identical to previous legislation Water body receptor(s): Groundwater Secondary receptor(s):

Data set: Groundwater

Client: Morgan PNEC calculated (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Test Certificates(s): 23-13124 Non-hazardous pollutant

	Dataset	ALL ZONES												(b	ank)	Not included in assessment
CAS / AGS	Chemicals of Potential Concern (concentrations in µg/l)	WFD	Hazardous Substance			Summary of	Sample Data			Value Being Compared to Target =	Water Quality Target (Exceeded if Red	Exceed	amples ing Water y Target	No. Samples LoD Excee Water Qu	eding ality	Notes
Number		Designation	Status	No. of Samples	No. of Samples > LoD	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS		Inland Waters EQS	v	nland Vaters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
P1360	Aro >EC21-EC35			2	0	10	9.986	9.986	9.986	9.986	10		0		0	Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(cd)pyrene fall within this fraction
P1362	Aro >EC35-EC44			2	0	10	9.99	9.99	9.99	9.99	10		0		0	
71-43-2	Benzene	<b>P</b> SP	H	2	1	1	0.99	11	10.4995	11	10		1		1	
108-88-3 100-41-4	Toluene Ethylbenzene	54	H	2	1	5	4.98	4.985	4.98475 52.4995	4.985 55	74		0		1	Proposed EQS for Ethylbenzene in Water, R&D Technical Report P2-115/TR4. EA 2001
95-47-6	o-Xylene		Н	2	1	5	<b>4.99</b>	29	27.8	29	30		0		0	EQS for total xylene
P1374 634-04-04	m,p-Xylene Methyl tertiary butyl ether (MTBE)		H NP	2	1	10	9.998	64	61.2999	64	30		1		1	EQS for total xylene
				2	0	10	9.99	9.998	9.9976	9.998	n/a					
71-55-6	1,1,1-Trichloroethane		NP	2	0	5	4.99	4.998	4.9976	4.998	100		0		0	
79-00-5	1,1,2-Trichloroethane		NP	2	0	10	9.99	9.998	9.9976	9.998	400	-	0		0	
96-12-8 106-93-4	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane		H	2	0	10 5	9.99 4.99	9.998 4.998	9.9976 4.9976	9.998 4.998	n/a n/a					
95-50-1	1,2-Dichlorobenzene		H	2	0	5	4.99	4.998	4.9976	4.998	20		0		0	
107-06-2	1,2-Dichloroethane (EDC)	P	NP	2	0	10	9.988	9.988	9.988	9.988	10		0		0	
156-59-2	cis 1,2-Dichloroethene (cis 1,2 DCE)		NP	2	0	5	4.98	4.98	4.98	4.98	n/a					
156-60-5	trans 1,2-Dichloroethene (trans		NP	_		_										
78-87-5	1,2 DCE) 1,2-Dichloropropane			2	0	5	4.98 4.985	4.999 4.99	4.99805 4.98975	4.999 4.99	n/a					
10061-01-5	cis 1,3-Dichloropropene		H	2	0	5	4.965	4.991	4.98995	4.991	n/a n/a					
10061-02-6	trans 1,3-Dichloropropene		H	2	0	5	4.95	4.9991	4.996645		n/a				nenenonenenenenenenenenen	
106-46-7	1,4-Dichlorobenzene		Н	2	0	5	4.97	4.999	4.99755	4.999	20		0		0	
75-27-4	Bromodichloromethane			2	0	5	4.9	4.95	4.9475	4.95	n/a					
75-01-4	Chloroethene (vinyl chloride)		Н	2	0	5	4.97	4.999	4.99755	4.999	n/a					
124-48-1 25321-22-6	Dibromochloromethane Dichlorobenzenes (1,2-, 1,3- &			0	0	5	4.99	4.99	4.99	4.99	n/a 20					
75-09-2	1,4-) Dichloromethane	P	NP	0							20					
3-09-2 37-68-3		PH	Н	2	0	5	4.98	4.991	4.99045	4.991	0.6		2		0	
00-42-5	Styrene		H	2	0	5	4.98	4.99	4.9895	4.99	50		0		0	
25322-20-7		SP		2	0	5	4.969	4.999	4.9975	4.999	140		0		0	
127-18-4	Tetrachloroethene (PCE)	OP	NP	2	0	5	4.97	4.98	4.9795	4.98	10		0		0	
GRP02	Tetrachloroethene (PCE) and trichloroethene (TCE)			0							n/a					
6-23-5	,	OP	Н	0							40					
75-25-2	Tetrachloride) Tribromomethane (bromoform)			0 2	0	10	9.98	9.99	9.9895	9.99	12 n/a					
12002-48-1	Trichlorobenzenes	P	NP	2	0	0.1	0.098	0.099	0.09895	0.099	0.4		0		0	
79-01-6	Trichloroethene	OP	H	2	0	5	4.98	4.99	4.9895	4.99	10		0		0	
67-66-3	Trichloromethane (chloroform)	P	Н	2	0	5	4.997	4.999	4.9989	4.999	2.5		2		0	
GRP03	Trihalomethanes, sum of trichloromethane, tribromomethane, dibromchloromethane & bromodichloromethane			0							n/a					
	2,4,6-Trichlorophenol		Н	2	0	0.1	0.098	0.099	0.09895	0.099	n/a					
	2,4-Dichlorophenol	SP	Н	2	0	0.1	0.098	0.0999	0.099805		4.2		0		0	
95-57-8	2-Chlorophenol	SP	H	2	0	0.1	0.09	0.097	0.09665	0.097	50	-	0		0	
554-00-7 108-43-0	3,4-Dichloroaniline 3-Chlorophenol	)SF	H	0	0	0.1	0.096	0.097	0.09695	0.097	0.2 50		0		0	
	4-Chloro, 3-methylphenol		H	0						000	40					
106-48-9	4-Chlorophenol		H	0							50					
85-68-7 117-81-7	Benzyl butyl phthalate Di(2-ethylhexylphthalate) (DEHP)	SP PH	NP	2	0	0.1	0.096	0.098	0.0979	0.098	7.5		0		0	
				0			<u> </u>	<u> </u>		-	1.3					
34-74-2	Dibutyl phthalate	-	NP	2	0	0.1	0.096	0.097	0.09695	0.097	8		0		0	
84-66-2 131-11-3 117-84-0	Diethyl phthalate (DEP) Dimethyl phthalate (DMP) Dioctyl phthalates			2 2 0	0	0.1	0.098 0.092	0.099	0.09895 0.09865	0.099 0.099	200 800 20		0		0	
118-74-1	Hexachlorobenzene	PH	Н	2	0	0.1	0.098	0.099	0.09895	0.099	0.05		2		0	<u> </u>
104-40-5		PH P		0		0.1	0.000	0.003	0.00000	0.000	0.3					
	-phenol))			0							0.1					
608-93-5		PH	Н	0						The second secon	0.007					<u> </u>
123-91-1	1,4-dioxane			0						of the second se	n/a					
79-06-1 92-52-4	Acrylamide Biphenyl		Н	0							n/a					
	(cyclochlorocyclohexane)		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0					ч	The state of the s	25					

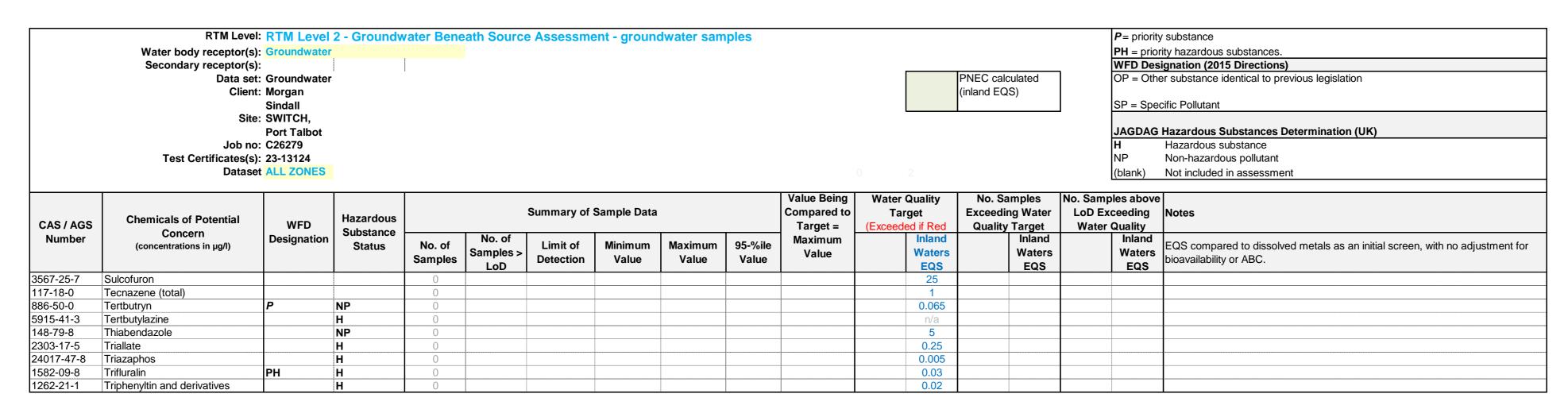


RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Groundwater Client: Morgan (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Hazardous substance Job no: C26279 Test Certificates(s): 23-13124 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Water Quality Value Being No. Samples No. Samples above **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding **Chemicals of Potential** Hazardous CAS / AGS WFD **Quality Target** Water Quality Target = Substance Concern Number Designation No. of Inland Inland Inland Maximum Maximum 95-%ile No. of Limit of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Status Waters Waters Waters Samples > Value **Samples** Detection Value Value Value bioavailability or ABC. EQS **EQS** EQS LoD 32534-81-9 Brominated diphenylethers (Sum PH congeners 28,47,99,100,153,154) 0.14 85535-84-8 Chloroalkanes C10-C13 0.4 25567-68-4 Chloronitrotoluenes 10 3252-43-5 Dibromoacetonitrile n/a 13425-80-4 Dichloroacetate n/a 3018-12-0 Dichloroacetonitrile n/a GRP04 Dioxins and dioxin-like compounds n/a Hexabromocyclododecanes (HBCDD) 0.0016 2163-68-0 Hydroxyatrazine n/a 101043-37-2 Microcystin-LR n/a N-nitrosodimethylamine 1763-23-1 Perflurooctane sulfonic acid 0.00065 (PFOS) & derivatives 335-67-1 Perfluorooctanoic Acid (PFOA) 1336-36-3 Polychlorinated Biphenyls (PCB) 2893-78-9 Sodium dichloroisoxyanurate 50 126-73-8 Tributyl phosphate 0.1 3380-34-5 Triclosan 7726-95-6 Bromine (Br) Chlorine (total free available) 7782-50-5 14866-68-3 Chlorate n/a 14998-27-7 Chlorite EDTA (edetic acid) 400 60-00-4 106-89-8 Epichlorohydrin Malachite green 569-64-2 0.5 10599-90-3 Monochloramine n/a 79-11-8 Mononchloroacetate (Chloroacetic Acid) 139-13-9 1000 NTA (nitrilotriacetic acid) 76-03-9 Trichloroethanoic acid (trichloroacetate) 7440-61-1 U (dissolved) 36643-28-4 Tributyl tin compounds 0.0002 7783-06-4 Hydrogen Sulphide 0.25 14797-73-0 Perchlorate GRP06 Total anions 250000 2,4,5-T (2,4,5-Trichlorophenoxyacetic acid) 2,4-D (2,4-Dichlorophenoxyacetic SP 94-75-7 0.3 94-82-6 2,4-DB (4-(2,4-dichlorophenoxy butyric acid) 71751-41-2 Abamectin 0.01 74070-46-5 Aclinofen 0.12 15972-60-8 Alachlor 0.3 116-06-3 Aldicarb n/a 309-00-2 Aldrin n/a Aldrin & dieldrin GRP07 0.6 1912-24-9 Atrazine 35575-96-3 Azamethiphos n/a 2642-71-9 Azinphos ethyl Azinphos-methyl 86-50-0 0.01 25057-89-0 Bentazone NP 500 42576-02-3 Bifenox 0.012 1689-84-5 Bromoxynil 100 10605-21-7 Carbendazim 0.15 1563-66-2 Carbofuran n/a 57-74-9 Chlordane 0.1 470-90-6 Chlorofenvinphos 10 101-21-3 Chloropropham 0.03 2921-88-2 Chloropyrifos 1897-45-6 Chlorothalonil 0.035 15545-48-9 Chlorotoluron Clyclodiene pesticides, sum of

Aldrin, Dieldrin, Endrin, Isodrin

Coumaphos

0.01


0.01



RTM Level: RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples **P**= priority substance PH = priority hazardous substances. Water body receptor(s): Groundwater WFD Designation (2015 Directions) Secondary receptor(s): PNEC calculated OP = Other substance identical to previous legislation Data set: Groundwater Client: Morgan (inland EQS) SP = Specific Pollutant Sindall Site: SWITCH, JAGDAG Hazardous Substances Determination (UK) Port Talbot Job no: C26279 Hazardous substance Test Certificates(s): 23-13124 Non-hazardous pollutant Dataset ALL ZONES (blank) Not included in assessment Value Being Water Quality No. Samples No. Samples above **Summary of Sample Data** Compared to Target **Exceeding Water** LoD Exceeding **Chemicals of Potential** Hazardous CAS / AGS WFD **Quality Target** Water Quality Target = Substance Concern Number Designation No. of Inland Maximum Inland Inland Maximum 95-%ile No. of Limit of Minimum EQS compared to dissolved metals as an initial screen, with no adjustment for (concentrations in µg/l) Status Waters Waters Waters Samples > Value **Samples** Detection Value Value Value bioavailability or ABC. **EQS** EQS EQS LoD 21725-46-2 Cyanazine 28159-98-0 Cybutryne 0.0025 0.001 68359-37-5 Cyfluthrin 52315-07-8 Cypermethrin 0.00008 GRP09 DDT total (dichlorodiphenylthrichloroethane) 0.025 0.5 8065-48-3 Demeton 333-41-5 0.01 Diazinon (sheep dip) 120-36-5 Dichloroprop Dichlorvos 0.0006 115-32-2 Dicofol 0.0013 60-57-1 Dieldrin 0.001 35367-38-5 Diflubenzuron 60-51-5 Dimethoate 0.48 0.2 330-54-1 Diuron 117704-25- 3 Doramectin 0.001 115-29-7 Endosulfan 0.005 72-20-8 Endrin 0.03 299-84-3 Fenchlorphos 122-14-5 Fenitrothion 0.01 93-72-1 Fenoprop ((2,4,5trichlorophenoxy)propionic acid) 55-38-9 Fenthion 370-50-3 Flucofuron Formaldehyde (methanal) 50-00-0 NP 38641-94-0 Glyphosate 196 2E-07 76-44-8 Heptachlor GRP10 Heptachlor & Heptachlor epoxide PH 2E-07 Heptachlor epoxide 2E-07 608-73-1 Hexachlorocyclohexane (inlcudes PH 0.02 lindane) 1689-83-4 loxynil 10 465-73-6 Isodrin 0.3 34123-69-6 Isoproturon NP 70288-86-7 Ivermectin 0.0001 330-55-2 0.5 Linuron 0.01 121-75-5 Malathion 8018-01-07 Mancozeb NP NP 12427-38-2 Maneb MCPA (4-(2-methyl-4chlorophenoxy acetic acid)) EQS inland dependant on pH. Default 12µg/l as conservative approach 93-65-2 18 Mecoprop 0.01 2032-65-7 Methiocarb NP 72-43-5 Methoxychlor n/a 51218-45-2 Metolachlor 0.02 7786-34-7 Mevinphos 2212-67-1 Molinate 0.01 1113-02-6 Omethoate 0.01 50-29-3 para-para-DDT 56-38-2 Parathion n/a 298-00-0 Parathion-methyl n/a PCSDs (cyfluthrin, sulcofuron, flucofuron 0.05 and permethrin) 40487-42-1 Pendimethalin NP 0.3 87-86-5 Pentachlorophenol 0.4 52645-53-1 Permethrin 0.001 Pesticides (individual) (other than aldrin, dieldrin, heptachlor & heptachlor epoxide) GRP13 Pesticides (total) n/a 23103-98-2 Pirimicarb NP 29232-93-7 Pirimiphos - methyl 0.015 67747-09-5 Prochloraz 4 31218-83-4 Propetamphos 0.03 23950-58-5 Propyzamide 100 95737-68-1 Pyriproxyfen 124495-18-7 Quinoxyfen 0.15

122-34-9 Simazine





5 of 5



# Appendix I Waste assessment



# <u>HazWasteOnline™ assessment</u>





# Waste Classification Report

HazWasteOnline™ classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)





#### Job name

Untitled 95851

## **Description/Comments**

**Dets Lab Cert** 

**Project** 

26279

Site

SWITCH

#### Classified by

**Nathan Thompson** Date:

29 Nov 2023 11:21 GMT

Telephone: 07557 345 513 Company:

**Hydrock Consultants Ltd** 

**Hawthorn Park** 

Holdenby Road, Spratton

Northampton NN6 8LD

HazWasteOnline™ provides a two day bazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Hazardous Waste Classification

Date 22 Apr 2021

Next 3 year Refresher due by Apr 2024

#### Purpose of classification

2 - Material Characterisation

#### Address of the waste

South Wales Industrial Transition from Carbon Hub (SWITCH Building), Oakwood Road, Port Talbot,

Post Code SA13 1DE.

#### SIC for the process giving rise to the waste

41201 Construction of commercial buildings

# Description of industry/producer giving rise to the waste

Former tank farm and location of gasholder for steelworks to the west of the site. The site has previously undergone remedial works

#### Description of the specific process, sub-process and/or activity that created the waste

The site is covered by Made Ground which includes slag, likely to be generated by industrial practices at the former steelworks just west of the site, which have since been demolished along with historical tanks.

#### Description of the waste

Made Ground comprising sandy gravels of limestone sandstone, asphalt, concrete, brick and slag. The Made Ground overlays the Tidal Flat Deposits in all locations except the south-east and north-west corners of the site, and consists of slightly silty clay. Alluvial Fan Deposits underlay Made Ground/Tidal Flat Deposits, which comprise slightly sandy gravel of sandstone with a low sandstone cobble content





# Job summary

	Summary				
#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	TP01	0.3	Non Hazardous		4
2	TP01[2]	0.65	Unknown. Chemistry data not		6
			provided.		
3	TP01[3]	1.2	Non Hazardous		7
4	TP01[4]	1.7	Non Hazardous		10
5	TP01[5]	1.7	Unknown. Chemistry data not		12
			provided.		
6	TP02	0.15	Non Hazardous		13
7	TP02[2]	1.6	Hazardous	HP 3(i)	14
8	TP02[3]	2.5	Hazardous	HP 3(i)	17
9	TP02[4]	2.5	Unknown. Chemistry data not	- (/	18
Ü	11 02[1]	2.0	provided.		10
10	TP02[5]	2.9	Hazardous	HP 3(i), HP 5, HP 7, HP 11	19
11	TP03	0.4	Non Hazardous	(//,,	22
12	TP03[2]	1.4	Non Hazardous		24
			Hazardous	LID 7 LID 40 LID 44	
13	TP03[3]	2.4		HP 7, HP 10, HP 14	27
14	TP03[4]	2.55	Non Hazardous		30
15	TP04	0.2	Non Hazardous		33
16	TP04[2]	0.3	Non Hazardous		35
17	TP04[3]	1	Non Hazardous		36
18	TP04[4]	1	Non Hazardous		39
19	TP04[5]	1.2	Non Hazardous		40
20	TP04[6]	1.2	Unknown. Chemistry data not		42
			provided.		
21	TP04[7]	1.2	Non Hazardous		43
22	TP04[8]	1.8	Non Hazardous		44
23	TP04[9]	2	Non Hazardous		47
24	BH01	0.2	Non Hazardous		48
25	TP05	0.2	Non Hazardous		50
26	TP05[2]	0.3	Non Hazardous	115.0	52
27	TP05[3]	1	Hazardous	HP 8	53
28	TP05[4]	1	Non Hazardous		56
29	TP05[5]	2	Non Hazardous		57
30	TP05[6]	2	Non Hazardous		58
31	TP05[7]	2.8	Non Hazardous		61
32	TP06	0.3	Non Hazardous		64
33	TP06[2]	0.5	Non Hazardous		65
34	TP06[3]	1	Non Hazardous		68
35	TP06[4]	1.5	Non Hazardous		69
36	TP06[5]	2.5	Unknown. Chemistry data not		72
00	11 00[0]	2.0	provided.		,,
37	TP07	0.2	Non Hazardous		73
	TP07[2]	0.5	Non Hazardous		76
39	TP07[3]	1	Non Hazardous		77
			Non Hazardous		
40	TP07[4]	2			80
41	TP07[5]	2.6	Non Hazardous		81
42	TP07[6]	3	Hazardous	HP 3(i), HP 7, HP 11	84
43	TP07[7]	3	Non Hazardous		87
44	BH01[2]	1.1	Non Hazardous		88
45	BH01[3]	3	Non Hazardous		91
46	BH01[4]	5.5	Non Hazardous		94
47	BH02	1	Non Hazardous		97
48	BH02[2]	2.8	Non Hazardous		100
49	BH02[3]	3.7	Non Hazardous		103
	TP08				
50		0.1	Non Hazardous		106
51	TP08[2]	1	Non Hazardous		107
52	TP08[3]	1	Unknown. Chemistry data not		110
			provided.		
53	TP08[4]	1.5	Non Hazardous		111
54	TP08[5]	1.5	Non Hazardous		112
54			Hazardous	HP 2	113
55	TP09	1	Hazaiuous	111 2	110
	TP09 TP09[2]	3	Hazardous	HP 2	116
55					





#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
59	TP10	0.2	Hazardous	HP 2	121
60	TP10[2]	0.5	Hazardous	HP 2	123
61	TP10[3]	0.85	Non Hazardous		125
62	TP10[4]	1	Hazardous	HP 2	126
63	TP10[5]	2.1	Non Hazardous		129
64	TP10[6]	2.6	Hazardous	HP 2	130

#### **Related documents**

#	Name	Description
1	Hydrock Standard plus Cresol (ammended Lead)	waste stream template used to create this Job

# Report

Created by: Nathan Thompson Created date: 29 Nov 2023 11:21 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	133
Appendix B: Rationale for selection of metal species	134
Appendix C: Version	135

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 3 of 135



Classification of sample: TP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code: TP01 Chapter: Sample Depth:

0.3 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	number			User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		acenaphthylene	201-469-6	83-32-9									
2	Θ	acenaphinylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	,			0.26	malka		0.26	ma/ka	0.000026 %		
٥			204-371-1	120-12-7		0.20	mg/kg		0.26	mg/kg	0.000026 %		
4	æ	arsenic { arsenic tr	ioxide }			14	mg/kg	1.32	18.485	mg/kg	0.00185 %		
Ľ	Ĭ	033-003-00-0	215-481-4	1327-53-3		14	ilig/kg	1.02	10.403	ilig/kg	0.00103 /6		
5		benzo[a]anthracen	e			1.13	mg/kg		1.13	mg/kg	0.000113 %		
Ľ		601-033-00-9	200-280-6	56-55-3		1.10					0.000110 /0		
6		benzo[a]pyrene; be	enzo[def]chrysene			0.81	mg/kg		0.81	mg/kg	0.000081 %		
		601-032-00-3	200-028-5	50-32-8	1							$\downarrow$	
7		benzo[b]fluoranthe				1.21	mg/kg		1.21	mg/kg	0.000121 %		
		601-034-00-4	205-911-9	205-99-2	-							-	
8	0	benzo[ghi]perylene		1404.04.0		0.57	mg/kg		0.57	mg/kg	0.000057 %		
-			205-883-8	191-24-2	+							+	
9		benzo[k]fluoranthe		laa= aa a		0.33	mg/kg		0.33	mg/kg	0.000033 %		
	_		205-916-6	207-08-9	+							+	
10	4	beryllium { berylliu 004-003-00-8	m oxide } 215-133-1	4004 50 0	4	1.2	mg/kg	2.775	3.33	mg/kg	0.000333 %		
_	_			1304-56-9	+								
11	≪\$	boron { boron tr (combined) }	ibromide/trichloride			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-33-4, 10294-34-5, 7637-07-2			3 3			3 3			
12	æ (	cadmium { cadmiu	m sulfide }		1	0.6	mg/kg	1.285	0.771	mg/kg	0.00006 %		
	Ĺ	048-010-00-4	215-147-8	1306-23-6	Ľ	0.0	mg/kg	1.200	0.111	g/Rg	3.00000 /0		
13	4	chromium in chrom	e (worst case) }	•		118	mg/kg	1.462	172.464	mg/kg	0.0172 %		
_			215-160-9	1308-38-9	_							$\perp$	
14	4	chromium in chronoxide }	1215-607-8	ds { chromium(VI)		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
		024-001-00-0	+							+			
15		chrysene				1.24	mg/kg		1.24	mg/kg	0.000124 %		
<u> </u>		601-048-00-0	205-923-4	218-01-9									

Page 4 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			ractor	•		value	MC/	Usea
16	4	copper { dicopper o	oxide; copper (I) o	oxide }		91	mg/kg	1.126	102.456	mg/kg	0.0102 %		
10		029-002-00-X	215-270-7	1317-39-1		J1		1.120	102.400		0.0102 /0		
17	*	cyanides { salts exception of completericyanides and respective delsewher	lex cyanides such nercuric oxycyani	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	ene										
18		601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluoranthene				4.00			4.00				
19			205-912-4	206-44-0	-	1.69	mg/kg		1.69	mg/kg	0.000169 %		
20	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		indeno[123-cd]pyre	201-695-5	86-73-7	+								
21	0	muenoj rzs-cujpyre	205-893-2	193-39-5	-	0.55	mg/kg		0.55	mg/kg	0.000055 %		
22	*	lead { • lead compospecified elsewher	pounds with the e		1	141	mg/kg		141	mg/kg	0.0141 %		
		082-001-00-6											
23	4	mercury { mercury	dichloride }			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7									
24		naphthalene				0.45	mg/kg		0.45	mg/kg	0.000045 %		
		601-052-00-2	202-049-5	91-20-3									
25	-	nickel { nickel dihyo 028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		19	mg/kg	1.579	30.01	mg/kg	0.003 %		
26	0	рН				10.7	pН		10.7	pН	10.7 pH		
20				PH		10.7	рп		10.7	рп	10.7 pm		
27		phenanthrene	201-581-5	85-01-8		0.77	mg/kg		0.77	mg/kg	0.000077 %		
		phenol											
28		604-001-00-2	203-632-7	108-95-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
29	8	pyrene	1	1		-0	me/les		-20	ma/les	*0.0002.0/		100
29			204-927-3	129-00-0		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
30	*	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those			0.047	mg/kg	1.405	0.066	mg/kg	0.0000066 %		
		034-002-00-8			-							-	
31	4	zinc { zinc oxide }	b45.000 =	404446	4	228	mg/kg	1.245	283.795	mg/kg	0.0284 %		
$\vdash$		030-013-00-7	215-222-5	1314-13-2	-							1	
32		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		50	mg/kg		50	mg/kg	0.005 %		
		·								Total:	0.0836 %		

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification





Classification of sample: TP01[2]



Unknown. Chemistry data not provided.

........

Classified as **17 05 04** or **17 05 03** * in the List of Waste

# Sample details

Sample name: LoW Code:

TP01[2] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

0.65 m Entry: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition Wastes (including excavated soil from contaminated sites)
17: On truction and Demolition wastes (including excavated soil from contaminated sites)
17: On truction and Demolition wastes (including excavated soil from contaminated sites)
17: On truction and Demolition wastes (including exca

## **Hazard properties**

None identified

## **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
	7	EU CLP index number	EC Number	CAS Number	CLP		racioi			MC/	Osed
			Total:	0%							

Key

User supplied data

Page 6 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP01[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP01[3] Chapter:
Sample Depth:
1.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		0.39	mg/kg		0.39	mg/kg	0.000039 %		
2	0	acenaphthylene	205-917-1	208-96-8		0.18	mg/kg		0.18	mg/kg	0.000018 %		
3	0	anthracene	204-371-1	120-12-7		1.18	mg/kg		1.18	mg/kg	0.000118 %		
4	æ	arsenic { arsenic tr 033-003-00-0	rioxide } 215-481-4	1327-53-3		23	mg/kg	1.32	30.367	mg/kg	0.00304 %		
5		benzene 601-020-00-8	200-753-7	71-43-2		20	mg/kg		20	mg/kg	0.002 %		
6		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		2.72	mg/kg		2.72	mg/kg	0.000272 %		
7		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		1.82	mg/kg		1.82	mg/kg	0.000182 %		
8		benzo[b]fluoranthe	ne 205-911-9	205-99-2		2.44	mg/kg		2.44	mg/kg	0.000244 %		
9	0	benzo[ghi]perylene	205-883-8	191-24-2		0.82	mg/kg		0.82	mg/kg	0.000082 %		
10		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.92	mg/kg		0.92	mg/kg	0.000092 %		
11	æ	beryllium { berylliu 004-003-00-8	m oxide } 215-133-1	1304-56-9		1.3	mg/kg	2.775	3.608	mg/kg	0.000361 %		
12	<b>4</b>	boron { boron tr (combined) }	i <mark>bromide/trichloride</mark>	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
13	4	cadmium { <mark>cadmiu</mark> 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	1.3	mg/kg	1.285	1.671	mg/kg	0.00013 %		
14	4	chromium in chron	nium(III) compound e (worst case) } 215-160-9	ls {		98	mg/kg	1.462	143.232	mg/kg	0.0143 %		
15	4	chromium in chron oxide }	nium(VI) compound	1		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>



$\overline{}$					<del></del>							<u> </u>	
#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	김							MC	
16		chrysene 601-048-00-0	205-923-4	218-01-9	-	2.57	mg/kg		2.57	mg/kg	0.000257 %		
17	æ å	copper { dicopper o	oxide; copper (I) o	xide }		177	mg/kg	1.126	199.282	mg/kg	0.0199 %		
	4	029-002-00-X	215-270-7	1317-39-1	+								
18	~	exception of complerricyanides and respecified elsewher	lex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		0.35	mg/kg		0.35	mg/kg	0.000035 %		
20	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
21	0	fluoranthene	205-912-4	206-44-0		5.8	mg/kg		5.8	mg/kg	0.00058 %		
22	0	fluorene	203-912-4	200-44-0		1.07	mg/kg		1.07	mg/kg	0.000107 %		
		indepol122 adlove	201-695-5	86-73-7	-	1.07			1.07		0.000107 78		
23	0	indeno[123-cd]pyre	205-893-2	193-39-5		0.98	mg/kg		0.98	mg/kg	0.000098 %		
24	4	lead { • lead compared lead   lead   lead   lead compared lead   lead compared lead   lead		ception of those	1	167	mg/kg		167	mg/kg	0.0167 %		
25	æ\$	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene 601-052-00-2	202-049-5	91-20-3		0.61	mg/kg		0.61	mg/kg	0.000061 %		
	æ	nickel { nickel dihye		91-20-3									
27	_	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		43	mg/kg	1.579	67.918	mg/kg	0.00679 %		
28	0	рН		PH		8.6	рН		8.6	рН	8.6 pH		
29	0	phenanthrene				5.81	mg/kg		5.81	mg/kg	0.000581 %		
		phenol	201-581-5	85-01-8							0.0000.0/		
30		604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg 	<0.0002 %		<lod< td=""></lod<>
31	0	pyrene	204-927-3	129-00-0		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
32	<b>4</b>	cadmium sulphose elsewhere in this A	lenide and those s			0.056	mg/kg	1.405	0.0787	mg/kg	0.00000787 %		
60		034-002-00-8 toluene				_				,,	0.0005.07		
33		601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
34	Θ	TPH (C6 to C40) p	etroleum group	TPH	-	184.13	mg/kg		184.13	mg/kg	0.0184 %		
		xylene											
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
36		zinc { zinc oxide }	215-222-5	1314-13-2		537	mg/kg	1.245	668.411	mg/kg	0.0668 %		
		asbestos	- 10 222-0	1017 10-2									
37		650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		20	mg/kg		20	mg/kg	0.002 %		
									Total:	0.157 %			

Page 8 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

## **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

benzene: (conc.: 0.002%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0184%)



17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP01[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP01[4] Chapter:
Sample Depth:

**1.7 m** Entry:

from contaminated sites)
Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
1		benzene 601-020-00-8	200-753-7	71-43-2		100	mg/kg		100	mg/kg	0.01 %		
2	9	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
3	0	рН		PH		9.1	рН		9.1	рН	9.1 pH		
4		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
5	0	601-021-00-3 203-625-9 108-88-3  TPH (C6 to C40) petroleum group  TPH				330.21	mg/kg		330.21	mg/kg	0.033 %		
6			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
		1		·	•					Total:	0.0439 %	П	

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

## **Supplementary Hazardous Property Information**

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

benzene: (conc.: 0.01%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 10 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.033%)





Classification of sample: TP01[5]



Unknown. Chemistry data not provided.

........

Classified as 17 05 04 or 17 05 03 * in the List of Waste

# Sample details

Sample name: LoW Code: TP01[5] Chapter:

17: Construction and Demolition Wastes (including excavated soil Sample Depth: from contaminated sites) 1.7 m Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

## **Hazard properties**

None identified

## **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
	7	EU CLP index number	EC Number	CAS Number	CLP		racioi			MC/	Osed
			Total:	0%							

Key

User supplied data

Page 12 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP02 Chapter:
Sample Depth:
0.15 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered	data	Conv.	Compound	d conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP	Fac		actor			value	MC,	Oseu
1	0	pH		PH		10.2	рН		10.2	рН	10.2 pH		
			Total:	0%									

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 13 of 135



Classification of sample: TP02[2]

▲ Hazardous Waste Classified as 17 05 03 *

in the List of Waste

#### Sample details

Sample name: LoW Code:

TP02[2] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

1.6 m Entry: 17 05 03 * (Soil and stones containing hazardous substances)

## **Hazard properties**

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0714%) ethylbenzene: (conc.: 0.0055%) toluene: (conc.: 0.0229%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0189%)

xylene: (conc.: 0.0174%)

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
3	0	anthracene	204-371-1	120-12-7		0.32	mg/kg		0.32	mg/kg	0.000032 %		
4	~		ioxide } 215-481-4	1327-53-3		12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
5		benzene	200-753-7	71-43-2		714	mg/kg		714	mg/kg	0.0714 %		
6		benzo[a]anthracen	e 200-280-6	56-55-3		0.99	mg/kg		0.99	mg/kg	0.000099 %		
7		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		0.67	mg/kg		0.67	mg/kg	0.000067 %		
8		benzo[b]fluoranthe	ne 205-911-9	205-99-2		1.04	mg/kg		1.04	mg/kg	0.000104 %		
9	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
10		benzo[k]fluoranther	ne 205-916-6	207-08-9		0.34	mg/kg		0.34	mg/kg	0.000034 %		

Page 14 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



			Determinand		lote	User entere	d data	Conv.	Compound	0000	Classification	polied	Conc. Not
#		EU CLP index number	EC Number	CAS Number	CLP Note	User entere	a data	Factor	Compound	conc.	value	MC Applied	Used
11	4	beryllium { beryllium				0.8	mg/kg	2.775	2.22	mg/kg	0.000222 %		
	_	004-003-00-8	215-133-1	1304-56-9								Н	
12	4	boron { boron tril (combined) }	bromide/trichloride			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-33-4, 10294-34-5, 7637-07-2			3- 3			3 3			
13	4	cadmium { cadmiur			1	0.5	mg/kg	1.285	0.643	mg/kg	0.00005 %		
14	æ	chromium in chrom		1306-23-6 s {		250	mg/kg	1.462	365.389	mg/kg	0.0365 %		
			215-160-9	1308-38-9									
15	æ\$	chromium in chromoxide }				<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
		024-001-00-0 chrysene	215-607-8	1333-82-0								Н	
16		•	205-923-4	218-01-9	-	1.01	mg/kg		1.01	mg/kg	0.000101 %		
17	4	copper { dicopper o				51	mg/kg	1.126	57.42	mg/kg	0.00574 %		
18	<b>4</b>	cyanides { salts of exception of complete ferricyanides and managements.	of hydrogen cyanic ex cyanides such a nercuric oxycyanid	de with the as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5										H	
19		dibenz[a,h]anthrace	ene 200-181-8	53-70-3	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_		ethylbenzene	200-101-0	p3-70-3									
20		601-023-00-4	202-849-4	100-41-4		55	mg/kg		55	mg/kg	0.0055 %		
21	0	fluoranthene	205-912-4	206-44-0		1.67	mg/kg		1.67	mg/kg	0.000167 %		
22	0	fluorene	201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	indeno[123-cd]pyre				0.09	mg/kg		0.09	mg/kg	0.000009 %		
24	æ	lead {		193-39-5 ception of those	1	76	mg/kg		76	mg/kg	0.0076 %		
25	æ å	082-001-00-6 mercury { mercury				<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %	Н	<lod< td=""></lod<>
26		naphthalene	231-299-8	7487-94-7		9.62	mg/kg		9.62	mg/kg	0.000962 %		
L			202-049-5	91-20-3	1	5.02							
27	<b>4</b>		lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		16	mg/kg	1.579	25.272	mg/kg	0.00253 %		
28	9	pH		PH		9.5	рН		9.5	рН	9.5 pH		
29	0	phenanthrene	201-581-5	85-01-8		1.03	mg/kg		1.03	mg/kg	0.000103 %		
30		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31	9	pyrene				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			204-927-3	129-00-0	$\vdash$							H	
32	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				0.049	mg/kg	1.405	0.0688	mg/kg	0.00000688 %		
33		toluene				229	mg/kg		229	mg/kg	0.0229 %		
34	0	601-021-00-3 TPH (C6 to C40) pe	203-625-9 etroleum group	108-88-3		189	mg/kg		189	mg/kg	0.0189 %		
				TPH	1	.00			.00	9,119	0.0700 /0		



#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
35		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		174 mg/kg		174 mg/kg	0.0174 %		
36	æ\$	zinc { zinc oxide }	215-222-5	1314-13-2		119 mg/kg	1.245	148.121 mg/kg	0.0148 %		
			1: 0.209 %								

|--|

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

**<LOD** Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP02[3]

A Hazardous Waste Classified as 17 05 03 * in the List of Waste

#### Sample details

LoW Code: Sample name:

TP02[3] Chapter: Sample Depth:

Entry: 17 05 03 * (Soil and stones containing hazardous substances) 2.5 m

from contaminated sites)

#### **Hazard properties**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0546%) ethylbenzene: (conc.: 0.0062%) toluene: (conc.: 0.0234%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0151%)

xylene: (conc.: 0.0142%)

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
1		benzene 601-020-00-8	200-753-7	71-43-2		546	mg/kg		546	mg/kg	0.0546 %		
2	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		62	mg/kg		62	mg/kg	0.0062 %		
3	0	рН		PH		9.8	рН		9.8	рН	9.8 pH		
4		toluene 601-021-00-3	203-625-9	108-88-3		234	mg/kg		234	mg/kg	0.0234 %		
5	0	TPH (C6 to C40) p	petroleum group	TPH		150.84	mg/kg		150.84	mg/kg	0.0151 %		
6			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		142	mg/kg		142	mg/kg	0.0142 %		
										Total:	0.113 %		

User supplied data Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)





Classification of sample: TP02[4]



Unknown. Chemistry data not provided.

........

03)

Classified as **17 05 04** or **17 05 03** * in the List of Waste

## Sample details

Sample name: LoW Code:

TP02[4] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
2.5 m Entry: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

## **Hazard properties**

None identified

## **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#	:	Determinand g				Conv.	Compound conc.	Classification value		nc. Not Jsed	
		EU CLP index number	EC Number	CAS Number	CLP	actor		value	MC/	Jseu	
		•		•				Total:	0%		

Key

User supplied data

Page 18 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP02[5]

Hazardous Waste
Classified as 17 05 03 *
in the List of Waste

#### Sample details

2.9 m

Sample name: LoW Code:

TP02[5] Chapter: Sample Depth:

17 05 03 * (Soil and stones containing hazardous substances)

from contaminated sites)

17: Construction and Demolition Wastes (including excavated soil

### **Hazard properties**

<u>HP 3(i)</u>: <u>Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Entry:

Force this Hazardous property to hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 1.259%) ethylbenzene: (conc.: 0.0681%) toluene: (conc.: 0.0074%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0107%)

xylene: (conc.: 0.0191%)

HP 5: Specific Target Organ Toxicity (STOT)/Aspiration Toxicity "waste which can cause specific target organ toxicity either from a single or repeated exposure, or which cause acute toxic effects following aspiration"

Hazard Statements hit:

**STOT RE 1**; **H372** "Causes damage to organs [or state all organs affected, if known] through prolonged or repeated exposure [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

benzene: (conc.: 1.259%)

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1A; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

benzene: (conc.: 1.259%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

benzene: (conc.: 1.259%)





## **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

		ire content. <mark>0% No Moisture Correction applied (N</mark>									
#		Determinand  EU CLP index		User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene 201-469-6 83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
2	0	acenaphthylene 205-917-1 208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	9	anthracene 204-371-1   120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	arsenic { arsenic trioxide }		13	mg/kg	1.32	17.164	mg/kg	0.00172 %		
5		benzene	+	12591	mg/kg		12591	mg/kg	1.259 %		
6		601-020-00-8 200-753-7 71-43-2 benzo[a]anthracene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7		601-033-00-9 200-280-6 56-55-3 benzo[a]pyrene; benzo[def]chrysene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8		601-032-00-3 200-028-5 50-32-8 benzo[b]fluoranthene	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9	0	601-034-00-4 205-911-9 205-99-2 benzo[ghi]perylene 205-883-8 1191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10		benzo[k]fluoranthene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
11	4	601-036-00-5 205-916-6 207-08-9  beryllium { beryllium oxide }  004-003-00-8 215-133-1   1304-56-9		<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
12	4	boron { boron tribromide/trichloride/trifluoride (combined) }   10294-33-4, 10294-34-5, 7637-07-2		1.2	mg/kg	13.43	16.116	mg/kg	0.00161 %		
13	æ å	cadmium { cadmium sulfide } 048-010-00-4	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
14	æ	chromium in chromium(III) compounds {		28	mg/kg	1.462	40.924	mg/kg	0.00409 %		
15	æ\$	215-160-9   1308-38-9   chromium in chromium(VI) compounds { chromium(VI)		<2	ma/ka	1 022	<3.846	ma/ka	<0.000385 %		<lod< td=""></lod<>
13		oxide }           024-001-00-0         215-607-8           1333-82-0           chrysene		<2	mg/kg	1.923	<3.040	mg/kg	<0.000363 %		<lod< td=""></lod<>
16		601-048-00-0 205-923-4 218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
17	4	copper { dicopper oxide; copper (I) oxide }           029-002-00-X         215-270-7         1317-39-1		13	mg/kg	1.126	14.637	mg/kg	0.00146 %		
18	<b>4</b>	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		006-007-00-5 dibenz[a,h]anthracene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	601-041-00-2 200-181-8 53-70-3 ethylbenzene		681	mg/kg		681	mg/kg	0.0681 %		
21	0	601-023-00-4 202-849-4 100-41-4 fluoranthene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	205-912-4 206-44-0 fluorene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	201-695-5   86-73-7   indeno[123-cd]pyrene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		205-893-2 193-39-5									



#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
24	4	lead { lead compounds with the exception of those specified elsewhere in this Annex }			1	35	mg/kg		35	mg/kg	0.0035 %		
25	4		/ dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
26		naphthalene 601-052-00-2	202-049-5	91-20-3		2.2	mg/kg		2.2	mg/kg	0.00022 %		
27	4					12	mg/kg	1.579	18.954	mg/kg	0.0019 %		
28	0	рН	234-348-1 [2]	11113-74-9 [2]		7.7	pH		7.7	pH	7.7 pH		
29	9	phenanthrene	D04 504 5	PH los od o		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
30		phenol	201-581-5	85-01-8		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
31	0	604-001-00-2 pyrene	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
32	<b>4</b>	204-927-3   129-00-0 selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				0.025	mg/kg	1.405	0.0351	mg/kg	0.00000351 %		
33		toluene 601-021-00-3	203-625-9	108-88-3		74	mg/kg		74	mg/kg	0.0074 %		
34	0	TPH (C6 to C40) petroleum group				106.73	mg/kg		106.73	mg/kg	0.0107 %		
35		<b>xylene</b> 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		191	mg/kg		191	mg/kg	0.0191 %		
36	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		51	mg/kg	1.245	63.48	mg/kg	0.00635 %		
										Total:	1.387 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification



Classification of sample: TP03

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code: TP03 Chapter: Sample Depth:

0.4 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	æ	arsenic { arsenic tr	ioxide } 215-481-4	1327-53-3		6	mg/kg	1.32	7.922	mg/kg	0.000792 %		
5		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
6		benzo[a]pyrene; be	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8	Θ	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9		benzo[k]fluoranthe	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10	-	beryllium { berylliu 004-003-00-8		1304-56-9		1	mg/kg	2.775	2.775	mg/kg	0.000278 %		
11	4	boron { boron tr (combined) }				<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
12	4	cadmium { cadmiu 048-010-00-4	m sulfide } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	4	chromium in chrom	nium(III) compound			25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
14	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
15		chrysene 601-048-00-0	205-923-4	218-01-9	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>

Page 22 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#		Determinand  EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound co	inc.	Classification value	MC Applied	Conc. Not Used
16	æ\$	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		15	mg/kg	1.126	16.888 n	ng/kg	0.00169 %		
17	æ	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 n	ng/kg	<0.000188 %		<lod< td=""></lod<>
18		006-007-00-5   dibenz[a,h]anthracene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
19	9	601-041-00-2 200-181-8 53-70-3 fluoranthene 205-912-4 206-44-0	-	<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
20	9	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyrene		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
22	<b>4</b>	lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	21	mg/kg		21 n	ng/kg	0.0021 %		
23	4			<1	mg/kg	1.353	<1.353 n	ng/kg	<0.000135 %		<lod< td=""></lod<>
24		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
25	_	nickel { nickel dihydroxide } 028-008-00-X		21	mg/kg	1.579	33.169 n	ng/kg	0.00332 %		
26	0	pH PH		7.7	рН		7.7 p	Н	7.7 pH		
27	0	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
28		phenol		<2	mg/kg		<2 n	ng/kg	<0.0002 %		<lod< td=""></lod<>
29	0	pyrene 204-927-3   129-00-0		<2	mg/kg		<2 n	ng/kg	<0.0002 %		<lod< td=""></lod<>
30	<b>4</b>	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.011	mg/kg	1.405	0.0155 n	ng/kg	0.00000155 %		
31	-	zinc { zinc oxide }		68	mg/kg	1.245	84.641 n	ng/kg	0.00846 %		
								Total:	0.0229 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 Only the metal concentration has been used for classification



Classification of sample: TP03[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code: TP03[2] Chapter: Sample Depth:

1.4 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	acenaphthene	D04 400 0			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	9	acenaphthylene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	anthracene	205-917-1	208-96-8									
3			204-371-1	120-12-7	-	0.15	mg/kg		0.15	mg/kg	0.000015 %		
4	4	arsenic { arsenic tr	ioxide }			13	mg/kg	1.32	17.164	mg/kg	0.00172 %		
Ľ		033-003-00-0	215-481-4	1327-53-3							0.00172 /0	$\downarrow$	
5		benzene				61	mg/kg		61	mg/kg	0.0061 %		
		601-020-00-8	200-753-7	71-43-2	-							-	
6		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3	4	0.57	mg/kg		0.57	mg/kg	0.000057 %		
<u> </u>		benzo[a]pyrene; be		06-00-3		0.50							
7		601-032-00-3	200-028-5	50-32-8	1	0.52	mg/kg		0.52	mg/kg	0.000052 %		
8		benzo[b]fluoranthe				0.7	mg/kg		0.7	mg/kg	0.00007 %		
		601-034-00-4	205-911-9	205-99-2								-	
9	0	benzo[ghi]perylene	205-883-8	191-24-2	_	0.31	mg/kg		0.31	mg/kg	0.000031 %		
-		benzo[k]fluoranthe		191-24-2	+							+	
10			205-916-6	207-08-9	+	0.24	mg/kg		0.24	mg/kg	0.000024 %		
11	æ	beryllium { berylliu	m oxide }			2	mg/kg	2.775	5.551	mg/kg	0.000555 %		
	Ĭ	004-003-00-8	215-133-1	1304-56-9		2	IIIg/kg	2.113	3.331	ilig/kg	0.000333 //		
12	4	boron { boron tr (combined) }	ibromide/trichloride			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-33-4, 10294-34-5, 7637-07-2			mg/ng	10.10	110.10	mg/ng	10.0010170		
13		cadmium { cadmiu		4000 00 0	_ 1	0.6	mg/kg	1.285	0.771	mg/kg	0.00006 %		
14	æ\$	048-010-00-4 chromium in chrom chromium(III) oxide	e (worst case) }	-		175	mg/kg	1.462	255.772	mg/kg	0.0256 %		
	_		215-160-9	1308-38-9	+							$\perp$	
15		chromium in chromoxide }	. , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
	<u> </u>	024-001-00-0	215-607-8	1333-82-0									

Page 24 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor	, , ,		value	MC A	Used
16		chrysene	laa= aaa .	h.10.01.0		0.62	mg/kg		0.62	mg/kg	0.000062 %		
	_	601-048-00-0	205-923-4	218-01-9	+							$\vdash$	
17	_				_	62	mg/kg	1.126	69.805	mg/kg	0.00698 %		
	_	029-002-00-X	215-270-7	1317-39-1	+								
18	₫,	cyanides { salts exception of compl ferricyanides and r specified elsewher	lex cyanides such mercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5			+								
19		dibenz[a,h]anthrac		F0.70.0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	601-041-00-2	200-181-8	53-70-3	╁								
20	0	ethylbenzene	haa a	1,00,11,1		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	+							-	
21	0	fluoranthene	205-912-4	206-44-0		0.88	mg/kg		0.88	mg/kg	0.000088 %		
22	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	indeno[123-cd]pyre				0.37	mg/kg		0.37	mg/kg	0.000037 %		
			205-893-2	193-39-5									
24	≪\$	lead {		cception of those	1	1880	mg/kg		1880	mg/kg	0.188 %		
		082-001-00-6											
25	4	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene				0.14	mg/kg		0.14	mg/kg	0.000014 %		
	_	601-052-00-2	202-049-5	91-20-3	+								
27	_	nickel { nickel dihyo 028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		16	mg/kg	1.579	25.272	mg/kg	0.00253 %		
28	9	рН	[2]	PH		9	рН		9	рН	9pH		
		nhananthrana		rn	+							$\vdash$	
29	0	phenanthrene	004 504 5	05.04.0	_	0.45	mg/kg		0.45	mg/kg	0.000045 %		
		phonol	201-581-5	85-01-8	+								
30		phenol 604-001-00-2	202 622 7	100 DE 2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			203-632-7	108-95-2	+								
31	0	pyrene	204-927-3	129-00-0	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	ϣ.	selenium { seleniui			+								
32	•	cadmium sulphose elsewhere in this A	elenide and those			0.052	mg/kg	1.405	0.0731	mg/kg	0.00000731 %		
	L	034-002-00-8			L							L	
33		toluene				10	mg/kg		10	mg/kg	0.001 %		
		601-021-00-3	203-625-9	108-88-3	L					9/109	3.001 /0	L	
34	0	TPH (C6 to C40) p	etroleum group	TPH		56.17	mg/kg		56.17	mg/kg	0.00562 %		
		xylene			T								
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
36	œ.	zinc { zinc oxide }	F.0 000 / [ ⁺ ]	.500 Z0 / [ ⁺ ]	$\dagger$	160	mg/kg	1.245	199.154	mg/kg	0.0199 %		
30		030-013-00-7	215-222-5	1314-13-2		100	mg/kg	1.240	133.134				
										Total:	0.261 %		

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration





## **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0061%) toluene: (conc.: 0.001%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00562%)

Page 26 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP03[3]

Hazardous Waste Classified as 17 05 03 * in the List of Waste

#### Sample details

Sample name: LoW Code:

TP03[3] Chapter:
Sample Depth:
2.4 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 03 * (Soil and stones containing hazardous substances)

#### **Hazard properties**

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 2; H351 "Suspected of causing cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex: (Note 1 conc.: 4.8%)

HP 10: Toxic for reproduction "waste which has adverse effects on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring"

Hazard Statements hit:

Repr. 1A; H360Df "May damage the unborn child. Suspected of damaging fertility."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex: (Note 1 conc.: 4.8%)

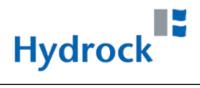
HP 14: Ecotoxic "waste which presents or may present immediate or delayed risks for one or more sectors of the environment"

Hazard Statements hit:

Aquatic Chronic 1; H410 "Very toxic to aquatic life with long lasting effects."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex: (Note 1 conc.: 4.8%)


#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
3	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
4	æ\$	arsenic { arsenic t	rioxide } 215-481-4	1327-53-3		7	mg/kg	1.32	9.242	mg/kg	0.000924 %		
5		benzo[a]anthracer 601-033-00-9	ne  200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
6		benzo[a]pyrene; b 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7		benzo[b]fluoranthe	ene  205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>



8   Sector(S) personal possess   191242	#			Determinand		Note	User entere	ed data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
Section   Description   Desc				EC Number	CAS Number	CLP			Factor	·		value	MC /	Used
10	8	0	10 1. 7		191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Septiment   Despite   De			benzo[k]fluoranther	ne			0.4			0.4		0.00004.0/		1.00
10	9				207-08-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Section   Compare   Comp	40	æ	beryllium { berylliur	n oxide }	'		0.5		0.775	4.000	/1	0.000400.0/		1.00
11	10		004-003-00-8	215-133-1	1304-56-9	1	<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lud< td=""></lud<>
12   2   Cantinum ( calciforum sulficle )   1   1   0.6   mg/kg   1.285   0.771   mg/kg   0.0006 %	11	**		bromide/trichloride	10294-33-4,		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
1					7637-07-2									
19   19   19   19   19   19   19   19	12	4	cadmium { cadmiur	<mark>m sulfide</mark> }		1	0.6	ma/ka	1 285	0.771	ma/ka	0.00006 %		
13	12	Ĭ	048-010-00-4	215-147-8	1306-23-6	1'	0.0	mg/kg	1.203	0.771	mg/kg	0.00000 /8		
1.	13	*	chromium(III) oxide	(worst case) }			36	mg/kg	1.462	52.616	mg/kg	0.00526 %		
1		_				$\top$							Н	
15   Chrysens   Chry	14	•	oxide }	. , .	, ,		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
15   \$\sigma_{010048.000}  policy per (gloopper oxide), copper (gloopper oxide), participated by the exception of complex oyarides such as ferrocyanides, ferrocyanides and mercure oxyoraride and those specified elsewhere in this Annex )						$\top$								
10   10   10   10   10   10   10   10	15		,	205-923-4	218-01-9	$\dashv$	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
1	16	_					16	ma/ka	1 126	18 014	ma/ka	0.0018 %		
17			029-002-00-X	215-270-7	1317-39-1		10	mg/kg	1.120	10.014		0.0010 70	Ш	
18	17	•	exception of completerricyanides and management of the specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
801-041-00-2   200-181-8   53-70-3	10			ene	J.		0.4			0.4		0.00004.0/		1.00
19	18				53-70-3	$\dashv$	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19   205-912-4   206-44-0   201-1   mg/kg   20.1   mg/kg   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.0001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.00001   20.														
201-695-5   86-73-7	19			205-912-4	206-44-0	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-893-2   193-39-5   201-1   193-39-5   201-1   193-39-5   201-1   193-39-5   201-1   193-39-5   201-1   193-39-5   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1   201-1	20	0		201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Lead   Security   Lead   Compounds with the exception of those specified elsewhere in this Annex   1   48000   mg/kg   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.8 %   4.0 %   4.0 %   4.8 %   4.8 %   4.8 %   4.8 %   4	21	0			193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
mercury { mercury dichloride }	22	4	lead {	oounds with the ex	ception of those	1	48000	mg/kg		48000	mg/kg	4.8 %		
Think   Thin			082-001-00-6	-		1								
Think   Thin		æ	mercury { mercury	dichloride }	,		4		4.050	4.050		0.000405.0/		1.00
24	23	_			7487-94-7	+	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lud< td=""></lud<>
24	~_					T	0.4	m //		0.4	//	-0.00004.00		.1.00
25	24		601-052-00-2	202-049-5	91-20-3	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
25		e de la companya de l	nickel { nickel dihvo	<mark>Iroxide</mark> }		T							$\Box$	
PH	25	•	028-008-00-X	235-008-5 [1]			6	mg/kg	1.579	9.477	mg/kg	0.000948 %		
201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-581-5   201-	26	0	pH		PH		7.3	рН		7.3	рН	7.3 pH		
28	27	0	· ·	201-581-5			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29 pyrene	28		phenol				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
204-927-3   129-00-0     3	29	0					<2	ma/ka		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>
30				204-927-3	129-00-0	1_	_	.59			5.78		Ш	
31 display="3" zinc { zinc oxide }	30		cadmium sulphose elsewhere in this A	lenide and those s			0.08	mg/kg	1.405	0.112	mg/kg	0.0000112 %		
	31	4	zinc { zinc oxide }				479	mg/kg	1.245	596.218	mg/kg	0.0596 %		
Total:   4.871 %			030-013-00-7	215-222-5	1314-13-2							4.871 %	$\sqcup$	





Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
<b>₫</b>	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for algorification

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 29 of 135



Classification of sample: TP03[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP03[4] Chapter: Sample Depth:

2.55 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene	DO4 400 C	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	201-469-6			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	205-917-1	208-96-8	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_	æ	arsenic { arsenic tr	204-371-1 ioxide }	120-12-7	-	_							
4	_	033-003-00-0	215-481-4	1327-53-3		9	mg/kg	1.32	11.883	mg/kg	0.00119 %		
5		benzene 601-020-00-8	200-753-7	71-43-2	-	6	mg/kg		6	mg/kg	0.0006 %		
6		benzo[a]anthracen		7 10 2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
L			200-280-6	56-55-3		10.1	9/119				10.00001 70		1205
7		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	$\frac{1}{2}$	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9	9	benzo[ghi]perylene	)			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		h [1:16] 4h -	205-883-8	191-24-2									
10		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
11	æ					0.7	mg/kg	2.775	1.943	mg/kg	0.000194 %		
Ľ.,	Ĺ	004-003-00-8	215-133-1	1304-56-9		0.1		2.110	1.540		0.000134 70	L	
12	4	boron { boron tr (combined) }	ibromide/trichloride	10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
13		cadmium { cadmiu 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
14	4	chromium in chrom	nium(III) compound			11	mg/kg	1.462	16.077	mg/kg	0.00161 %		
15		chromium in chromoxide }		J		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>

Page 30 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Buttername	٥	
Chrysene   Chrysene	MC Applied	Conc. Not Used
17	MC	
17   2		<lod< td=""></lod<>
122-002-00-X   215-270-7   [317-39-1   15   mg/kg   1.824   mg/kg   0.0001 %	77	
18		
19		<lod< td=""></lod<>
19		
20		<lod< td=""></lod<>
Solution   Color   C		
1		<lod< td=""></lod<>
21		
201-695-5   86-73-7		<lod< td=""></lod<>
23		<lod< td=""></lod<>
lead {   lead compounds with the exception of those specified elsewhere in this Annex }   1   1630   mg/kg   1630   mg/kg   0.163 %		<lod< td=""></lod<>
mercury { mercury dichloride }   380-010-00-X   231-299-8   7487-94-7		
1080-010-00-X   231-299-8   7487-94-7	$\dashv$	
26		<lod< td=""></lod<>
11		<lod< td=""></lod<>
27		
PH		
29   phenanthrene   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-581-5   85-01-8   201-001-00-2   203-632-7   108-95-2   201-001-00-2   203-632-7   108-95-2   201-001-00-2   203-632-7   108-95-2   201-001-00-2   201-001-001-001-001-001-001-001-001-001-		
201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-581-5   85-01-8     201-601-00-2   203-632-7   108-95-2     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0     201-901-00-0   201-901-00-0     201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201-901-00-0   201	-	
2 mg/kg   2 mg		<lod< td=""></lod<>
30		
31		<lod< td=""></lod<>
Selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<lod< td=""></lod<>
Sesewhere in this Affrica;   Seewhere in this Affrica;		
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100		
33	$\dashv$	
34 TPH (C6 to C40) petroleum group  TPH  56.12 mg/kg  56.12 mg/kg  0.00561 %  xylene  601-022-00-9 202-422-2 [1] 95-47-6 [1]		<lod< td=""></lod<>
xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1]		
601-022-00-9 202-422-2 [1] 95-47-6 [1]	$\dashv$	
203-396-5 [2]		<lod< td=""></lod<>
36 💐 zinc { zinc oxide }		
	+	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification





## **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

benzene: (conc.: 0.0006%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)

Page 32 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP04 Chapter:
Sample Depth:
0.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
4	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		10	mg/kg	1.32	13.203	mg/kg	0.00132 %		
5		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		0.81	mg/kg		0.81	mg/kg	0.000081 %		
6		benzo[a]pyrene; be	enzo[def]chrysene	50-32-8		0.69	mg/kg		0.69	mg/kg	0.000069 %		
7		benzo[b]fluoranthe	ne 205-911-9	205-99-2		0.79	mg/kg		0.79	mg/kg	0.000079 %		
8	0	benzo[ghi]perylene		191-24-2	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9		benzo[k]fluoranthe		207-08-9		0.26	mg/kg		0.26	mg/kg	0.000026 %		
10	4			1304-56-9		1.1	mg/kg	2.775	3.053	mg/kg	0.000305 %		
11	<b>4</b>	boron { boron tr (combined) }				<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
12	4	cadmium { cadmiu 048-010-00-4	m sulfide } 215-147-8	1306-23-6	_ 1	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
13	4	chromium in chrom	nium(III) compound			210	mg/kg	1.462	306.927	mg/kg	0.0307 %		
14	4	chromium in chromoxide }				<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
15		chrysene 601-048-00-0	205-923-4	218-01-9		0.92	mg/kg		0.92	mg/kg	0.000092 %		



#		Determinand  EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		35	mg/kg	1.126	39.406	mg/kg	0.00394 %		
17	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5									
18		dibenz[a,h]anthracene		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8 53-70-3									
19	Θ	fluoranthene 205-912-4 206-44-0	_	1.35	mg/kg		1.35	mg/kg	0.000135 %		
20	0	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	indeno[123-cd]pyrene   193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	4	lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	622	mg/kg		622	mg/kg	0.0622 %		
23	-			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
23	_	080-010-00-X 231-299-8 7487-94-7		<u> </u>	ilig/kg	1.333	<1.555	ilig/kg	<0.000133 / ₈		\LOD
24		naphthalene 601-052-00-2 202-049-5 91-20-3		0.27	mg/kg		0.27	mg/kg	0.000027 %		
		nickel { nickel dihydroxide }								╁	
25		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		10	mg/kg	1.579	15.795	mg/kg	0.00158 %		
26	0	рН		11	рН		11	pН	11pH		
		PH	_							-	
27	Θ	phenanthrene 201-581-5 85-01-8		0.52	mg/kg		0.52	mg/kg	0.000052 %		
28		phenol		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
20		604-001-00-2 203-632-7 108-95-2		\Z	ilig/kg		<b>\Z</b>	ilig/kg	<0.0002 /8		\LOD
29	0	pyrene 204-927-3 129-00-0	4	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
30	4			0.03	mg/kg	1.405	0.0422	mg/kg	0.00000422 %		
31	-	zinc { zinc oxide }		107	mg/kg	1.245	133.184	mg/kg	0.0133 %		
		pau-u 1a-uu-/   <u>2 1a-222-5</u>   1314-13-2						Total:	0.116 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 34 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP04[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP04[2] Chapter:
Sample Depth:
0.3 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not
	EU CLP index			CLP		lactor		value		Oseu	
1	0	рН		PH	_	10.7 pH		10.7 pH	10.7 pH		
								Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 35 of 135



Classification of sample: TP04[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code:
TP04[3] Chapter:
Sample Depth:

m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		acenaphthylene	201-469-6	83-32-9									
2	Θ	acenaphiniyiene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene				0.61	mg/kg		0.61	mg/kg	0.000061 %		
_			204-371-1	120-12-7	+							$\vdash$	
4	4	arsenic { arsenic tr 033-003-00-0	215-481-4	1327-53-3	4	8	mg/kg	1.32	10.563	mg/kg	0.00106 %		
		benzene	213-461-4	1321-33-3	+							+	
5		601-020-00-8	200-753-7	71-43-2	+	11	mg/kg		11	mg/kg	0.0011 %		
6		benzo[a]anthracen				2.98	ma/ka		2.98	ma/ka	0.000298 %		
L		601-033-00-9	200-280-6	56-55-3		2.90	mg/kg		2.90	mg/kg	0.000298 %		
7		benzo[a]pyrene; be				2.11	mg/kg		2.11	mg/kg	0.000211 %		
		601-032-00-3	200-028-5	50-32-8	+							-	
8		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	4	2.92	mg/kg		2.92	mg/kg	0.000292 %		
		benzo[ghi]perylene	1	203-99-2	+							+	
9		bonzo[gm]poryione	205-883-8	191-24-2	-	1.05	mg/kg		1.05	mg/kg	0.000105 %		
10		benzo[k]fluoranthe	ne			0.8	ma/ka		0.8	ma/ka	0.00008 %		
10		601-036-00-5	205-916-6	207-08-9		0.6	mg/kg		0.0	mg/kg	0.00008 %		
11	4					<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
		004-003-00-8	215-133-1	1304-56-9	1								
	æ	boron { boron tr (combined) }	ibromide/trichloride	e/trifluoride									
12		(combined) j		10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
13		cadmium { cadmiu			_ 1	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
-	+	048-010-00-4	215-147-8	1306-23-6	-							+	
14	₫.	chromium in chrom	e (worst case) }			284	mg/kg	1.462	415.082	mg/kg	0.0415 %		
_			215-160-9	1308-38-9	1							$\perp$	
15		chromium in chronoxide }	. , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									

Page 36 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



		Deter					-					þe	
#			minand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index	Number	CAS Number	CLF							MC	
16		chrysene 601-048-00-0 205-923	2.4	218-01-9		2.82	mg/kg		2.82	mg/kg	0.000282 %		
17	$\rightarrow$	copper { dicopper oxide; co		1		36	mg/kg	1.126	40.532	mg/kg	0.00405 %		
		029-002-00-X 215-270	)-7	1317-39-1				20	10.002	99	0.00.00 /0		
18		cyanides { salts of hydro exception of complex cyani- ferricyanides and mercuric specified elsewhere in this	des such a oxycyanid	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
	$\dashv$	006-007-00-5 dibenz[a,h]anthracene											
19		601-041-00-2 200-181	-8	53-70-3		0.49	mg/kg		0.49	mg/kg	0.000049 %		
	_	ethylbenzene	-0	00-10-0	$\vdash$								
20	- I	601-023-00-4 202-849	)-4	100-41-4	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
04	0	fluoranthene		1		4.00			4.00		0.000402.0/		
21		205-912	2-4	206-44-0		4.93	mg/kg		4.93	mg/kg	0.000493 %		
22	Θ	fluorene 201-695	5-5	86-73-7	-	0.14	mg/kg		0.14	mg/kg	0.000014 %		
23	0	indeno[123-cd]pyrene	2	193-39-5		1.41	mg/kg		1.41	mg/kg	0.000141 %		
	æ			1	-								
24	Ĭ	lead { lead compounds we specified elsewhere in this work and the specified elsewhere in the specified elsewhere in this work and the specified elsewhere in		ception of those	1	109	mg/kg		109	mg/kg	0.0109 %		
05 6	$\rightarrow$	mercury { mercury dichlorid	de }					4.050	4.050		0.000405.0/		1.00
25	•	080-010-00-X 231-299	9-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene 601-052-00-2 202-049	) F	91-20-3		0.16	mg/kg		0.16	mg/kg	0.000016 %		
	-	nickel { nickel dihydroxide }		91-20-3	-								
27	•	028-008-00-X 235-008 234-348	3-5 [1]	12054-48-7 [1] 11113-74-9 [2]		12	mg/kg	1.579	18.954	mg/kg	0.0019 %		
28	0	pH		PH		9.9	рН		9.9	рН	9.9 pH		
-	0	phenanthrene		r · ·	T	4.00							
29		201-581	-5	85-01-8	1	1.66	mg/kg		1.66	mg/kg	0.000166 %		
30		phenol				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		604-001-00-2 203-632	2-7	108-95-2		-					10.0002 70		
31	0	pyrene 204-927	7-3	129-00-0	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
32	•	selenium { selenium compocadmium sulphoselenide arelsewhere in this Annex }	ounds with	the exception of		0.02	mg/kg	1.405	0.0281	mg/kg	0.00000281 %		
$\vdash$	-	034-002-00-8 toluene			-								
33		601-021-00-3 203-625	5-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
34	0	TPH (C6 to C40) petroleum	group	TDU		92.12	mg/kg		92.12	mg/kg	0.00921 %		
$\vdash$	_	vylono		TPH	+								
35		xylene 601-022-00-9 202-422 203-396 203-576 215-535	6-5 [2] 6-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
36	•	zinc { zinc oxide }				93	mg/kg	1.245	115.758	mg/kg	0.0116 %		
$\sqcup$		030-013-00-7 215-222	2-5	1314-13-2								-	
										Total:	0.0871 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification





## **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

benzene: (conc.: 0.0011%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00921%)

Page 38 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP04[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP04[4] Chapter:
Sample Depth:
1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
	EU CLP index number	EC Number	CAS Number	CLP		1 actor			MC,	J
1	pH		PH	-	9.9 pH		9.9 pH	9.9 pH		
			,				Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 39 of 135



Classification of sample: TP04[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

LoW Code: Sample name: TP04[5] Chapter: Sample Depth:

1.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
1		benzene 601-020-00-8	200-753-7	71-43-2		9	mg/kg		9	mg/kg	0.0009 %		
2	9	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
3	0	рН		PH		9.7	рН		9.7	pН	9.7 pH		
4		toluene 601-021-00-3	iene				mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
5	0	TPH (C6 to C40) p	petroleum group	TPH		144.12	mg/kg		144.12	mg/kg	0.0144 %		
6		<b>xylene</b> 601-022-00-9	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>	
		4		,						Total:	0.0162 %	П	

#### Key

Determinand values ignored for classification, see column 'Conc, Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) <LOD Below limit of detection

## **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

benzene: (conc.: 0.0009%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 40 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0144%)





Classification of sample: TP04[6]



in the List of Waste

........

## Sample details

Sample name: LoW Code: TP04[6] Chapter:

Sample Depth:

1.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

## **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#	:		Determinand		Note	User entered data	Conv.	Compound conc.	Classification value		nc. Not Jsed
		EU CLP index number	EC Number	CAS Number	CLP		racioi		value	MC/	/seu
				•				Total:	0%		

Key

User supplied data

Page 42 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP04[7]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP04[7] Chapter:
Sample Depth:
1.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
	EU CLP index number	EC Number	CAS Number	CLP		1 actor			MC,	J
1	pH		PH	-	9.9 pH		9.9 pH	9.9 pH		
			,				Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 43 of 135



Classification of sample: TP04[8]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code: TP04[8] Chapter: Sample Depth:

1.8 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				0.35	mg/kg		0.35	mg/kg	0.000035 %		
2	0	acenaphthylene	201-469-6	83-32-9	$\perp$	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	anthracene	205-917-1	208-96-8	-							₩	
3		<u> </u>	204-371-1	120-12-7	-	0.87	mg/kg		0.87	mg/kg	0.000087 %		
4	4	arsenic { arsenic tr	ioxide }			21	mg/kg	1.32	27.727	mg/kg	0.00277 %		
Ĺ		033-003-00-0	215-481-4	1327-53-3								<u> </u>	
5		benzene	I			119	mg/kg		119	mg/kg	0.0119 %		
		601-020-00-8	200-753-7	71-43-2								+	
6		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3	-	4.81	mg/kg		4.81	mg/kg	0.000481 %		
7		benzo[a]pyrene; be		00 00 0		3.17	mg/kg		3.17	mg/kg	0.000317 %		
Ľ		601-032-00-3	200-028-5	50-32-8		3.17	ilig/kg		3.17	ilig/kg	0.000317 /8		
8		benzo[b]fluoranthe 601-034-00-4		205 00 2		5.16	mg/kg		5.16	mg/kg	0.000516 %		
		benzo[ghi]perylene	205-911-9	205-99-2								+	
9		bonzo[gm]poryione	205-883-8	191-24-2	-	1.43	mg/kg		1.43	mg/kg	0.000143 %		
10		benzo[k]fluoranthe	ne			1.35	mg/kg		1.35	mg/kg	0.000135 %		
10		601-036-00-5	205-916-6	207-08-9		1.33	ilig/kg		1.55	ilig/kg	0.000133 //		
11	a <b>g</b>					0.6	mg/kg	2.775	1.665	mg/kg	0.000167 %		
		004-003-00-8	215-133-1	1304-56-9									
	4	boron { boron tr (combined) }	ibromide/trichloride	e/trifluoride		,			40.40	,,			
12				10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
13	ď	cadmium { cadmiu 048-010-00-4	m sulfide } 215-147-8	1306-23-6	_ 1	0.5	mg/kg	1.285	0.643	mg/kg	0.00005 %		
14	æ <b>\$</b>	chromium in chrom	nium(III) compound (worst case)	ls {		187	mg/kg	1.462	273.311	mg/kg	0.0273 %		
15	<b>4</b>	chromium in chron	215-160-9 nium(VI) compound	1308-38-9  ds {		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
L		024-001-00-0	215-607-8	1333-82-0			9			9			

Page 44 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP Note			Factor	Compound	00.101	value	MCA	Used
16		chrysene				5.38	mg/kg		5.38	mg/kg	0.000538 %		
	_	601-048-00-0	205-923-4	218-01-9	+							-	
17	_	copper { dicopper o			_	58	mg/kg	1.126	65.302	mg/kg	0.00653 %		
	_	029-002-00-X	215-270-7	1317-39-1	+								
18	<b>4</b>	cyanides { salts exception of compl ferricyanides and r specified elsewher	lex cyanides such mercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5			-							-	
19		dibenz[a,h]anthrac		F0.70.0	4	0.79	mg/kg		0.79	mg/kg	0.000079 %		
	_	601-041-00-2	200-181-8	53-70-3	+							-	
20	0	ethylbenzene	haa a4a 4	400 44 4	4	71	mg/kg		71	mg/kg	0.0071 %		
		601-023-00-4	202-849-4	100-41-4	+								
21	0	fluoranthene	205-912-4	206-44-0		8.64	mg/kg		8.64	mg/kg	0.000864 %		
22	0	fluorene	201-695-5	86-73-7		0.32	mg/kg		0.32	mg/kg	0.000032 %		
23	0	indeno[123-cd]pyre				2.1	mg/kg		2.1	mg/kg	0.00021 %		
			205-893-2	193-39-5									
24	<b>4</b>	lead {		cception of those	1	255	mg/kg		255	mg/kg	0.0255 %		
	_	082-001-00-6											
25	_	mercury { mercury 080-010-00-X	dichloride }	7487-94-7	-	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene 601-052-00-2	202-049-5	91-20-3		19.8	mg/kg		19.8	mg/kg	0.00198 %		
	_			B1-20-3	+								
27	_	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		15	mg/kg	1.579	23.692	mg/kg	0.00237 %		
28	9	pН		PH		8.7	рН		8.7	рН	8.7 pH		
		phenanthrene	1		+							$\vdash$	
29		prioriariariorio	201-581-5	85-01-8	+	4.75	mg/kg		4.75	mg/kg	0.000475 %		
		phenol	1	1-2	T						0.000	Н	
30		604-001-00-2	203-632-7	108-95-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
24	0	pyrene	1	1	T	0	nc =: /!			nn = //	-0.0000.00		
31			204-927-3	129-00-0	1	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
32	4	selenium { selenium cadmium sulphose elsewhere in this A	m compounds with elenide and those	the exception of		0.079	mg/kg	1.405	0.111	mg/kg	0.0000111 %		
		034-002-00-8			1								
33		toluene				36	mg/kg		36	mg/kg	0.0036 %		
		601-021-00-3	203-625-9	108-88-3	+							-	
34	0	TPH (C6 to C40) p	etroleum group	TPH	1	342.23	mg/kg		342.23	mg/kg	0.0342 %		
		xylene		<u> </u>									
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		35	mg/kg		35	mg/kg	0.0035 %		
36		zinc { zinc oxide }			1	107	mg/kg	1.245	133.184	mg/kg	0.0133 %	T	
		030-013-00-7	215-222-5	1314-13-2							0.447.64	$\vdash$	
										Total:	0.147 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification





## **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0119%) ethylbenzene: (conc.: 0.0071%) toluene: (conc.: 0.0036%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0342%)

xylene: (conc.: 0.0035%)

Page 46 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP04[9]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP04[9] Chapter:
Sample Depth:
2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		actor			MC,	J
1	0	pH		PH	-	9.4 pH		9.4 pH	9.4 pH		
								Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 47 of 135



Classification of sample: BH01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code: BH01 Chapter: Sample Depth:

0.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ĺ			205-917-1	208-96-8		Ζ0.1	mg/kg		<b></b>		C0.00001 70		LOD
3	0	anthracene	204-371-1	120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	æ	arsenic { arsenic tr	ioxide }	-		0		4.00	44.000		0.00440.0/		
4	•	033-003-00-0	215-481-4	1327-53-3	1	9	mg/kg	1.32	11.883	mg/kg	0.00119 %		
5		benzo[a]anthracen	е			0.71	malka		0.71	ma/ka	0.000071 %	Ť	
3		601-033-00-9	200-280-6	56-55-3	1	0.71	mg/kg		0.71	mg/kg	0.000071%		
6		benzo[a]pyrene; be	enzo[def]chrysene			0.7	mg/kg		0.7	mg/kg	0.00007 %		
Ľ		601-032-00-3	200-028-5	50-32-8		0.7	ilig/kg		0.7	mg/kg	0.00007 76		
7		benzo[b]fluoranthe		005 00 0		0.67	mg/kg		0.67	mg/kg	0.000067 %		
		601-034-00-4	205-911-9	205-99-2	+								
8	Θ	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe		131-24-2	+								
9		1	205-916-6	207-08-9	-	0.36	mg/kg		0.36	mg/kg	0.000036 %		
	æ			207 00 3	+							╁	
10	w.		215-133-1	1304-56-9	-	1.3	mg/kg	2.775	3.608	mg/kg	0.000361 %		
11	æ	boron { boron tri (combined) }		e/trifluoride		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-33-4, 10294-34-5, 7637-07-2		ζ1	IIIg/kg	13.43	<10.40	mg/kg	V0.00134 //		CLOD
12	4	cadmium { cadmiu	<mark>m sulfide</mark> }		1	0.3	mg/kg	1.285	0.386	mg/kg	0.00003 %		
		048-010-00-4	215-147-8	1306-23-6								$\downarrow$	
13	4	chromium in chrom	e (worst case) }	•		25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
_			215-160-9	1308-38-9	+							$\vdash$	
14	4	chromium in chromoxide }	. , , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	1							-	
15		chrysene				0.66	mg/kg		0.66	mg/kg	0.000066 %		
		601-048-00-0	205-923-4	218-01-9	$\perp$								

Page 48 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		number	avida, cappar (I) a	vide )	-							_	
16	4	copper { dicopper of 029-002-00-X	215-270-7	1317-39-1	_	19	mg/kg	1.126	21.392	mg/kg	0.00214 %		
	2				+								
17		cyanides { salts exception of compl ferricyanides and n specified elsewher	lex cyanides such mercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5			_								
18		dibenz[a,h]anthrac				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-181-8	53-70-3	+							4	
19	0	fluoranthene	205-912-4	206-44-0	_	0.86	mg/kg		0.86	mg/kg	0.000086 %		
H		fluorene	205-912-4	200-44-0	+								
20	9		201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-	0	indeno[123-cd]pyre	1		$\top$	0.4							
21			205-893-2	193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	4	lead {		ception of those	1	83	mg/kg		83	mg/kg	0.0083 %		
Ш		082-001-00-6			$\perp$							╄	
23	-	mercury { mercury	•			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
			231-299-8	7487-94-7	+								
24		naphthalene 601-052-00-2	202-049-5	91-20-3	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		nickel { nickel dihyd		91-20-3	+							1	
25	-		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		7	mg/kg	1.579	11.056	mg/kg	0.00111 %		
26	0	pН				10.6	pН		10.6	рН	10.6 pH		
				PH			P			P	. с. с р		
27	0	phenanthrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-581-5	85-01-8	1								
28		phenol				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	$\vdash$	604-001-00-2	203-632-7	108-95-2	+								
29	0	pyrene	204-927-3	129-00-0	4	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
30	4	selenium { selenium cadmium sulphose elsewhere in this A	m compounds with	the exception of		0.032	mg/kg	1.405	0.045	mg/kg	0.0000045 %		
		034-002-00-8	MILLEY }	1	-		_			· -			
H	-	zinc { zinc oxide }	1		+							+	
31			215-222-5	1314-13-2	-	88	mg/kg	1.245	109.535	mg/kg	0.011 %		
H		0.0 00 .	F	1.2						Total:	0.0307 %	+	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 Only the metal concentration has been used for classification

HX47J-WZRAS-0QRQF Page 49 of 135 www.hazwasteonline.com



Classification of sample: TP05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

## Sample details

Sample name: LoW Code: TP05 Chapter: Sample Depth:

0.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			201-469-6	83-32-9	-							H	
2	Θ	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene				0.50			0.56		0.000056.8/	Т	
3			204-371-1	120-12-7	1	0.56	mg/kg		0.56	mg/kg	0.000056 %		
4	æ	arsenic { arsenic tr	rioxide }			17	mg/kg	1.32	22.446	mg/kg	0.00224 %		
-	•	033-003-00-0	215-481-4	1327-53-3		17	IIIg/kg	1.32	22.440	ilig/kg	0.00224 /6		
5		benzo[a]anthracen	e			1.61	mg/kg		1.61	mg/kg	0.000161 %		
Ľ		601-033-00-9	200-280-6	56-55-3		1.01					0.000101 /0		
6		benzo[a]pyrene; be	enzo[def]chrysene			1.13	mg/kg		1.13	mg/kg	0.000113 %		
		601-032-00-3	200-028-5	50-32-8								$\downarrow$	
7		benzo[b]fluoranthe				1.45	mg/kg		1.45	mg/kg	0.000145 %		
		601-034-00-4	205-911-9	205-99-2								-	
8	Θ	benzo[ghi]perylene		1.0.	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1 5130 4	205-883-8	191-24-2	+							+	
9		benzo[k]fluoranthe		007.00.0		0.54	mg/kg		0.54	mg/kg	0.000054 %		
	_		205-916-6	207-08-9	+							+	
10	4	beryllium { berylliu 004-003-00-8	215-133-1	1304-56-9	-	1.3	mg/kg	2.775	3.608	mg/kg	0.000361 %		
	-				+								
11	≪\$	boron { boron tr (combined) }	ibromide/trichloride			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-33-4, 10294-34-5, 7637-07-2			99			99			
12	4	cadmium { cadmiu	m sulfide }		1	0.7	mg/kg	1.285	0.9	mg/kg	0.00007 %		
_'_	Ĺ	048-010-00-4	215-147-8	1306-23-6	Ľ	0.1	mg/kg	1.200	0.3	g/Rg	3.00007 /0		
13	4	chromium in chrom	e (worst case) }	•		79	mg/kg	1.462	115.463	mg/kg	0.0115 %		
			215-160-9	1308-38-9	_							$\perp$	
14	4	chromium in chronoxide }	. , , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
_		024-001-00-0	215-607-8	1333-82-0	+							+	
15		chrysene	205 022 4	040.04.0	4	1.42	mg/kg		1.42	mg/kg	0.000142 %		
<u> </u>		601-048-00-0	205-923-4	218-01-9	_								

Page 50 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	æ.	copper { dicopper o	oxide: copper (I) o	vide }	-								
16			215-270-7	1317-39-1	-	82	mg/kg	1.126	92.323	mg/kg	0.00923 %		
17	<b>₫</b>	cyanides { salts exception of compl ferricyanides and n specified elsewher	lex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5			_								
18		dibenz[a,h]anthrac				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	$\vdash$		200-181-8	53-70-3	+								
19	0	fluoranthene	205-912-4	206-44-0	_	2.33	mg/kg		2.33	mg/kg	0.000233 %		
		fluorene	205-912-4	200-44-0	+								
20	9		201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyre	1	po . o .	†	<0.1							
21			205-893-2	193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	*	lead {		xception of those	1	98	mg/kg		98	mg/kg	0.0098 %		
	$\vdash$	082-001-00-6	dialataniata )		+								
23	-	mercury { mercury 080-010-00-X	231-299-8	7487-94-7	-	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
		naphthalene	231-299-0	1401-94-1	+								
24		•	202-049-5	91-20-3	-	0.25	mg/kg		0.25	mg/kg	0.000025 %		
	$\vdash$	nickel { nickel dihyd		J	$\top$								
25	-		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		12	mg/kg	1.579	18.954	mg/kg	0.0019 %		
26	0	рН				10.6	рН		10.6	рН	10.6 pH		
				PH	1								
27	0	phenanthrene				1.6	mg/kg		1.6	mg/kg	0.00016 %		
			201-581-5	85-01-8	+								
28		phenol	boo 000 7	400.05.0		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	$\vdash$	604-001-00-2	203-632-7	108-95-2	+							H	
29	0	pyrene	204-927-3	129-00-0	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
30	**	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with	h the exception of		0.037	mg/kg	1.405	0.052	mg/kg	0.0000052 %		
$\vdash$	-	zinc { zinc oxide }	l.		+							+	
31			215-222-5	1314-13-2	-	156	mg/kg	1.245	194.175	mg/kg	0.0194 %		
		000 010 00 1	F.0 222 0	1.011102						Total:	0.0582 %	$\dagger$	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

**₫** <LOD

CLP: Note 1 Only the metal concentration has been used for classification



Classification of sample: TP05[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP05[2] Chapter: Sample Depth:

0.3 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note		ser entered data  Conv. Factor		value	MC Applied	Conc. Not Used
1	0	number pH		PH		10.4 pH		10.4 pH	10.4 pH	_	
								Total:	0%		

## Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 52 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP05[3]

A Hazardous Waste Classified as 17 05 03 * in the List of Waste

Entry:

## Sample details

1 m

Sample name: LoW Code:

TP05[3] Chapter: Sample Depth:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 03 * (Soil and stones containing hazardous substances)

## **Hazard properties**

HP 8: Corrosive "waste which on application can cause skin corrosion"

pH; pH "Assumed to be irritant/corrosive because of pH value"

Because of determinand:

pH: (conc.: 11.9 pH)

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
Ľ			201-469-6	83-32-9		<b>VO.1</b>			<b>VO.1</b>		Q0.00001 70		LOD
2	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			205-917-1	208-96-8		10				9/1.9	10.00001 70		
3	0	anthracene				0.46	mg/kg		0.46	mg/kg	0.000046 %		
			204-371-1	120-12-7									
4	æ.	arsenic { arsenic tr	rioxide }			14	mg/kg	1.32	18.485	mg/kg	0.00185 %		
		033-003-00-0	215-481-4	1327-53-3									
5		benzene				109 mg/kg			109	mg/kg	0.0109 %		
Ĺ		601-020-00-8	200-753-7	71-43-2									
6		benzo[a]anthracene				1.03	mg/kg		1.03	mg/kg	0.000103 %		
Ĺ		601-033-00-9	200-280-6	56-55-3									
7		benzo[a]pyrene; benzo[def]chrysene				0.81	mg/kg		0.81	mg/kg	0.000081 %		
		601-032-00-3	200-028-5	50-32-8									
8		benzo[b]fluoranthe				0.83	mg/kg		0.83	mg/kg	0.000083 %		
Ĺ		601-034-00-4	205-911-9	205-99-2									
9	0	benzo[ghi]perylene	е			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			205-883-8	191-24-2									
10		benzo[k]fluoranthe	ene			0.61	mg/kg		0.61	mg/kg	0.000061 %		
		601-036-00-5	205-916-6	207-08-9									
11	a C					0.6	mg/kg	2.775	1.665	mg/kg	0.000167 %		
		004-003-00-8	215-133-1	1304-56-9	1							Ш	
12	<b>4</b>	(combined) }		e/trifluoride  10294-33-4,  10294-34-5,  7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
13	4	cadmium { <mark>cadmiu</mark> 048-010-00-4	<mark>Im sulfide</mark> } 215-147-8	1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>



			Determinand		ote			Conv			Classification	olied	Conc. Not
#		EU CLP index number	EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	value	MC Applied	Used
14	4	chromium in chrom	e (worst case) }			715	mg/kg	1.462	1045.012	mg/kg	0.105 %		
15	4	chromium in chrom	215-160-9 nium(VI) compound	1308-38-9 ds { chromium(VI)		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
		•	215-607-8	1333-82-0									
16		601-048-00-0	205-923-4	218-01-9		0.97	mg/kg		0.97	mg/kg	0.000097 %		
17	<b>4</b>	copper { dicopper o 029-002-00-X	oxide; copper (I) ox 215-270-7	1317-39-1		64	mg/kg	1.126	72.057	mg/kg	0.00721 %		
18	**	cyanides { salts exception of completerricyanides and managements	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		006-007-00-5 dibenz[a,h]anthrace	ene			0.00			0.00	m a/lea	0.000000.00		
19			200-181-8	53-70-3		0.09	mg/kg		0.09	mg/kg	0.000009 %		
20	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		5	mg/kg		5	mg/kg	0.0005 %		
21	0	fluoranthene	205-912-4	206-44-0		1.41	mg/kg		1.41	mg/kg	0.000141 %		
22	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	4	lead { Plead compspecified elsewhere	oounds with the ex	·	1	97	mg/kg		97	mg/kg	0.0097 %		
25	æ å	mercury { mercury	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene	202-049-5	91-20-3		0.74	mg/kg		0.74	mg/kg	0.000074 %		
27	4	nickel { nickel dihyc 028-008-00-X		12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	31.59	mg/kg	0.00316 %		
28	0	рН		PH		11.9	рН		11.9	рН	11.9 pH		
29	0	phenanthrene	201-581-5	85-01-8		0.86	mg/kg		0.86	mg/kg	0.000086 %		
30		phenol	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31	0	pyrene	204-927-3	129-00-0		7.2	mg/kg		7.2	mg/kg	0.00072 %		
32	4	selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	n compounds with lenide and those s	the exception of		0.049	mg/kg	1.405	0.0688	mg/kg	0.00000688 %		
33		toluene				18	mg/kg		18	mg/kg	0.0018 %		
34	9	601-021-00-3 TPH (C6 to C40) pe	203-625-9 etroleum group	108-88-3	$\vdash$	56.22	mg/kg		56.22	mg/kg	0.00562 %		
		xylene		TPH		00.22	g/kg			9,19	5.55 <b>502</b> /0		
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		4	mg/kg		4	mg/kg	0.0004 %		
36	4	zinc { zinc oxide }	215-222-5	1314-13-2		163	mg/kg	1.245	202.888	mg/kg	0.0203 %		
				-						Total:	0.17 %		





Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 Only the metal concentration has been used for classification

## **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0109%) ethylbenzene: (conc.: 0.0005%) toluene: (conc.: 0.0018%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.00562%)

xylene: (conc.: 0.0004%)



Classification of sample: TP05[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP05[4] Chapter: Sample Depth:

1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand			Note		Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		T doto!		value		Coou
1	0	pH		PH		10.6 pH		10.6 pH	10.6 pH		
								Total:	0%		

## Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 56 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP05[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP05[5] Chapter:
Sample Depth:
2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

## **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#					Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		acioi		value		Useu
1	0	pH		PH		9.2 pH		9.2 pH	9.2 pH		
								Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 57 of 135



Classification of sample: TP05[6]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

# Sample details

Sample name: LoW Code: TP05[6] Chapter: Sample Depth:

2 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

### **Determinands**

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	Θ	acenaphthene	D04 400 C	00.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ě			204-371-1	120-12-7	-								
4	4	arsenic { arsenic tr 033-003-00-0	215-481-4	1327-53-3	-	19	mg/kg	1.32	25.086	mg/kg	0.00251 %		
5		benzene	210 401 4	1027 00 0		400			400		0.0400.0/		
5		601-020-00-8	200-753-7	71-43-2		162	mg/kg		162	mg/kg	0.0162 %		
6		benzo[a]anthracen				0.25	mg/kg		0.25	mg/kg	0.000025 %		
			200-280-6	56-55-3								-	
7		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	$\downarrow$	0.14	mg/kg		0.14	mg/kg	0.000014 %		
8		benzo[b]fluoranthe		00 02 0		0.2	ma/ka		0.2	mg/kg	0.00002 %		
L°		601-034-00-4	205-911-9	205-99-2		0.2	mg/kg		0.2	ilig/kg	0.00002 %		
9	Θ	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	h an zall/lfl. aranth a	205-883-8	191-24-2								$\vdash$	
10		benzo[k]fluoranthe 601-036-00-5	205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
14	æ					0.0		0.775	0.000	//	0.000000.0/		
11	_		215-133-1	1304-56-9		2.3	mg/kg	2.775	6.383	mg/kg	0.000638 %		
12	4	boron { boron tr (combined) }	ibromide/trichloride	e/trifluoride		1.9	mg/kg	13.43	25.517	mg/kg	0.00255 %		
				10294-33-4, 10294-34-5, 7637-07-2									
13	4	cadmium { cadmiu 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
14	«\$	chromium in chrom	nium(III) compound (worst case)	ls {		216	mg/kg	1.462	315.696	mg/kg	0.0316 %		
$\vdash$	_	ohromium in chrom	215-160-9	1308-38-9	+							$\vdash$	
15	4	chromium in chromoxide }	215-607-8	1333-82-0		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
Ц		024-001-00-0	Z 10°001°0	1000-02-0									



												ъ	
#		ELLOLD: 1	Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	C							MC	
16		chrysene 601-048-00-0	205-923-4	218-01-9	-	0.23	mg/kg		0.23	mg/kg	0.000023 %		
	_	copper { dicopper ox		1	T			4 400					
17	-		215-270-7	1317-39-1	1	51	mg/kg	1.126	57.42	mg/kg	0.00574 %		
18		cyanides { salts c exception of comple ferricyanides and mo specified elsewhere	ex cyanides such a ercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5											
19		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	1	200-181-8	53-70-3	_								
20		ethylbenzene		1.00 11 1		180	mg/kg		180	mg/kg	0.018 %		
			202-849-4	100-41-4	+								
21	0	fluoranthene	205-912-4	206-44-0		0.34	mg/kg		0.34	mg/kg	0.000034 %		
22	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	indeno[123-cd]pyrer	ne	400 00 5		0.13	mg/kg		0.13	mg/kg	0.000013 %		
	_		205-893-2	193-39-5	+								
24		lead {		ception of those	1	46	mg/kg		46	mg/kg	0.0046 %		
	_	082-001-00-6	P. I. I. I. I.		+								
25	-	mercury ( mercury of 080-010-00-X	231-299-8	7487-94-7	-	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-								
27	-	nickel { <mark>nickel dihydr</mark> 028-008-00-X	roxide	12054-48-7 [1]	-	16	mg/kg	1.579	25.272	mg/kg	0.00253 %		
00	0	pH	234-348-1 [2]	11113-74-9 [2]		0.0	-11		0.0	-11	0.0 -11		
28	l			PH	-	8.8	рН		8.8	рН	8.8 pH		
29	0	phenanthrene				0.27	mg/kg		0.27	mg/kg	0.000027 %		
25		2	201-581-5	85-01-8		0.27			0.21		0.000021 70		
30		phenol				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2	$\perp$								
31	0	pyrene	204-927-3	129-00-0	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
32	~	selenium { selenium cadmium sulphosele elsewhere in this An	compounds with enide and those s	the exception of		0.081	mg/kg	1.405	0.114	mg/kg	0.0000114 %		
	_	034-002-00-8			1								
33		toluene 601-021-00-3	203-625-9	108-88-3	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
	-	TPH (C6 to C40) pe		100-00-3	+								
34			a cicum group	TPH		56.27	mg/kg		56.27	mg/kg	0.00563 %		
35		2	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		40	mg/kg		40	mg/kg	0.004 %		
36	-	zinc { zinc oxide }	215-222-5	1314-13-2		117	mg/kg	1.245	145.632	mg/kg	0.0146 %		
	!	200 010 00-1	-10 222 0	1017 10.2						Total:	0.11 %	$\vdash$	

#### Κeν

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification





# **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0162%) ethylbenzene: (conc.: 0.018%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.00563%)

xylene: (conc.: 0.004%)

Page 60 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP05[7]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP05[7] Chapter:
Sample Depth:
2.8 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		6	mg/kg	1.32	7.922	mg/kg	0.000792 %		
5		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
6		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
11	4	beryllium { berylliu 004-003-00-8	<mark>m oxide</mark> } 215-133-1	1304-56-9		0.7	mg/kg	2.775	1.943	mg/kg	0.000194 %		
12	4	boron { boron tr (combined) }	ibromide/trichloride	10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
13	4	cadmium { <mark>cadmiu</mark> 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
14	4	chromium(III) oxide	nium(III) compound e (worst case) }  215-160-9	ls {		11	mg/kg	1.462	16.077	mg/kg	0.00161 %		
15	æ	oxide }	nium(VI) compound	ds { chromium(VI)		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>



#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			dotor			Value	MC	0300
16		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-923-4	218-01-9	+							-	
17	•	copper { dicopper o			_	10	mg/kg	1.126	11.259	mg/kg	0.00113 %		
		029-002-00-X	215-270-7	1317-39-1	+							$\vdash$	
18	*	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
					+								
19		dibenz[a,h]anthrac		F0.70.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-181-8	53-70-3	+							┈	
20	0	ethylbenzene 601-023-00-4	000 040 4	100-41-4	_	6	mg/kg		6	mg/kg	0.0006 %		
		fluoranthene	202-849-4	100-41-4	+								
21	0		205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyre		00-73-7	+							H	
23	9		205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	*	lead { lead compospecified elsewhere		ception of those	1	6	mg/kg		6	mg/kg	0.0006 %		
		mercury { mercury	dichloride }		+							H	
25			231-299-8	7487-94-7	$\dashv$	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-		202-049-5	91-20-3	-								
27	_		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		12	mg/kg	1.579	18.954	mg/kg	0.0019 %		
28	0	pН		PH		7.5	рН		7.5	рН	7.5 pH		
	0	phenanthrene		,	+							Н	
29	9	<u>'</u>	201-581-5	85-01-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		phenol			+							Т	
30		604-001-00-2	203-632-7	108-95-2	1	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31	0	pyrene				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			204-927-3		+								
32	*	selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			0.012	mg/kg	1.405	0.0169	mg/kg	0.00000169 %		
-		034-002-00-8 toluene			+								
33			203-625-9	108-88-3	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
34	0	TPH (C6 to C40) p		ТРН	+	56.12	mg/kg		56.12	mg/kg	0.00561 %		
		xylene	<u>l</u>		+							H	
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
36		zinc { zinc oxide }				45	mg/kg	1.245	56.012	mg/kg	0.0056 %		
L		030-013-00-7	215-222-5	1314-13-2	L		9'9						
										Total:	0.0216 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **Below** limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 62 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 0.0006%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 63 of 135





Classification of sample: TP06

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP06 Chapter: Sample Depth:

0.3 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note		Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		i dotoi		varao	MC	Coou
1	0	pH		PH		11.3 pH		11.3 pH	11.3 pH		
								Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 64 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP06[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP06[2] Chapter:
Sample Depth:
0.5 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		0.21	mg/kg		0.21	mg/kg	0.000021 %		
4	4	arsenic { arsenic tr 033-003-00-0	rioxide } 215-481-4	1327-53-3		24	mg/kg	1.32	31.688	mg/kg	0.00317 %		
5		benzene 601-020-00-8	200-753-7	71-43-2		92	mg/kg		92	mg/kg	0.0092 %		
6		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		1.34	mg/kg		1.34	mg/kg	0.000134 %		
7		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		1.05	mg/kg		1.05	mg/kg	0.000105 %		
8		benzo[b]fluoranthe	ne 205-911-9	205-99-2		1.49	mg/kg		1.49	mg/kg	0.000149 %		
9	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.52	mg/kg		0.52	mg/kg	0.000052 %		
11	æ	beryllium { berylliu 004-003-00-8	m oxide } 215-133-1	1304-56-9		1	mg/kg	2.775	2.775	mg/kg	0.000278 %		
12	4	boron { boron tr (combined) }	ibromide/trichloride	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
13	4	cadmium { <mark>cadmiu</mark> 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	0.3	mg/kg	1.285	0.386	mg/kg	0.00003 %		
14	4	chromium in chron	nium(III) compound e (worst case) } 215-160-9	ls { • • • • • • • • • • • • • • • • • •		65	mg/kg	1.462	95.001	mg/kg	0.0095 %		
15	4	chromium in chron oxide }	nium(VI) compound	1		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>



#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC/	Osed
16		chrysene				1.21	mg/kg		1.21	mg/kg	0.000121 %		
			205-923-4	218-01-9								-	
17	•					63	mg/kg	1.126	70.931	mg/kg	0.00709 %		
		029-002-00-X	215-270-7	1317-39-1									
18	*	cyanides { salts exception of complete ferricyanides and respecified elsewher 006-007-00-5	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		dibenz[a,h]anthrac 601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		ethylbenzene	200-161-6	53-70-3	+							-	
20	0	601-023-00-4	202-849-4	100-41-4	-	160	mg/kg		160	mg/kg	0.016 %		
		fluoranthene	202-049-4	100-41-4	+							+	
21	0	ildorantilerie	205-912-4	206-44-0		1.77	mg/kg		1.77	mg/kg	0.000177 %		
22	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyre		-3.0.	$\top$								
23	)		205-893-2	193-39-5	+	1.2	mg/kg		1.2	mg/kg	0.00012 %		
24	**	lead { • lead compospecified elsewher			1	158	mg/kg		158	mg/kg	0.0158 %		
		082-001-00-6			$\perp$							┡	
25		mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7	$\frac{1}{2}$	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene 601-052-00-2	202-049-5	91-20-3		2.12	mg/kg		2.12	mg/kg	0.000212 %		
	-	nickel { nickel dihyd		91-20-3									
27	_		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		17	mg/kg	1.579	26.851	mg/kg	0.00269 %		
28	0	рН		PH		9.6	рН		9.6	рН	9.6 pH		
	0	phenanthrene	l.	F * *	$\vdash$							$\vdash$	
29	9	,	201-581-5	85-01-8	-	0.96	mg/kg		0.96	mg/kg	0.000096 %		
22		phenol					0			11	0.0000.00		1.00
30		604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31	0	pyrene				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
Ĺ			204-927-3	129-00-0		-	9'9				,,,		
32	*	cadmium sulphose elsewhere in this A	lenide and those s			0.026	mg/kg	1.405	0.0365	mg/kg	0.00000365 %		
		034-002-00-8										-	
33		toluene 601-021-00-3	203-625-9	108-88-3	+	82	mg/kg		82	mg/kg	0.0082 %		
34	0	TPH (C6 to C40) p				112.23	mg/kg		112.23	mg/kg	0.0112 %		
-		vydono		TPH	+							+	
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		51	mg/kg		51	mg/kg	0.0051 %		
36		zinc { zinc oxide }				230	mg/kg	1.245	286.284	mg/kg	0.0286 %		
L		030-013-00-7	215-222-5	1314-13-2			9/119		200.207				
										Total:	0.121 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **Below** limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 66 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0092%) ethylbenzene: (conc.: 0.016%) toluene: (conc.: 0.0082%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0112%)

xylene: (conc.: 0.0051%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 67 of 135





Classification of sample: TP06[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP06[3] Chapter:
Sample Depth:

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.		Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		i doloi		varao	MC	Cood
1	0	pH		PH		10.1 pH		10.1 pH	10.1 pH		
								Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 68 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP06[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP06[4] Chapter:
Sample Depth:
1.5 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				0.56	mg/kg		0.56	mg/kg	0.000056 %		
	-		201-469-6	83-32-9	+								
2	0	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	0	anthracene				0.4			0.4		0.00004.0/		100
3			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	æ	arsenic { arsenic tr	rioxide }			11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
4		033-003-00-0	215-481-4	1327-53-3		11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
5		benzene				44	mg/kg		44	mg/kg	0.0044 %		
		601-020-00-8	200-753-7	71-43-2			g/kg				0.0044 76		
6		benzo[a]anthracen				0.34	mg/kg		0.34	mg/kg	0.000034 %		
Ľ		601-033-00-9	200-280-6	56-55-3		0.0.	9/9				0.00000 : 70		
7		benzo[a]pyrene; be				0.34	mg/kg		0.34	mg/kg	0.000034 %		
		601-032-00-3	200-028-5	50-32-8									
8		benzo[b]fluoranthe				0.47	mg/kg		0.47	mg/kg	0.000047 %		
	_	601-034-00-4	205-911-9	205-99-2	-								
9	0	benzo[ghi]perylene				0.31	mg/kg		0.31	mg/kg	0.000031 %		
			205-883-8	191-24-2	_							-	
10		benzo[k]fluoranthe				0.15	mg/kg		0.15	mg/kg	0.000015 %		
-	+	601-036-00-5	205-916-6	207-08-9	+							$\vdash$	
11	æ.	beryllium { berylliu		4004.50.0	4	<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
_		004-003-00-8	215-133-1	1304-56-9	+				<del></del>				
	æ 🎉	boron { boron tr	ibromide/trichloride	e/trifluoride									
12		(combined) }		40004.00.4	4	<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-33-4, 10294-34-5,			0 0			0 0			
				7637-07-2									
13	æ\$	cadmium { cadmiu	m sulfide }		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
10	Ĭ	048-010-00-4	215-147-8	1306-23-6	1	<b>40.2</b>	g/kg	1.200	V0.201		C0.00002 70		
14	4	chromium in chron chromium(III) oxide	e (worst case) }	-		175	mg/kg	1.462	255.772	mg/kg	0.0256 %		
			215-160-9	1308-38-9	1								
15	4	chromium in chronoxide }	. , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									



#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor	·		value	MC A	Used
16		chrysene				0.35	mg/kg		0.35	mg/kg	0.000035 %		
			205-923-4	218-01-9								-	
17	•					38	mg/kg	1.126	42.784	mg/kg	0.00428 %		
		029-002-00-X	215-270-7	1317-39-1									
18	*	cyanides { salts exception of complete ferricyanides and respecified elsewher 006-007-00-5	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
19		dibenz[a,h]anthrac 601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		ethylbenzene	200-101-0	55-70-5									
20	0	601-023-00-4	202-849-4	100-41-4	-	12	mg/kg		12	mg/kg	0.0012 %		
	0	fluoranthene	202 043 4	100 41 4									
21	9	nuorantiiciic	205-912-4	206-44-0	-	0.47	mg/kg		0.47	mg/kg	0.000047 %		
	0	fluorene	200 012 1	200 110								+	
22	9		201-695-5	86-73-7	$\parallel$	0.17	mg/kg		0.17	mg/kg	0.000017 %		
	0	indeno[123-cd]pyre				0.00	//		0.00		0.000000.00	Ì	
23		,	205-893-2	193-39-5	1	0.29	mg/kg		0.29	mg/kg	0.000029 %		
24	4	lead { • lead compared		ception of those	1	65	mg/kg		65	mg/kg	0.0065 %		
-'		082-001-00-6			╣.		mg/ng		00	mg/ng	0.0000 /0		
		mercury { mercury	dichloride \										
25		080-010-00-X	231-299-8	7487-94-7	$\parallel$	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene				3.7	mg/kg		3.7	mg/kg	0.00037 %		
			202-049-5	91-20-3									
27		nickel { nickel dihyo 028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		13	mg/kg	1.579	20.533	mg/kg	0.00205 %		
28	0	рН	2010101[2]			9.8	рН		9.8	рН	9.8 pH		
				PH	+							-	
29	0	phenanthrene	004 504 5	85-01-8	4	0.32	mg/kg		0.32	mg/kg	0.000032 %		
		phenol	201-581-5	03-01-0									
30		604-001-00-2	203-632-7	108-95-2	$\parallel$	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	0	pyrene	_00 002-1	100 00 2									
31	9		204-927-3	129-00-0	$\parallel \parallel$	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	**												
32	7	cadmium sulphose elsewhere in this A	lenide and those s			0.021	mg/kg	1.405	0.0295	mg/kg	0.00000295 %		
		034-002-00-8										L	
33		toluene				24	mg/kg		24	mg/kg	0.0024 %		
Ĺ		601-021-00-3	203-625-9	108-88-3			J9			J g		_	
34	0	TPH (C6 to C40) p	etroleum group	TPH	-	83.15	mg/kg		83.15	mg/kg	0.00832 %		
		xylene											
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		6	mg/kg		6	mg/kg	0.0006 %		
36		zinc { zinc oxide }				82	mg/kg	1.245	102.067	mg/kg	0.0102 %		
		030-013-00-7	215-222-5	1314-13-2								-	
										Total:	0.0704 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **Below** limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 70 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 0.0044%) ethylbenzene: (conc.: 0.0012%) toluene: (conc.: 0.0024%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.00832%)

xylene: (conc.: 0.0006%)





Classification of sample: TP06[5]



Classified as 17 05 04 or 17 05 03 * in the List of Waste

........

# Sample details

Sample name: LoW Code: TP06[5] Chapter:

Sample Depth:

2.5 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

# **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#	ŧ		Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CLP		racioi		value	MC/	Useu	
								Total:	0%			

Key

User supplied data

Page 72 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP07

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP07 Chapter:
Sample Depth:
0.2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		0.11	mg/kg		0.11	mg/kg	0.000011 %		
4	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
5		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
6		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		0.62	mg/kg		0.62	mg/kg	0.000062 %		
7		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		0.81	mg/kg		0.81	mg/kg	0.000081 %		
9	9	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.31	mg/kg		0.31	mg/kg	0.000031 %		
11	4	beryllium { berylliu 004-003-00-8	m oxide } 215-133-1	1304-56-9		0.8	mg/kg	2.775	2.22	mg/kg	0.000222 %		
12	4	boron { boron tr (combined) }	ibromide/trichloride	10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
13	4	cadmium { <mark>cadmiu</mark> 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	0.3	mg/kg	1.285	0.386	mg/kg	0.00003 %		
14	4	chromium(III) oxide	nium(III) compound e (worst case) } 215-160-9	ls { • • • • • • • • • • • • • • • • • •		57	mg/kg	1.462	83.309	mg/kg	0.00833 %		
15	4	chromium in chromoxide }	nium(VI) compound	1		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>



#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Osed
16		chrysene				0.8	mg/kg		0.8	mg/kg	0.00008 %		
			205-923-4	218-01-9	$\perp$							-	
17	•					26	mg/kg	1.126	29.273	mg/kg	0.00293 %		
		029-002-00-X	215-270-7	1317-39-1								$\vdash$	
18	*	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
					+								
19		dibenz[a,h]anthrac 601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		ethylbenzene	200-161-6	53-70-3	+							₩	
20	0	•	202-849-4	100-41-4	-	85	mg/kg		85	mg/kg	0.0085 %		
		fluoranthene	202-049-4	100-41-4	+							$\vdash$	
21	0		205-912-4	206-44-0		0.9	mg/kg		0.9	mg/kg	0.00009 %		
22	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	indeno[123-cd]pyre										т	
23	•		205-893-2	193-39-5	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	4	lead { • lead compospecified elsewhere		ception of those	1	102	mg/kg		102	mg/kg	0.0102 %		
		082-001-00-6											
25		mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene 601-052-00-2	202-049-5	91-20-3		0.38	mg/kg		0.38	mg/kg	0.000038 %		
		nickel { nickel dihyd		91-20-3									
27		028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		9	mg/kg	1.579	14.215	mg/kg	0.00142 %		
28	0	рН		PH		10.4	рН		10.4	рН	10.4 pH		
$\vdash$	0	phenanthrene	ļ.	r · ·	+							$\vdash$	
29	9	<u>'</u>	201-581-5	85-01-8	-	0.55	mg/kg		0.55	mg/kg	0.000055 %		
		phenol				_			_			H	
30		<u>'</u>	203-632-7	108-95-2	+	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31	0	pyrene		*		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
31			204-927-3	129-00-0		~~	mg/kg			mg/kg	V0.0002 /6		LOD
32	4	selenium { selenium cadmium sulphose elsewhere in this A	m compounds with lenide and those s	the exception of		0.021	mg/kg	1.405	0.0295	mg/kg	0.00000295 %		
		034-002-00-8			+							$\vdash$	
33		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
34	0	TPH (C6 to C40) p				294.12	mg/kg		294.12	mg/kg	0.0294 %		
		<u> </u>		TPH	+							-	
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		24	mg/kg		24	mg/kg	0.0024 %		
36		zinc { zinc oxide }				150	mg/kg	1.245	186.707	mg/kg	0.0187 %		
		030-013-00-7	215-222-5	1314-13-2								_	
<u></u>										Total:	0.0872 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 74 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 0.0085%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0294%)

xylene: (conc.: 0.0024%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 75 of 135



Classification of sample: TP07[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP07[2] Chapter: Sample Depth:

0.5 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.		Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 dolor		Value	MC	USCU
1	0	pH		PH		8.3 pH		8.3 pH	8.3 pH		
								Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 76 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP07[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP07[3] Chapter:
Sample Depth:
1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	$\vdash$		201-469-6	83-32-9	_								
2	0	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	0	anthracene			$\top$				2.4-				
3			204-371-1	120-12-7	-	0.17	mg/kg		0.17	mg/kg	0.000017 %		
	æ	arsenic { arsenic tr	rioxide }			40		4.00	47.404		0.00470.0/		
4		033-003-00-0	215-481-4	1327-53-3	1	13	mg/kg	1.32	17.164	mg/kg	0.00172 %		
5		benzene			T	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
5		601-020-00-8	200-753-7	71-43-2		~2	mg/kg		<2	ilig/kg	<0.0002 //		LOD
6		benzo[a]anthracen	ie			0.66	mg/kg		0.66	mg/kg	0.000066 %		
L		601-033-00-9	200-280-6	56-55-3		0.00			0.00		0.000000 70		
7		benzo[a]pyrene; be	enzo[def]chrysene			0.59	mg/kg		0.59	mg/kg	0.000059 %		
Ľ		601-032-00-3	200-028-5	50-32-8		0.00			0.00		0.000000 70		
8		benzo[b]fluoranthe	ene			0.84	mg/kg		0.84	mg/kg	0.000084 %		
Ĺ		601-034-00-4	205-911-9	205-99-2	1								
9	Θ	benzo[ghi]perylene				0.4	mg/kg		0.4	mg/kg	0.00004 %		
	Ш		205-883-8	191-24-2	1								
10		benzo[k]fluoranthe				0.27	mg/kg		0.27	mg/kg	0.000027 %		
		601-036-00-5	205-916-6	207-08-9	$\perp$							-	
11	4	beryllium { berylliu				1.3	mg/kg	2.775	3.608	mg/kg	0.000361 %		
	$\perp$	004-003-00-8	215-133-1	1304-56-9	1								
	4	boron { • boron tr	ibromide/trichloride	e/trifluoride									
12		(combined) }				<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
12				10294-33-4, 10294-34-5,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mg/kg	10.40	V10.40	mg/kg	Q0.00104 70		_
				7637-07-2									
13	æ	cadmium { cadmiu	m sulfide }	1	1	0.4		4 205	0.514		0.00004 %		
13		048-010-00-4	215-147-8	1306-23-6	-   '	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
14	4	chromium in chron	e (worst case) }	-		283	mg/kg	1.462	413.62	mg/kg	0.0414 %		
			215-160-9	1308-38-9	_							$\perp$	
15		chromium in chron oxide }	nium(VI) compound	ds { chromium(VI)		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									



#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Used
16		chrysene				0.68	mg/kg		0.68	mg/kg	0.000068 %		
H	_		205-923-4	218-01-9								-	
17	-	copper { dicopper o				503	mg/kg	1.126	566.322	mg/kg	0.0566 %		
H	_	029-002-00-X	215-270-7	1317-39-1	+								
18	4	cyanides { salts exception of completerricyanides and nappecified elsewhere 006-007-00-5	ex cyanides such nercuric oxycyanic	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	000									-	
19			200-181-8	53-70-3	-	0.13	mg/kg		0.13	mg/kg	0.000013 %		
$\vdash$	$\overline{}$	ethylbenzene	200-101-0	03-70-3									
20	Θ		202-849-4	100-41-4	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
H	0	fluoranthene	202 040 4	100 41 4									
21	9		205-912-4	206-44-0	-	1	mg/kg		1	mg/kg	0.0001 %		
	0	fluorene	F->		$\top$							$\vdash$	
22			201-695-5	86-73-7	$\parallel$	0.09	mg/kg		0.09	mg/kg	0.000009 %		
	0	indeno[123-cd]pyre				0.40	-		0.40		0.000040.0/	Ì	
23			205-893-2	193-39-5	1	0.43	mg/kg		0.43	mg/kg	0.000043 %		
24	4	lead {   lead comp		ception of those	1	139	mg/kg		139	mg/kg	0.0139 %		
		082-001-00-6	 		+								
	_	mercury { mercury	dichloride }						4.050				
25			231-299-8	7487-94-7	1	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
26		naphthalene	202-049-5	91-20-3		0.33	mg/kg		0.33	mg/kg	0.000033 %		
		nickel { nickel dihyd		91-20-3									
27		028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		14	mg/kg	1.579	22.113	mg/kg	0.00221 %		
28	0	рН		PH		10.4	рН		10.4	рН	10.4 pH		
H	0	phenanthrene		ļ · · ·									
29	9	•	201-581-5	85-01-8	$\parallel$	0.54	mg/kg		0.54	mg/kg	0.000054 %		
		phenol	201 001 0	00 01 0									
30		<u>'</u>	203-632-7	108-95-2	+	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
2.1	-	pyrene				0	nr //			ma = /!	-0.0000.00		
31			204-927-3	129-00-0		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
32	<b>4</b>	selenium { selenium cadmium sulphose elsewhere in this A	n compounds with lenide and those s	the exception of		0.045	mg/kg	1.405	0.0632	mg/kg	0.00000632 %		
Ш		034-002-00-8											
33		toluene	1000 005 -	1400.00.5		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
$\vdash$	_		203-625-9	108-88-3									
34	Θ	TPH (C6 to C40) p	etroleum group	TPH		117.12	mg/kg		117.12	mg/kg	0.0117 %		
		xylene											
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	æ	zinc { zinc oxide }		- 14	П	404		4.075	004.400	"	0.0004.01		
36			215-222-5	1314-13-2		164	mg/kg	1.245	204.133	mg/kg	0.0204 %		
										Total:	0.153 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **Below** limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 78 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0117%)



Classification of sample: TP07[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP07[4] Chapter: Sample Depth:

2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.		d conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		i doloi			Value	MC	0000
1	0	pH		PH		10 pH		10	рН	10pH		
									Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 80 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP07[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP07[5] Chapter:
Sample Depth:
2.6 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		58	mg/kg	1.32	76.579	mg/kg	0.00766 %		
5		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
6		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		0.17	mg/kg		0.17	mg/kg	0.000017 %		
7		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		0.23	mg/kg		0.23	mg/kg	0.000023 %		
8	9	benzo[ghi]perylene	205-883-8	191-24-2		0.26	mg/kg		0.26	mg/kg	0.000026 %		
9		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10		beryllium { berylliu 004-003-00-8	m oxide }	1304-56-9		0.6	mg/kg	2.775	1.665	mg/kg	0.000167 %		
11	<b>4</b>	boron { boron tr (combined) }	i <mark>bromide/trichloride</mark>	/trifluoride 10294-33-4, 10294-34-5, 7637-07-2		2.2	mg/kg	13.43	29.546	mg/kg	0.00295 %		
12		cadmium { cadmiu 048-010-00-4	m sulfide } 215-147-8	1306-23-6	_ 1	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
13	<b>4</b>	chromium(III) oxide	nium(III) compound e (worst case) 215-160-9	1308-38-9		66	mg/kg	1.462	96.463	mg/kg	0.00965 %		
14	4	chromium in chromoxide }				<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
15		chrysene 601-048-00-0	205-923-4	218-01-9		0.17	mg/kg		0.17	mg/kg	0.000017 %		



#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			i acioi			value	MC,	Osed
16	*	copper { dicopper o	oxide; copper (I) ox	<mark>(ide</mark> }		142	mg/kg	1.126	159.876	mg/kg	0.016 %		
L		029-002-00-X	215-270-7	1317-39-1	L			1.120			0.010 /0		
17	<b>4</b>	cyanides { salts exception of complete ferricyanides and managements.	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5			-								
18		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			200-181-8	53-70-3	_							-	
19	•	ethylbenzene		1.00		18	mg/kg		18	mg/kg	0.0018 %		
			202-849-4	100-41-4	+							+	
20	•	fluoranthene	205-912-4	206-44-0		0.23	mg/kg		0.23	mg/kg	0.000023 %		
		fluorene	205-912-4	206-44-0	$\vdash$								
21	0		201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		indeno[123-cd]pyre		00-73-7	+				<u> </u>				
22	•	,	205-893-2	193-39-5	-	0.22	mg/kg		0.22	mg/kg	0.000022 %		
23	4	lead {	oounds with the ex	<u> </u>	1	233	mg/kg		233	mg/kg	0.0233 %		
		082-001-00-6											
24	a <b>Q</b>	mercury { mercury	dichloride }			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
Ľ.		080-010-00-X	231-299-8	7487-94-7							10.000.00 /0		1202
25		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
26	æ\$					47		1 570	20,054		0.00260.8/		
26			235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		17	mg/kg	1.579	26.851	mg/kg	0.00269 %		
27	0	рН		DLI		7.4	рН		7.4	рН	7.4 pH		
_				PH	+							+	
28	0	phenanthrene	004 504 5	05.04.0	-	0.18	mg/kg		0.18	mg/kg	0.000018 %		
			201-581-5	85-01-8	+							$\vdash$	
29		phenol 604-001-00-2	203-632-7	108-95-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	_	pyrene	E00-002-1	100-33-2	+								
30	9	' '	e 204-927-3 129-00-0			0.2	mg/kg		0.2	mg/kg	0.00002 %		
31	0		(C6 to C40) petroleum group			56.12	mg/kg		56.12	mg/kg	0.00561 %		
			TPH			30.12	mg/kg		50.12	y/kg	0.00301 /0		
32	æ 🎉	zinc { zinc oxide }	045 000 5	404440		366	mg/kg	1.245	455.565	mg/kg	0.0456 %		
_		030-013-00-7	215-222-5	1314-13-2						T-4-1	0.447.0/	-	
										Total:	0.117 %		

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Page 82 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

ethylbenzene: (conc.: 0.0018%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 83 of 135





Classification of sample: TP07[6]

A Hazardous Waste

Classified as 17 05 03 * in the List of Waste

#### Sample details

LoW Code: Sample name:

TP07[6] Chapter: 17: Construction and Demolition Wastes (including excavated soil Sample Depth: 3 m Entry:

from contaminated sites) 17 05 03 * (Soil and stones containing hazardous substances)

# **Hazard properties**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 1.716%)

Flam. Lig. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.193%)

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazardl.'

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.193%)

Carc. 2; H351 "Suspected of causing cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

ethylbenzene: (conc.: 1.716%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.193%)

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

Page 84 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



					,								
#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number	20114111501	0710114111001	J							Ĭ	
1	0	acenaphinene	201-469-6	83-32-9	-	3.36	mg/kg		3.36	mg/kg	0.000336 %		
		acenaphthylene	201 100 0	po 02 0									
2		· · · · · ·	205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	anthracene				0.07			0.07		0.000007.0/		
3			204-371-1	120-12-7		0.27	mg/kg		0.27	mg/kg	0.000027 %		
4	æ	arsenic { arsenic tr	ioxide }	1		7	ma/ka	1.32	9.242	mg/kg	0.000924 %		
4		033-003-00-0	215-481-4	1327-53-3		,	mg/kg	1.32	9.242	mg/kg	0.000924 %		
5		benzo[a]anthracen	е			0.2	mg/kg		0.2	mg/kg	0.00002 %		
				56-55-3	_					- 3 3			
6		benzo[a]pyrene; be				0.14	mg/kg		0.14	mg/kg	0.000014 %		
			1	50-32-8	-								
7		benzo[b]fluoranthe	ne 205-911-9	205-99-2	-	0.17	mg/kg		0.17	mg/kg	0.000017 %		
		benzo[ghi]perylene	1	205-99-2	-							Н	
8	0		205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe		1.0.2.2									
9			205-916-6	207-08-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10	æ.	beryllium { berylliur	m oxide }	1		<0.5	mg/kg	2.775	<1.388	ma/ka	<0.000139 %		<lod< td=""></lod<>
		004-003-00-8	215-133-1	1304-56-9		ζ0.5	ilig/kg	2.113	<1.500	mg/kg	<0.000139 / ₈		\LOD
	4	boron { • boron tri	bromide/trichloride	/trifluoride									
44		(combined) }				.4	m = // = =	10.40	.40.40		-0.00424.0/		<lod< td=""></lod<>
11				10294-33-4,		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lud< td=""></lud<>
				10294-34-5, 7637-07-2									
40	æ	cadmium { cadmiui	m sulfide }		1	0.0		4 005	0.057		0.00000.0/		1.00
12		048-010-00-4	215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
	ď	chromium in chrom	nium(III) compound	s { ⁰									
13		chromium(III) oxide		- (		18	mg/kg	1.462	26.308	mg/kg	0.00263 %		
			215-160-9	1308-38-9									
1,1	a <b>g</b>	chromium in chromoxide }	nium(VI) compound	s { chromium(VI)		-0	m = // = =	4 000	-0.046		-0.000385.0/		<lod< td=""></lod<>
14		· · · · · · · · · · · · · · · · · · ·	215-607-8	1333-82-0		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lud< td=""></lud<>
<u> </u>	H	chrysene	210 007 0	1000 02 0									
15		,	205-923-4	218-01-9	1	0.19	mg/kg		0.19	mg/kg	0.000019 %		
16	æ	copper { dicopper o	oxide; copper (I) ox	i <mark>de</mark> }		11		4 400	10.005		0.00124 %		
16		029-002-00-X	215-270-7	1317-39-1		11	mg/kg	1.126	12.385	mg/kg	0.00124 %		
	a C	cyanides { salts	of hydrogen cyanic	le with the									
17		exception of compl	ex cyanides such a	s ferrocyanides,		-1	ma/ka	1 001	-1 001	ma/ka	-0.000100.0/		<lod< td=""></lod<>
17		ferricyanides and n specified elsewhere		e and those		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lud< td=""></lud<>
		006-007-00-5	,										
18	П	dibenz[a,h]anthrac	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	П	<lod< td=""></lod<>
Ľ		601-041-00-2	200-181-8	53-70-3		ζυ.1	nig/kg		<b>CU.1</b>	mg/kg	CO.00001 76		\LUD
19	9	ethylbenzene				17161	mg/kg		17161	mg/kg	1.716 %		
Ľ.	Ц	601-023-00-4	202-849-4	100-41-4	_	-	99			B., B			
20	0	fluoranthene	hor 042 :	boo 44 5		0.46	mg/kg		0.46	mg/kg	0.000046 %		
<u> </u>	H	fluorono	205-912-4	206-44-0	$\vdash$					-		$\vdash$	
21	0	fluorene	201-695-5	86-73-7	-	1.02	mg/kg		1.02	mg/kg	0.000102 %		
_	0	indeno[123-cd]pyre	1	pu-1 u-1	$\vdash$							Н	
22			205-893-2	193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	æ e	lead { • lead comp	1		T								
23	-	specified elsewhere		Seption of those	1	13	mg/kg		13	mg/kg	0.0013 %		
		082-001-00-6											
24	æ	mercury { mercury	dichloride }			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	1	, ,	g, ng		11.000	g, Ng			
25		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3			5 5						



#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
26	_	nickel { nickel dihy 028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		6	mg/kg	1.579	9.477	mg/kg	0.000948 %		
27	0	pH		PH		7.4	рН		7.4	рН	7.4 pH		
28	0	phenanthrene	201-581-5	85-01-8		1.21	mg/kg		1.21	mg/kg	0.000121 %		
29		phenol 604-001-00-2	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
30	0	pyrene	204-927-3	129-00-0		0.36	mg/kg		0.36	mg/kg	0.000036 %		
31	0		petroleum group	TPH		1927.12	mg/kg		1927.12	mg/kg	0.193 %		
32	4	TPH		28	mg/kg	1.245	34.852	mg/kg	0.00349 %				
			201-581-5   85-01-8							Total:	1.923 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Speciated Determinand **LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 86 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP07[7]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP07[7] Chapter:
Sample Depth:
3 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		T dolor		valuo	MC	0000
1	0	pH		PH		7.6 pH		7.6 pH	7.6 pH		
								Total:	0%	Г	

## Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 87 of 135



Classification of sample: BH01[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

# Sample details

Sample name: LoW Code: BH01[2] Chapter: Sample Depth:

1.1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ĺ	<lod< th=""></lod<>
	0	acenaphthylene	201-469-6	83-32-9									
2		docriapriaryiono	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	204-371-1	120-12-7		0.15	mg/kg		0.15	mg/kg	0.000015 %		
4	æ	arsenic { arsenic tr				22		4.22	20.047		0.0020.8/	T	
4	-	033-003-00-0	215-481-4	1327-53-3	1	22	mg/kg	1.32	29.047	mg/kg	0.0029 %		
5		benzo[a]anthracen	ie			0.58	mg/kg		0.58	mg/kg	0.000058 %		
		601-033-00-9	200-280-6	56-55-3		0.50	mig/kg		0.50	ilig/kg	0.000030 76		
6		benzo[a]pyrene; be	enzo[def]chrysene			0.54	mg/kg		0.54	mg/kg	0.000054 %		
		601-032-00-3	200-028-5	50-32-8								_	
7		benzo[b]fluoranthe 601-034-00-4		005 00 0	-	0.7	mg/kg		0.7	mg/kg	0.00007 %		
		benzo[ghi]perylene	205-911-9	205-99-2	+							-	
8	Θ	berizo[grii]perylerik	205-883-8	191-24-2	4	0.09	mg/kg		0.09	mg/kg	0.000009 %		
		benzo[k]fluoranthe		131-24-2	+							+	
9		1	205-916-6	207-08-9	+	0.27	mg/kg		0.27	mg/kg	0.000027 %		
1.	æ		J		1				2.252				
10	~	004-003-00-8	215-133-1	1304-56-9	1	1.1	mg/kg	2.775	3.053	mg/kg	0.000305 %		
11	æ	boron { boron tr (combined) }	i <mark>bromide/trichloride</mark>	2/trifluoride 10294-33-4, 10294-34-5,		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
				7637-07-2									
12	4	cadmium { cadmiu	m sulfide }		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
Ľ	Ĺ	048-010-00-4	215-147-8	1306-23-6	Ļ			200	70.207	9/119	10.00002 /0		1200
13	4	chromium in chrom	e (worst case) }	•		330	mg/kg	1.462	482.313	mg/kg	0.0482 %		
14	æ	chromium in chronoxide }	. , , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	+								
15		chrysene 601-048-00-0	205-923-4	218-01-9	-	0.63	mg/kg		0.63	mg/kg	0.000063 %		
		001-040-00-0	200-920-4	210-01-9									

Page 88 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





#		Determinand  EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound cond	C.	Classification value	MC Applied	Conc. Not Used
16	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		76	mg/kg	1.126	85.568 mg	g/kg	0.00856 %		
17	<b>4</b>	cyanides { a salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg	g/kg	<0.000188 %		<lod< td=""></lod<>
18		dibenz[a,h]anthracene 601-041-00-2   200-181-8   53-70-3		<0.1	mg/kg		<0.1 mg	g/kg	<0.00001 %		<lod< td=""></lod<>
19	9	ethylbenzene 601-023-00-4		59	mg/kg		59 mg	g/kg	0.0059 %		
20	0	fluoranthene 205-912-4 206-44-0		0.82	mg/kg		0.82 mg	g/kg	0.000082 %		
21	0	fluorene 201-695-5 86-73-7		0.09	mg/kg		0.09 mg	g/kg	0.000009 %		
22	0	indeno[123-cd]pyrene 205-893-2 193-39-5		0.09	mg/kg		0.09 mg	g/kg	0.000009 %		
23	<b>4</b>	lead {   lead compounds with the exception of those specified elsewhere in this Annex }	1	121	mg/kg		121 mg	g/kg	0.0121 %		
24	4	mercury { mercury dichloride } 080-010-00-X		<1	mg/kg	1.353	<1.353 mg	g/kg	<0.000135 %		<lod< td=""></lod<>
25		naphthalene 601-052-00-2 202-049-5 91-20-3		4.06	mg/kg		4.06 mg	g/kg	0.000406 %		
26	4	nickel { nickel dihydroxide }       028-008-00-X     235-008-5 [1]       12054-48-7 [1]       234-348-1 [2]       11113-74-9 [2]		29	mg/kg	1.579	45.805 mg	g/kg	0.00458 %		
27	9	pH PH		10.3	рН		10.3 pH	I	10.3 pH		
28	•	phenanthrene 201-581-5 85-01-8		0.67	mg/kg		0.67 mg	g/kg	0.000067 %		
29		phenol		<2	mg/kg		<2 mg	g/kg	<0.0002 %		<lod< td=""></lod<>
30	0	pyrene 204-927-3 129-00-0		0.62	mg/kg		0.62 mg	g/kg	0.000062 %		
31	0	TPH (C6 to C40) petroleum group		96.379	mg/kg		96.379 mg	g/kg	0.00964 %		
32	<b>«</b>	zinc { zinc oxide } 030-013-00-7		183	mg/kg	1.245	227.783 mg	g/kg	0.0228 %		
							Т	Total:	0.118 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 89 of 135





Because of determinand:

ethylbenzene: (conc.: 0.0059%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00964%)

Page 90 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: BH01[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

BH01[3] Chapter:
Sample Depth:
3 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene 201-469-6 83-32-9		_	0.12	mg/kg		0.12	mg/kg	0.000012 %			
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene 204-371-1 120-12-7				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		1.99	mg/kg	1.32	2.627	mg/kg	0.000263 %		
5		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
6		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8	0	benzo[ghi]perylene		191-24-2	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9		benzo[k]fluoranthene 601-036-00-5   205-916-6   207-08-9				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10	4					<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
11	44					<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
12	4	cadmium { cadmium sulfide } 048-010-00-4			_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9   1308-38-9				11	mg/kg	1.462	16.077	mg/kg	0.00161 %		
14	4					<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
15		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>



#		Determinand  EU CLP index				User entered data	Conv. Factor			Classification value	MC Applied	Conc. Not Used	
46	<u> </u>	number copper { dicopper oxi	ide; copper (I) oxi	de }	O	2.00		4.400	4.400		0.000440.00	Σ	
16	_	029-002-00-X 215-270-7   1317-39-1			1	3.99	mg/kg	1.126	4.492	mg/kg	0.000449 %		
17	***	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5			$\perp$							Ш	
18		dibenz[a,h]anthracene				<0.1 mg/kg	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		601-041-00-2 200-181-8 53-70-3											
19	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4			-	13	mg/kg		13	mg/kg	0.0013 %		
20	0	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
	0	205-912-4 206-44-0 fluorene			+							Н	
21			01-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyrene											
22			05-893-2	193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	4	lead { lead compounds with the exception of those specified elsewhere in this Annex }			1	3	mg/kg		3	mg/kg	0.0003 %		
	_	082-001-00-6			-							Н	
24	4	mercury { mercury di 080-010-00-X 23		7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
	-	naphthalene	31-299-6	7467-94-7	$\vdash$								
25		601-052-00-2 202-049-5 91-20-3			-	1.24	mg/kg		1.24	mg/kg	0.000124 %		
		nickel { nickel dihydroxide }											
26	-	028-008-00-X 23	35-008-5 [1]	12054-48-7 [1] 11113-74-9 [2]		7	mg/kg	1.579	11.056	mg/kg	0.00111 %		
27	9	pH PH			8.2	рН		8.2	рН	8.2 pH			
28	9	phenanthrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		201-581-5 85-01-8				<b>VO.1</b>			<b>VO. 1</b>	ilig/kg	<0.00001 78		\LOD
29		phenol 604-001-00-2	00.600.7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
30	0	604-001-00-2 203-632-7 108-95-2 pyrene					mg/kg		<0.1	mg/kg	<0.00001 %		
		204-927-3 129-00-0				<0.1							<lod< td=""></lod<>
31	0	TPH (C6 to C40) petroleum group				56.15	mg/kg		56.15	mg/kg	0.00562 %		
32		zinc { <mark>zinc oxide</mark> }			$\vdash$	19	mg/kg	1.245	23.65	mg/kg	0.00236 %		
_	030-013-00-7 215-222-5 1314-13-2						.59						
										Total:	0.0157 %		

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Page 92 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

ethylbenzene: (conc.: 0.0013%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00562%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 93 of 135



Classification of sample: BH01[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

# Sample details

Sample name: LoW Code: BH01[4] Chapter: Sample Depth:

5.5 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
2	0	acenaphthylene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Ĺ			205-917-1	208-96-8		30.1			40.1		40.00001 70		1202
3	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	æ	arsenic { arsenic tr	ioxide }			1.99	malka	1.32	2.627	ma/ka	0.000263 %		
4	_	033-003-00-0	215-481-4	1327-53-3		1.99	mg/kg	1.32	2.027	mg/kg	0.000263 %		
5		benzo[a]anthracen	е			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
L		601-033-00-9	200-280-6	56-55-3		<b>V</b> 0.1	IIIg/kg		ζ0.1	mg/kg	20.00001 //		\LOD
6		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
L		601-032-00-3	200-028-5	50-32-8		νο.1	mg/kg		<b>VO. 1</b>		Q0.00001 70		LOD
7		benzo[b]fluoranthe	1-034-00-4 205-911-9 205-99-2 nzo[ghi]perylene				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8	0	benzo[ghi]perylene	enzo[ghi]perylene   205-883-8   191-24-2				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
0						<0.1	ilig/kg		ζ0.1	mg/kg	20.00001 /6		LOD
9		benzo[k]fluoranthe	nzo[ghi]perylene    205-883-8			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ľ		601-036-00-5	205-916-6	207-08-9		νο.1	g/kg		<b>VO. 1</b>		Q0.00001 70		100
10	æ\$	beryllium { berylliu	<mark>m oxide</mark> }			<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
Ľ		004-003-00-8	215-133-1	1304-56-9		10.0		2.110	11.000		40.000100 /0		1202
11	4	boron { boron tri (combined) }	ibromide/trichloride	e/trifluoride		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				10294-34-5, 7637-07-2									
12	æ.	cadmium { cadmiu	<mark>m sulfide</mark> }		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4	215-147-8	1306-23-6	1.	<b>VO.2</b>	g/kg	1.200	<b>VO.207</b>		Q0.00002 70		100
13	4	chromium(III) oxide	nromium in chromium(III) compounds {			5	mg/kg	1.462	7.308	mg/kg	0.000731 %		
_	-		215-160-9	1308-38-9	+							$\vdash$	
14	æ	chromium in chromoxide }	. , , .			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
-		024-001-00-0	215-607-8	1333-82-0	+							-	
15		chrysene	005 000 4	040.04.0	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		601-048-00-0	205-923-4	218-01-9									

Page 94 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





#		Determinand  EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X   215-270-7   1317-39-1		3.99	mg/kg	1.126	4.492 mg/kg	0.000449 %		
17	4	cyanides { a salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
18		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
20	0	fluoranthene 205-912-4 206-44-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	indeno[123-cd]pyrene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23	<b>4</b>	lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	2.99	mg/kg		2.99 mg/kg	0.000299 %		
24	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1	mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
25		naphthalene         91-20-3		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26	<b>4</b>	nickel { nickel dihydroxide }       028-008-00-X     235-008-5 [1]       12054-48-7 [1]       234-348-1 [2]       11113-74-9 [2]		6	mg/kg	1.579	9.477 mg/kg	0.000948 %		
27	0	pH PH		7.4	рН		7.4 pH	7.4 pH		
28	0	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
29		phenol		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
30	0	pyrene 204-927-3 129-00-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	TPH (C6 to C40) petroleum group		56.12	mg/kg		56.12 mg/kg	0.00561 %		
32	4	zinc { zinc oxide } 030-013-00-7		15	mg/kg	1.245	18.671 mg/kg	0.00187 %		
							Total	0.0129 %		

#### Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 95 of 135





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)

Page 96 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: BH02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: BH02 Chapter: Sample Depth: 1 m Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		0.12	mg/kg		0.12	mg/kg	0.000012 %		
2	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
3	9	anthracene	204-371-1	120-12-7		0.18	mg/kg		0.18	mg/kg	0.000018 %		
4	æ\$	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		17	mg/kg	1.32	22.446	mg/kg	0.00224 %		
5		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		0.64	mg/kg		0.64	mg/kg	0.000064 %		
6			zo[b]fluoranthene 034-00-4			0.54	mg/kg		0.54	mg/kg	0.000054 %		
7		benzo[b]fluoranthe 601-034-00-4	nzo[b]fluoranthene -034-00-4   205-911-9   205-99-2				mg/kg		0.71	mg/kg	0.000071 %		
8	0	benzo[ghi]perylene	enzo[ghi]perylene				mg/kg		0.35	mg/kg	0.000035 %		
9			205-883-8   191-24-2			0.26	mg/kg		0.26	mg/kg	0.000026 %		
10			-036-00-5   205-916-6   207-08-9			0.7	mg/kg	2.775	1.943	mg/kg	0.000194 %		
11	<b>4</b>	boron { boron tr (combined) }	eryllium { beryllium oxide } 4-003-00-8			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
12		cadmium { <mark>cadmiu</mark> 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	4	chromium(III) oxide	3-010-00-4   215-147-8   1306-23-6   romium in chromium(III) compounds { romium(III) oxide (worst case) }   215-160-9   1308-38-9			580	mg/kg	1.462	847.702	mg/kg	0.0848 %		
14	4	chromium in chromoxide }	215-160-9  1308-38-9 pmium in chromium(VI) compounds { chromium(V le }			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
15		chrysene 601-048-00-0	205-923-4	218-01-9		0.6	mg/kg		0.6	mg/kg	0.00006 %		



#		EU CLP index	Determinand EC Number	CAS Number	P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			7							Ž	
16	Tell Content	copper { dicopper o				59	mg/kg	1.126	66.427	mg/kg	0.00664 %		
	-	029-002-00-X	215-270-7	1317-39-1	+								
17		cyanides { salts exception of complete ferricyanides and managements are completed by the complete ferricyanides and managements are completed by the complete ferricyanides and managements are completed by the complete ferricyanides of the complete ferricyanides are completed by the complete ferricyanides of the complete ferricyanides are completed by the complete ferricyanides are completed by the complete ferricyanides and managements are completed by the complete ferricyanides are completed by the complete ferricyanid	ex cyanides such nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
18		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			200-181-8	53-70-3	_								
19	Θ	ethylbenzene				25	mg/kg		25	mg/kg	0.0025 %		
			202-849-4	100-41-4	+							+	
20	Θ	fluoranthene	205-012-4	206-44-0	-	1.03	mg/kg		1.03	mg/kg	0.000103 %		
H			205-912-4   206-44-0	200-44-0	+								
21				86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				00.0.	1								
22	Ĭ			193-39-5	1	0.37	mg/kg		0.37	mg/kg	0.000037 %		
23		ead { lead compounds with the exception of those specified elsewhere in this Annex } 82-001-00-6   mercury { mercury dichloride }			1	74	mg/kg		74	mg/kg	0.0074 %		
	_	082-001-00-6			_							$\perp$	
24	-		ecified elsewhere in this Annex } 2-001-00-6			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
			ercury { mercury dichloride } 0-010-00-X   231-299-8   7487-94-7									-	
25		•			1	0.62	mg/kg		0.62	mg/kg	0.000062 %		
			202-049-5	91-20-3								+	
26	~		•	1,005,40,514		18	mg/kg	1.579	28.431	mg/kg	0.00284 %		
20			235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		10	mg/kg	1.57 9	20.431	mg/kg	0.00204 78		
27	Θ	рН				11.1	рН		11.1	рН	11.1 pH		
21				PH		11.1	pi i		11.1	ρι ι 	11.1 μ11	$\perp$	
28	Θ	phenanthrene				0.77	mg/kg		0.77	mg/kg	0.000077 %		
			201-581-5	85-01-8		0.11	mg/kg		0.11	g/kg	3.000011 /0		
29	]					<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
L			203-632-7	108-95-2									
30	Θ	pyrene	201.007.	1,00,00,5		0.85	mg/kg		0.85	mg/kg	0.000085 %		
	_		204-927-3	129-00-0	-							+	
31	Θ	TPH (C6 to C40) pe	etroieum group	TPH	-	66.35	mg/kg		66.35	mg/kg	0.00664 %		
$\vdash$	- A	zinc { zinc oxide }		1111	$\vdash$							+	
32	-		215-222-5	1314-13-2	-	123	mg/kg	1.245	153.1	mg/kg	0.0153 %		
$\vdash$										Total:	0.132 %	+	

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Page 98 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

ethylbenzene: (conc.: 0.0025%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00664%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 99 of 135



Classification of sample: BH02[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

BH02[2] Chapter:
Sample Depth:

2.8 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	9	acenaphthene	004 400 0	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	0	acenaphthylene	201-469-6		+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
3	0	anthracene	205-917-1	208-96-8	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	arsenic { arsenic tr		120-12-7		12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
5		033-003-00-0 benzo[a]anthracen	215-481-4 e	1327-53-3		-0.1			<0.1		<0.00001 %		<lod< td=""></lod<>
5			200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001%		<lod< td=""></lod<>
6		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7		benzo[b]fluoranthe	205-99-2 zo[ghi]perylene				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8	0	benzo[ghi]perylene	enzo[ghi]perylene   205-883-8   191-24-2				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
9		benzo[k]fluoranthe	205-883-8   191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-24-2     191-				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10	4	beryllium { berylliu	nzo[k]fluoranthene -036-00-5   205-916-6   207-08-9 yllium { beryllium oxide } -003-00-8   215-133-1   1304-56-9		+	0.6	mg/kg	2.775	1.665	mg/kg	0.000167 %		
			eryllium { beryllium oxide } 4-003-00-8		+								
11	4	(combined)	04-003-00-8   215-133-1   1304-56-9 oron { • boron tribromide/trichloride/trifluoride			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
12	4	cadmium { cadmiu 048-010-00-4		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
13	æ	chromium in chrom				27	mg/kg	1.462	39.462	mg/kg	0.00395 %		
14	4		romium in chromium(VI) compounds {			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
15		chrysene			T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		601-048-00-0	205-923-4	218-01-9									

Page 100 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



#		Determinand  EU CLP index	CLP Note	User entere	d data	Conv. Factor	Compound conc	Classification value	MC Applied	Conc. Not Used
16	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X   215-270-7   1317-39-1		19	mg/kg	1.126	21.392 mg/	kg 0.00214 %		
17	4	cyanides { a salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/	kg <0.000188 %		<lod< td=""></lod<>
18		dibenz[a,h]anthracene 601-041-00-2   200-181-8   53-70-3		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
19	9	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2	mg/kg		<2 mg/	kg <0.0002 %		<lod< td=""></lod<>
20	0	fluoranthene 205-912-4 206-44-0		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
21	0	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
22	0	indeno[123-cd]pyrene		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
23	<b>4</b>	lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	13	mg/kg		13 mg/	kg 0.0013 %		
24	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1	mg/kg	1.353	<1.353 mg/	kg <0.000135 %		<lod< td=""></lod<>
25		naphthalene         91-20-3		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
26	<b>4</b>	nickel { nickel dihydroxide }       028-008-00-X     235-008-5 [1]       12054-48-7 [1]       234-348-1 [2]       11113-74-9 [2]		14	mg/kg	1.579	22.113 mg/	kg 0.00221 %		
27	Θ	pH PH		7.9	рН		7.9 pH	7.9 pH		
28	9	phenanthrene 201-581-5 85-01-8		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
29		phenol		<2	mg/kg		<2 mg/	kg <0.0002 %		<lod< td=""></lod<>
30	0	pyrene 204-927-3 129-00-0		<0.1	mg/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
31	0	TPH (C6 to C40) petroleum group		56.12	mg/kg		56.12 mg/	kg 0.00561 %		
32	4	zinc { zinc oxide } 030-013-00-7		47	mg/kg	1.245	58.502 mg/	kg 0.00585 %		
							To	tal: 0.0254 %		

#### Kον

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 101 of 135





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)

Page 102 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: BH02[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

BH02[3] Chapter:
Sample Depth:
3.7 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
Ľ			201-469-6	83-32-9		40.1					40.00001 70		1200
2	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	+							-	
3	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_	L		204-371-1	120-12-7	+							-	
4	4	arsenic { arsenic tr		400= =0 0		5	mg/kg	1.32	6.602	mg/kg	0.00066 %		
			215-481-4	1327-53-3	-							-	
5		benzo[a]anthracen				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	-								
6		benzo[a]pyrene; be				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	-								
7		benzo[b]fluoranthe		605.00.0	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4											
8	⊜	benzo[gni]peryiene	nzo[k]fluoranthene				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1 010 4	205-883-8   191-24-2   zo[k]fluoranthene   207-08-9										
9			o[k]fluoranthene  36-00-5   205-916-6   207-08-9  lium {			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-		36-00-5 205-916-6 207-08-9 ium { <mark>beryllium oxide</mark> }									-	
10	4		036-00-5		4	<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
	-	004-003-00-8	003-00-8 215-133-1 1304-56-9										
11	*	boron { boron tr (combined) }	4-003-00-8  215-133-1  1304-56-9  pron { boron tribromide/trichloride/trifluoride			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
				7637-07-2									
12	2	cadmium { cadmiu	m sulfide }		1	-0.2	700 Gr /1 c Gr	4 205	-0.057		<0.00002 %		<lod< td=""></lod<>
12	_	048-010-00-4	215-147-8	1306-23-6	┨'	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lud< td=""></lud<>
13	4	chromium(III) oxide	nromium in chromium(III) compounds {			24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
			215-160-9	1308-38-9	_								
14	4	oxide }	omium in chromium(VI) compounds {			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
-	$\vdash$	024-001-00-0	K19-001-9	1333-82-0	+								
15		chrysene	205 022 4	h10 01 0	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9									



#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	<b>4</b>	number copper { dicopper o	xide; copper (I) ox	ide }	0	8	mg/kg	1.126	9.007	mg/kg	0.000901 %	2	
10		029-002-00-X	215-270-7	1317-39-1		Ů	mg/kg	1.120	9.007	mg/kg	0.000901 /6		
17	4	cyanides { salts of exception of complete ferricyanides and managements.	ex cyanides such a percuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
18		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			200-181-8	53-70-3	-								
19	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
20	0	fluoranthene	205 040 4	000 44 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene	205-912-4   206-44-0				mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		2	201-695-5	86-73-7		<0.1	mg/kg		<b>40.1</b>	ilig/kg	<0.00001 78		\LOD
22	0	indeno[123-cd]pyrei	rene    201-695-5   86-73-7     201-695-5   86-73-7     201-695-5   86-73-7     201-893-2   193-39-5     301   193-39-5     4   193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-5     193-39-			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		2	205-893-2	193-39-5		Z0.1					<b>40.00001</b> 70		LOD
23	4	specified elsewhere	ad { • lead compounds with the exception of thos ecified elsewhere in this Annex }				mg/kg		9	mg/kg	0.0009 %		
		082-001-00-6			-					_			
24	4					<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
			231-299-8	7487-94-7	-								
25		naphthalene 601-052-00-2	202.040.5	91-20-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	nickel { nickel dihyd		91-20-3									
26	_	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	31.59	mg/kg	0.00316 %		
27	0	pH		PH		10	рН		10	рН	10pH		
28	0	phenanthrene				0.4			0.4		0.00004.0/		<lod< td=""></lod<>
20		2	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
29		phenol				<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			203-632-7	108-95-2	-								
30	0	pyrene	rene 204-927-3   129-00-0			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	TPH (C6 to C40) pe	PH (C6 to C40) petroleum group			56.12	mg/kg		56.12	mg/kg	0.00561 %		
32	æ	zinc { zinc oxide }		TPH	_	56	mg/kg	1.245	69.704	mg/kg	0.00697 %	+	
الم			215-222-5	1314-13-2	L	30	mg/kg	1.240	03.704	my/kg	0.00097 70		
										Total:	0.0245 %		

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 104 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)





Classification of sample: TP08

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP08 Chapter:
Sample Depth:

0.1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note		Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP				value	MC.	Oseu
1	0	number PH				8.4 pH		8.4 pH	8.4 pH		
								Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 106 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP08[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP08[2] Chapter:
Sample Depth:
1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	9	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
3	9	anthracene	204-371-1	120-12-7		1	mg/kg		1	mg/kg	0.0001 %		
4	4	arsenic { arsenic tr 033-003-00-0	ioxide }  215-481-4	1327-53-3		12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
5		benzo[a]anthracen 601-033-00-9	200-280-6	56-55-3		2.41	mg/kg		2.41	mg/kg	0.000241 %		
6		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		1.64	mg/kg		1.64	mg/kg	0.000164 %		
7		benzo[b]fluoranthe 601-034-00-4	-034-00-4 205-911-9 205-99-2				mg/kg		2.3	mg/kg	0.00023 %		
8	8	benzo[ghi]perylene	enzo[ghi]perylene				mg/kg		1.18	mg/kg	0.000118 %		
9			205-883-8   191-24-2				mg/kg		0.87	mg/kg	0.000087 %		
10	4		-036-00-5   205-916-6   207-08-9   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   201   2			1.2	mg/kg	2.775	3.33	mg/kg	0.000333 %		
11	*	boron { boron tr (combined) }	eryllium { beryllium oxide }  14-003-00-8   215-133-1   1304-56-9  15 pron { boron tribromide/trichloride/trifluoride				mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
12	4	cadmium { cadmiu 048-010-00-4	<mark>m sulfide</mark> } 215-147-8	1306-23-6	_ 1	0.7	mg/kg	1.285	0.9	mg/kg	0.00007 %		
13	4	chromium(III) oxide	nromium in chromium(III) compounds { nromium(III) oxide (worst case) } 215-160-9   1308-38-9				mg/kg	1.462	439.928	mg/kg	0.044 %		
14	4	oxide }	omium in chromium(VI) compounds {			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< th=""></lod<>
15		chrysene 601-048-00-0	205-923-4	218-01-9		2.23	mg/kg		2.23	mg/kg	0.000223 %		



#		EU CLP index	Determinand  EC Number	CAS Number	LP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			7							Σ	
16	4	copper { dicopper c 029-002-00-X	oxide; copper (I) ox 215-270-7	kide }  1317-39-1		53	mg/kg	1.126	59.672	mg/kg	0.00597 %		
17	4	cyanides { salts exception of complete ferricyanides and managements.	of hydrogen cyani ex cyanides such nercuric oxycyanid	de with the as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
18		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			200-181-8	53-70-3	-								
19	Θ	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	3	mg/kg		3	mg/kg	0.0003 %		
20	0	fluoranthene				3.48	mg/kg		3.48	mg/kg	0.000348 %		
H	_		201-695-5 86-73-7 deno[123-cd]pyrene 205-893-2   193-39-5									$\vdash$	
21	0		deno[123-cd]pyrene         205-893-2         193-39-5           ad { Iead compounds with the exception of tho			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
22	0	indeno[123-cd]pyre	ene			1.10			1.10		0.000119 %		
22			205-893-2	193-39-5	1	1.19	mg/kg		1.19	mg/kg	0.000119 %		
23	4	specified elsewhere	ception of those	1	128	mg/kg		128	mg/kg	0.0128 %			
	_		ad { lead compounds with the exception of the ecified elsewhere in this Annex } 2-001-00-6   ercury { mercury dichloride } 0-010-00-X   231-299-8   7487-94-7										
24	-		2-001-00-6				mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
		naphthalene	ercury { mercury dichloride } 0-010-00-X   231-299-8   7487-94-7										
25		•	202-049-5	91-20-3	1	0.43	mg/kg		0.43	mg/kg	0.000043 %		
	æ	nickel { nickel dihyd	lroxide }									Ť	
26	_		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		18	mg/kg	1.579	28.431	mg/kg	0.00284 %		
27	0	рН		PH		10.2	рН		10.2	рН	10.2 pH		
Н		phenanthrene	<u>I</u>	ļ. · ·	+							+	
28		·	201-581-5	85-01-8	+	1.81	mg/kg		1.81	mg/kg	0.000181 %		
29		phenol			T	<2	mg/kg		<2	mg/kg	<0.0002 %	İ	<lod< th=""></lod<>
23			108-95-2		~~	mg/kg			mg/kg	20.0002 /6		\	
30	0	pyrene	204-927-3	129-00-0		2.54	mg/kg		2.54	mg/kg	0.000254 %		
$\vdash$	0			129-00-0	+							+	
31	•	(OU tO O40) pt	PH (C6 to C40) petroleum group		$\perp$	116.15	mg/kg		116.15	mg/kg	0.0116 %		
32	-		045 000 5	1011110		236	mg/kg	1.245	293.752	mg/kg	0.0294 %		
$\vdash$		030-013-00-7	215-222-5	1314-13-2						Total	0.113 %	+	
L										Total:	0.113 %		

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

**₫** <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Page 108 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Because of determinand:

ethylbenzene: (conc.: 0.0003%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0116%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 109 of 135





Classification of sample: TP08[3]



Unknown. Chemistry data not provided.

03)

Classified as **17 05 04** or **17 05 03** * in the List of Waste

# Sample details

Sample name: LoW Code: TP08[3] Chapter:

Sample Depth:

1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

05 04 (Soil and Stones of

# **Hazard properties**

None identified

# **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

7		Determinand		Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used	
	EU CLP index number	EC Number	CAS Number			racioi		value	MC/	Useu	
Г		•					Total:	0%			l

Key

User supplied data

Page 110 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP08[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP08[4] Chapter:
Sample Depth:
1.5 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		lactor			MC,	Oseu
1	0	pH PH		PH	_	10.3 pH		10.3 pH	10.3 pH		
								Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 111 of 135





Classification of sample: TP08[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: TP08[5] Chapter: Sample Depth:

1.5 m Entry:

from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.		nd conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		i actor			value	MC,	Oseu
1	0	pH		PH		9 pH		9	рН	9pH		
			J.	J.		1			Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 112 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP09

Hazardous Waste
Classified as 17 05 03 *
in the List of Waste

# Sample details

Sample name: LoW Code:

TP09 Chapter: Sample Depth:

from contaminated sites)
17 05 03 * (Soil and stones containing hazardous substances)

17: Construction and Demolition Wastes (including excavated soil

1 m Entry:

# **Hazard properties**

<u>HP 2: Oxidizing</u> "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to hazardous because Results at limit of detection from the lab. None above limit identified.

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00038%)

#### **Determinands**

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		acenaphthylene	201-469-6	83-32-9	$\vdash$								
2	0	acenaphinylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		anthracene	200 017 1	200 30 0									
3			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
4	æ.	arsenic { arsenic tr	rioxide }	1		17	mg/kg	1.32	22.446	mg/kg	0.00224 %		
_	Ū	033-003-00-0	215-481-4	1327-53-3		17		1.02	22.440		0.00224 //		
5		benzo[a]anthracen				0.51	mg/kg		0.51	mg/kg	0.000051 %		
		601-033-00-9	200-280-6	56-55-3								-	
6		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	-	0.46	mg/kg		0.46	mg/kg	0.000046 %		
		benzo[b]fluoranthe	1	pu-32-6	+							+	
7			205-911-9	205-99-2	-	0.64	mg/kg		0.64	mg/kg	0.000064 %		
	0	benzo[ghi]perylene	1	F00 00 E	t	0.04							
8		10 11 7	205-883-8	191-24-2	1	0.34	mg/kg		0.34	mg/kg	0.000034 %		
9		benzo[k]fluoranthe	ne		Т	0.21	mg/kg		0.21	mg/kg	0.000021 %		
		601-036-00-5	205-916-6	207-08-9		0.21			0.21	ilig/kg	0.000021 76		
10	æ 🌡	beryllium { berylliu				0.9	mg/kg	2.775	2.498	mg/kg	0.00025 %		
		004-003-00-8	215-133-1	1304-56-9									
11	4	boron { boron tr (combined) }	ibromide/trichlorid			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
				10294-33-4, 10294-34-5, 7637-07-2		<1 r							
12	æ.	cadmium { cadmium sulfide }	1	0.3	mg/kg	1.285	0.386	mg/kg	0.00003 %				
Ľ.	_	048-010-00-4	215-147-8	1306-23-6	Ė								
40		chromium in chron		ds {		405	/l -	4 400	005 777		0.0000.0/		
13		chromium(III) oxide		4000 00 0		435	mg/kg	1.462	635.777	mg/kg	0.0636 %		
			215-160-9	1308-38-9	1_	112/47/12/1						1	



#		Determinand	Note	User entered data		Conv.	Compound o	onc.	Classification value	MC Applied	Conc. Not
		EU CLP index	CLP			1 40101			valuo	MC	Cood
14	*	chromium in chromium(VI) compounds { chromium(VI) oxide }		1.99 mg/k	(g	1.923	3.827	mg/kg	0.000383 %		
		024-001-00-0 215-607-8 1333-82-0									
15		chrysene		0.49 mg/k	ca l		0.49	mg/kg	0.000049 %		
		601-048-00-0 205-923-4 218-01-9		0.45 mg/K	<b>'</b> 9		0.43	mg/kg	0.000043 70		
16	Ą	copper { dicopper oxide; copper (I) oxide }		73 mg/k	(a	1.126	82.19	mg/kg	0.00822 %		
10	Ĭ	029-002-00-X 215-270-7 1317-39-1	1	/ /3 IIIg/k	\y	1.120	02.19	ilig/kg	0.00822 /8		
17	**	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/k	кg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
			-								
18		dibenz[a,h]anthracene	4	<0.1 mg/k	g		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8 53-70-3	-								
19	0	ethylbenzene	4	<2 mg/k	cg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4									
20	0	fluoranthene		0.75 mg/k	(g		0.75	mg/kg	0.000075 %		
		205-912-4 206-44-0	-								
21	Θ	fluorene		<0.1 mg/k	cg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_		201-695-5 86-73-7	-								
22	0	indeno[123-cd]pyrene		0.35 mg/k	cg		0.35	mg/kg	0.000035 %		
		205-893-2 193-39-5	-		_					_	
23	<b>4</b>	lead {  lead compounds with the exception of those specified elsewhere in this Annex }	1	126 mg/k	(g		126	mg/kg	0.0126 %		
		082-001-00-6	1								
24	ď.	mercury { mercury dichloride }		<1 mg/k	(C)	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
24	ľ	080-010-00-X 231-299-8 7487-94-7	1	<1 IIIg/k	\y	1.555	<1.555	ilig/kg	20.000133 //		LOD
25		naphthalene		0.56 mg/k	<i>(</i> 2		0.56	mg/kg	0.000056 %		
23		601-052-00-2 202-049-5 91-20-3		0.50 Hg/k	\y		0.30	ilig/kg	0.000036 /6		
	æ	nickel { nickel dihydroxide }									
26		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		20 mg/k	(g	1.579	31.59	mg/kg	0.00316 %		
27	0	pH PH		10.5 pH			10.5	рН	10.5 pH		
28	0	phenanthrene 201-581-5   85-01-8		0.49 mg/k	g		0.49	mg/kg	0.000049 %		
		phenol	+							+	
29		604-001-00-2 203-632-7 108-95-2	-	1.99 mg/k	g		1.99	mg/kg	0.000199 %		
$\vdash$	_	pyrene	+							+	
30	9	204-927-3 129-00-0	-	0.63 mg/k	g		0.63	mg/kg	0.000063 %		
	_	TPH (C6 to C40) petroleum group	+							+	
31	9	TPH	+	85.12 mg/k	g		85.12	mg/kg	0.00851 %		
32		zinc { <mark>zinc oxide</mark> }		217 mg/k	(g	1.245	270.103	mg/kg	0.027 %		
_		030-013-00-7 215-222-5 1314-13-2						Total	0.120.0/	+	
								Total:	0.129 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Page 114 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00851%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 115 of 135



Classification of sample: TP09[2]

▲ Hazardous Waste Classified as 17 05 03 *

in the List of Waste

# Sample details

Sample name: LoW Code:

TP09[2] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

3 m Entry: 17 05 03 * (Soil and stones containing hazardous substances)

# **Hazard properties**

HP 2: Oxidizing "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to hazardous because Results at limit of detection from the lab. None above limit identified.

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00038%)

#### **Determinands**

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	0	acenaphthene				0.4			0.4		0.00004.0/		1.00
1			201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
2	0	acenaphthylene		•		<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
2			205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
3	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7		<b>VO.1</b>	mg/kg		70.1		C0.00001 70		LOD
4	4	arsenic { arsenic tr	<mark>rioxide</mark> }			8	mg/kg	1.32	10.563	mg/kg	0.00106 %		
Ŀ		033-003-00-0	215-481-4	1327-53-3		Ŭ.					0.00.00 /0		
5		benzo[a]anthracen	ne			0.44	mg/kg		0.44	mg/kg	0.000044 %		
		601-033-00-9	200-280-6	56-55-3	1								
6		benzo[a]pyrene; be				0.26	mg/kg		0.26	mg/kg	0.000026 %		
		501-032-00-3   200-028-5   50-32-8   benzo[b]fluoranthene	50-32-8										
7						0.43	mg/kg		0.43	mg/kg	0.000043 %		
		601-034-00-4	205-911-9	205-99-2	$\vdash$								
8	0	benzo[ghi]perylene	e 205-883-8	404.04.0		0.16	mg/kg		0.16	mg/kg	0.000016 %		
		benzo[k]fluoranthe		191-24-2	$\vdash$							$\vdash$	
9		601-036-00-5	205-916-6	207-08-9	-	0.13	mg/kg		0.13	mg/kg	0.000013 %		
				207-00-9									
10	•	004-003-00-8	215-133-1	1304-56-9	-	<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
	_				+								
	4	boron { boron tr (combined) }	ibromide/trichlorid	e/trifluoride									
11		(combined) }		10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
12	æ	cadmium { cadmiu	ım sulfide }		1	0.19	mg/kg	1.285	0.244	ma/ka	0.000019 %		
12	_	048-010-00-4	215-147-8	1306-23-6	Ľ	0.19	nig/kg	1.200	0.244	mg/kg	0.000019 %		
13	4	chromium in chron		ds { [®]		91	mg/kg	1.462	133.002	mg/kg	0.0133 %		



#		Determinand  EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		number LC Number CAS Number	Z					Ĭ	
14	<b>«</b>	oxide }		1.99 mg/kg	1.923	3.827 mg/kg	0.000383 %		
		024-001-00-0   215-607-8   1333-82-0							
15		<b>chrysene</b> 601-048-00-0	-	0.46 mg/kg		0.46 mg/kg	0.000046 %		
		copper { dicopper oxide; copper (I) oxide }							
16	≪*	029-002-00-X   215-270-7   1317-39-1	-	19 mg/kg	1.126	21.392 mg/kg	0.00214 %		
17	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5	╁						
18		dibenz[a,h]anthracene 601-041-00-2   200-181-8     53-70-3	-	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	ethylbenzene	$\vdash$						
19	0	601-023-00-4   202-849-4   100-41-4	-	<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
		fluoranthene		"				Н	
20	ľ	205-912-4 206-44-0	1	0.73 mg/kg		0.73 mg/kg	0.000073 %		
21	0	fluorene		-0.1		.0.1	-0.00004.0/		1.00
21		201-695-5 86-73-7	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	indeno[123-cd]pyrene		0.16 mg/kg		0.16 mg/kg	0.000016 %		
		205-893-2 193-39-5		0.10 Hig/kg		0.10 Hig/kg	0.000010 /8		
23	æ <b>\$</b>	specified elsewhere in this Annex }	1	36 mg/kg		36 mg/kg	0.0036 %		
	-	082-001-00-6							
24	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	_	<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
	$\vdash$	naphthalene	┢						
25		601-052-00-2 202-049-5 91-20-3	-	0.25 mg/kg		0.25 mg/kg	0.000025 %		
	æ								
26		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		14 mg/kg	1.579	22.113 mg/kg	0.00221 %		
27	9	<b>pH</b>   PH		8.9 pH		8.9 pH	8.9 pH		
28	0	phenanthrene	-	0.48 mg/kg		0.48 mg/kg	0.000048 %		
29		phenol		1.99 mg/kg		1.99 mg/kg	0.000199 %		
30	0	pyrene		0.52 mg/kg		0.52 mg/kg	0.000052 %		
		204-927-3   129-00-0	1	5,113		39		1	
31	0	TPH (C6 to C40) petroleum group	-	57.12 mg/kg		57.12 mg/kg	0.00571 %		
32	4	zinc { zinc oxide }		109 mg/kg	1.245	135.674 mg/kg	0.0136 %		
	-	030-013-00-7 215-222-5 1314-13-2	$\vdash$				-	$\vdash$	
33		asbestos  650-013-00-6   12001-28-4  132207-32-0  12172-73-5  77536-68-6  77536-67-5  12001-28-7		10 mg/kg		10 mg/kg	0.001 %		
		12001-29-5	1			Total	: 0.0456 %	-	





User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Hazardous result
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00571%)

Page 118 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com



Classification of sample: TP09[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP09[3] Chapter:
Sample Depth:
2 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		i actor		value	MC,	Oseu
1	0	pH PH		PH		8.9 pH		8.9 pH	8.9 pH		
								Total:	0%		

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 119 of 135



Classification of sample: TP09[4]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP09[4] Chapter:
Sample Depth:

le Depth: from contaminated sites)
Entry: 17 05 04 (Soil and stones

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

www.hazwasteonline.com

# **Hazard properties**

None identified

3 m

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.		Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP					MC	
1	0	number   PH		PH		10.4 pH		10.4 pH	10.4 pH		
								Total:	0%		

# Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 120 of 135 HX47J-WZRAS-0QRQF



17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP10

Mazardous Waste
Classified as 17 05 03 *
in the List of Waste

from contaminated sites)

# Sample details

Sample name: LoW Code:

TP10 Chapter: Sample Depth:

0.2 m Entry: 17 05 03 * (Soil and stones containing hazardous substances)

# **Hazard properties**

<u>HP 2: Oxidizing</u> "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to hazardous because Results at limit of detection from the lab. None above limit identified.

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00038%)

#### **Determinands**

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
Ŀ			201-469-6	83-32-9	1	1011					10.0000 . 70		
2	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	_								
3	0	anthracene				0.3	mg/kg		0.3	mg/kg	0.00003 %		
_			204-371-1	120-12-7									
4	4	arsenic { arsenic tr				11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
		033-003-00-0	215-481-4	1327-53-3									
5		benzo[a]anthracen	ie			1.14	mg/kg		1.14	mg/kg	0.000114 %		
Ľ		601-033-00-9	200-280-6	56-55-3									
6		benzo[a]pyrene; be				0.88	mg/kg		0.88	mg/kg	0.000088 %		
L		601-032-00-3	1-032-00-3 200-028-5 50-32-8 nzo[b]fluoranthene	50-32-8									
7		benzo[b]fluoranthe	ene			1.15	mg/kg		1.15	mg/kg	0.000115 %		
Ĺ		601-034-00-4	205-911-9	205-99-2		1.10					0.000110 70		
8	0	benzo[ghi]perylene	Э			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ľ			205-883-8	191-24-2		νο.1	mg/kg		<b>VO.1</b>	mg/kg	Z0.00001 70		LOD
9		benzo[k]fluoranthe	ne			0.42	mg/kg		0.42	mg/kg	0.000042 %		
Ľ		601-036-00-5	205-916-6	207-08-9		0.42	mg/kg		0.42	mg/kg	0.000042 70		
10	æ	beryllium { berylliu	<mark>m oxide</mark> }			<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
		004-003-00-8	215-133-1	1304-56-9		<0.5	mg/kg	2.113	<1.500	mg/kg	<0.000139 78		LOD
11	4	boron { boron tr (combined) }	ibromide/trichlorid	e/trifluoride  10294-33-4,  10294-34-5,		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
$oxed{}$				7637-07-2									
12	all a	cadmium { cadmiu	m sulfide }		1	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
Ľ		048-010-00-4	215-147-8	1306-23-6	Ľ	0.1	9/119	200	0.014	9/119	3.00001 70		
13	æ	chromium in chron		ds { ⁰		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		



#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	_	chromium in chromoxide }	lium(VI) compound	ds { chromium(VI)		1.99	mg/kg	1.923	3.827	mg/kg	0.000383 %		
15		chrysene	205-923-4	218-01-9		1.12	mg/kg		1.12	mg/kg	0.000112 %		
16	4	copper { dicopper o				27	mg/kg	1.126	30.399	mg/kg	0.00304 %		
17		cyanides { salts exception of compl ferricyanides and n specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrac	ene 200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		1.48	mg/kg		1.48	mg/kg	0.000148 %		
20	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
21	•	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.7	mg/kg		0.7	mg/kg	0.00007 %		
22		lead { • lead comp specified elsewhere 082-001-00-6		ception of those	1	46	mg/kg		46	mg/kg	0.0046 %		
23	4	mercury { mercury	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
24		naphthalene 601-052-00-2	202-049-5	91-20-3		0.09	mg/kg		0.09	mg/kg	0.000009 %		
25	-		lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		9	mg/kg	1.579	14.215	mg/kg	0.00142 %		
26	0	рН		PH		10.2	рН		10.2	рН	10.2 pH		
27	0	phenanthrene	201-581-5	85-01-8		0.78	mg/kg		0.78	mg/kg	0.000078 %		
28		phenol 604-001-00-2	203-632-7	108-95-2		1.99	mg/kg		1.99	mg/kg	0.000199 %		
29			204-927-3	129-00-0		1.24	mg/kg		1.24	mg/kg	0.000124 %		
30		zinc { zinc oxide }	215-222-5	1314-13-2		132	mg/kg	1.245	164.302	mg/kg	0.0164 %		
										Total:	0.0339 %		

Kev

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration <a href="LOD">LOD</a> Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 122 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP10[2]

Hazardous Waste
Classified as 17 05 03 *
in the List of Waste

# Sample details

0.5 m

Sample name: LoW Code:

TP10[2] Chapter: Sample Depth:

from contaminated sites)
17 05 03 * (Soil and stones containing hazardous substances)

17: Construction and Demolition Wastes (including excavated soil

# **Hazard properties**

<u>HP 2: Oxidizing</u> "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to hazardous because Results at limit of detection from the lab. None above limit identified.

Entry:

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00038%)

#### **Determinands**

#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene	'			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			201-469-6	83-32-9									
2	0	acenaphthylene			_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
			205-917-1	208-96-8									
3	0	anthracene				0.42	mg/kg		0.42	mg/kg	0.000042 %		
			204-371-1	120-12-7									
4	æ 🎉		•			23	mg/kg	1.32	30.367	mg/kg	0.00304 %		
		033-003-00-0	215-481-4	1327-53-3								Ш	
5		benzo[a]anthracen	ie			1.91	mg/kg		1.91	mg/kg	0.000191 %		
Ĺ		601-033-00-9	200-280-6	56-55-3									
6		benzo[a]pyrene; be				1.81	mg/kg		1.81	mg/kg	0.000181 %		
		601-032-00-3	enzo[b]fluoranthene	50-32-8									
7		benzo[b]fluoranthe	ene			2.33	mg/kg		2.33	mg/kg	0.000233 %		
Ŀ		601-034-00-4	205-911-9	205-99-2		2.00					0.000200 /0		
8	0	benzo[ghi]perylene	Э			1.03	mg/kg		1.03	mg/kg	0.000103 %		
Ľ			205-883-8	191-24-2							0.000.000 /0		
9		benzo[k]fluoranthe	ne			0.54	mg/kg		0.54	mg/kg	0.000054 %		
Ľ		601-036-00-5	205-916-6	207-08-9		0.54	mg/kg		0.04	mg/kg	0.000004 70		
10	æ	beryllium { berylliu	<mark>m oxide</mark> }			1	mg/kg	2.775	2.775	mg/kg	0.000278 %		
10	ľ	004-003-00-8	215-133-1	1304-56-9		'	mg/kg	2.113	2.113	mg/kg	0.000278 /8		
11	<b>4</b>	boron { boron tr (combined) }	ibromide/trichlorid	10294-33-4, 10294-34-5,		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
-	-	cadmium { cadmiu	ma sulfida )	7637-07-2	+								
12	•	048-010-00-4	215-147-8	1306-23-6	1	0.6	mg/kg	1.285	0.771	mg/kg	0.00006 %		
13	4		nium(III) compoun			31	mg/kg	1.462	45.308	mg/kg	0.00453 %		



#		EU CLP index number	Determinand  EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		1.99	mg/kg	1.923	3.827	mg/kg	0.000383 %		
15		chrysene 601-048-00-0	205-923-4	218-01-9		1.97	mg/kg		1.97	mg/kg	0.000197 %		
16	4	copper { dicopper 029-002-00-X				56	mg/kg	1.126	63.05	mg/kg	0.0063 %		
17	₫,	cyanides { salts exception of complete ricyanides and respectified elsewher 006-007-00-5	of hydrogen cyanid lex cyanides such a nercuric oxycyanid	de with the as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
18		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
19	0	fluoranthene	205-912-4	206-44-0		2.94	mg/kg		2.94	mg/kg	0.000294 %		
20	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
21	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		1.27	mg/kg		1.27	mg/kg	0.000127 %		
22	4	lead { Plead composed lead   Plead   P		ception of those	1	238	mg/kg		238	mg/kg	0.0238 %		
23	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< th=""></lod<>
24		naphthalene 601-052-00-2	202-049-5	91-20-3		0.56	mg/kg		0.56	mg/kg	0.000056 %		
25	-	nickel { nickel dihyo 028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	31.59	mg/kg	0.00316 %		
26	Θ	pН		PH		10.9	рН		10.9	рН	10.9 pH		
27	0	phenanthrene	201-581-5	85-01-8		1.78	mg/kg		1.78	mg/kg	0.000178 %		
28		phenol 604-001-00-2	203-632-7	108-95-2		1.99	mg/kg		1.99	mg/kg	0.000199 %		
29	0	pyrene	204-927-3	129-00-0		2.3	mg/kg		2.3	mg/kg	0.00023 %		
30	_	zinc { zinc oxide }	215-222-5	1314-13-2		310	mg/kg	1.245	385.861	mg/kg	0.0386 %		
										Total:	0.0839 %		

Kev

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 124 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP10[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP10[3] Chapter:
Sample Depth:
0.85 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		T dotor		valuo	MC	0000
1	0	рН		PH		9.2 pH		9.2 pH	9.2 pH		
Total: 0%										Г	

### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 125 of 135



Classification of sample: TP10[4]

⚠ Hazardous Waste Classified as 17 05 03 * in the List of Waste

# Sample details

Sample name: LoW Code:

TP10[4] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

1 m Entry: 17 05 03 * (Soil and stones containing hazardous substances)

# **Hazard properties**

HP 2: Oxidizing "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to hazardous because Results at limit of detection from the lab. None above limit identified.

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00038%)

#### **Determinands**

#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note			Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	acenaphthene			+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
'			201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< th=""></lud<>
2	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
_		205-917-1 208-96-8				30.1	mg/kg		70.1		40.00001 70		1200
3	•	anthracene				0.26	mg/kg		0.26	mg/kg	0.000026 %		
Ľ			204-371-1	120-12-7		0.20	mg/kg		0.20	mg/kg	0.000020 70		
4	4	arsenic { arsenic to	rioxide }			21	mg/kg	1.32	27.727	mg/kg	0.00277 %		
•		033-003-00-0 215-481-4 1327-53-3				21	mg/kg	1.02	21.121	mg/kg	0.00277 %		
5		benzo[a]anthracene				2.06	mg/kg		2.06	mg/kg	0.000206 %		
٦		601-033-00-9 200-280-6 56-55-3				2.00	ilig/kg		2.00	ilig/kg	0.000200 /8		
6		benzo[a]pyrene; benzo[def]chrysene			2.08	2.08	mg/kg		2.08 mg/kg	0.000208 %			
Ľ		601-032-00-3	2-00-3 200-028-5 50-32-8			2.00							
7		benzo[b]fluoranthene				2.63	mg/kg		2.63	mg/kg	0.000263 %		
l ′		601-034-00-4	205-911-9	205-99-2	1	2.00	g/kg		2.00	9/119	0.000200 70		
8	0	benzo[ghi]perylene				1.41	mg/kg		1.41	mg/kg	0.000141 %		
"		205-883-8 191-24-2			1	1.41				mg/kg			
9		benzo[k]fluoranthe		1.22 mg/kg	ma/ka		1.22	mg/kg	0.000122 %				
"		601-036-00-5 205-916-6 207-08-9			mg/kg								
10	æ\$	beryllium { beryllium oxide }				0.8	mg/kg	2.775	2.22	mg/kg	0.000222 %		
10	ľ	004-003-00-8 215-133-1 1304-56-9			1	0.6 Hig/kg	2.113		ilig/kg	0.000222 76			
11	4	boron {				<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
''				10294-33-4, 10294-34-5, 7637-07-2			mg/kg	10.40	×10.40	mg/kg	C0.00134 70		\LOD
12	æ	cadmium { cadmium sulfide }			1	0.8	mg/kg	1 29F	1.028	ma/ka	0.00008 %		
Ľ	Ľ	048-010-00-4 215-147-8 1306-23-6			Ľ	0.0	mg/kg	1.285	200 1.028	mg/kg	0.00000 /6		
13	4	chromium in chron	e (worst case) }	•		74	mg/kg	1.462	108.155	mg/kg	0.0108 %		
L			215-160-9	1308-38-9									



#		Determinand	CLP Note	User entere	d data	Conv.	Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index	CLP			l doto.		12.20	MC	Oseu
14	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		1.99	mg/kg	1.923	3.827 mg/kg	0.000383 %		
		024-001-00-0 215-607-8 1333-82-0	-							
15		<b>chrysene</b> 601-048-00-0	-	2.44	mg/kg		2.44 mg/kg	0.000244 %		
		copper { dicopper oxide; copper (l) oxide }	+							
16	~	029-002-00-X 215-270-7  1317-39-1	-	83	mg/kg	1.126	93.449 mg/kg	0.00934 %		
17	<b>4</b>	cyanides { ** salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene	+							
18		601-041-00-2   200-181-8   53-70-3	-	0.52	mg/kg		0.52 mg/kg	0.000052 %		
19	0	ethylbenzene		4	mg/kg		4 mg/kg	0.0004 %		
		601-023-00-4 202-849-4 100-41-4		-	mg/kg		4 Hg/kg	0.0004 /6		
20	0	fluoranthene 205-912-4 206-44-0		2.94	mg/kg		2.94 mg/kg	0.000294 %		
21	9	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	indeno[123-cd]pyrene 205-893-2 193-39-5		1.55	mg/kg		1.55 mg/kg	0.000155 %		
23	4	lead {	1	196	mg/kg		196 mg/kg	0.0196 %		
		082-001-00-6						H		
24	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7	-	<1	mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
25		naphthalene 601-052-00-2 202-049-5 91-20-3		0.39	mg/kg		0.39 mg/kg	0.000039 %		
	æ.	nickel { nickel dihydroxide }							t	
26		028-008-00-X   235-008-5 [1]   12054-48-7 [1]   234-348-1 [2]   11113-74-9 [2]		39	mg/kg	1.579	61.6 mg/kg	0.00616 %		
27	0	pH PH		9.4	рН		9.4 pH	9.4 pH		
28	9	phenanthrene 201-581-5 85-01-8		1.8	mg/kg		1.8 mg/kg	0.00018 %		
29		phenol 604-001-00-2 203-632-7   108-95-2		1.99	mg/kg		1.99 mg/kg	0.000199 %		
30	0	pyrene		2.02	mg/kg		2.02 mg/kg	0.000202 %		
31	9	204-927-3   129-00-0   TPH (C6 to C40) petroleum group		148.11	mg/kg		 148.11 mg/kg	0.0148 %		
32	_	zinc { zinc oxide }		440	mg/kg	1.245	547.674 mg/kg	0.0548 %		
Ĺ		030-013-00-7 215-222-5 1314-13-2								
							Total	0.123 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
₫.	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"





Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 0.0004%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0148%)

Page 128 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





Classification of sample: TP10[5]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:
TP10[5] Chapter:
Sample Depth:
2.1 m Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

# **Hazard properties**

None identified

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 actor		value		Oseu
1	0	TPH (C6 to C40) p	etroleum group	TPH		4.11 mg/kg		4.11 mg/kg	0.000411 %		
	Total										

#### Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

#### **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00041%)

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 129 of 135



Classification of sample: TP10[6]

▲ Hazardous Waste
Classified as 17 05 03 *
in the List of Waste

# Sample details

Sample name: LoW Code:

TP10[6] Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

2.6 m Entry: 17 05 03 * (Soil and stones containing hazardous substances)

# **Hazard properties**

HP 2: Oxidizing "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials" Force this Hazardous property to hazardous because Results at limit of detection from the lab. None above limit identified.

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00038%)

#### **Determinands**

Moisture content: 0% No Moisture Correction applied (MC)

1   a   acenaphthene   201-469-6   β3-32-9	#		EU CLP index	Determinand  EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
2   acenaphthylene   205-917-1   208-96-8   -0.1   mg/kg   -0.00001 %   -LOD		0					0.4			0.4		0.00004.0/		1.00
2   205-917-1   208-96-8	1			201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-917-1   208-96-8	2	0	acenaphthylene		•		-0.1	ma/ka		-0.1	ma/ka	-0.00001.9/		4 OD
3	-			205-917-1	208-96-8	1	<0.1	<0.1 mg/kg		<u. i="" iiig="" kg<="" td=""><td>&lt;0.00001 %</td><td></td><td><lod td=""  <=""></lod></td></u.>		<0.00001 %		<lod td=""  <=""></lod>
204-371-1   120-12-7   arsenic trioxide   arsenic trioxide   333-003-00-0   215-481-4   1327-53-3   13   mg/kg   1.32   17.164   mg/kg   0.00172 %	3	0	anthracene				-0.1	ma/ka		-0.1	ma/ka	<0.00001 %		<1.0D
13				204-371-1	120-12-7		<b>40.1</b>	mg/kg		ζ0.1	mg/kg	<0.00001 78		\LOD
5   benzo[a]anthracene	4	4	arsenic { arsenic tr	ioxide }			13	ma/ka	1 32	17 164	ma/ka	0.00172 %		
S		Ĭ	033-003-00-0	215-481-4	1327-53-3		10		1.02	17.10-		0.00172 70		
601-033-00-9   200-280-6   56-55-3	5		benzo[a]anthracen	e			<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
Column   C	Ľ		601-033-00-9	200-280-6	56-55-3		1011					10.00001.70		
Figure   F	6		1 11 /				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
7					50-32-8									
8	7						<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-883-8   191-24-2					205-99-2	╙								
Service   Serv	8	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10					191-24-2									
10	9						<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
10		_			207-08-9	-								
boron {	10	4					1	mg/kg	2.775	2.775	mg/kg	0.000278 %		
11			004-003-00-8	215-133-1	1304-56-9								-	
11		æ.		ibromide/trichlorid	e/trifluoride									
12	11		(combined) }				1.9 mg/kg 13		13 43	25 517	ma/ka	0.00255 %		
048-010-00-4					10294-34-5,		1.5	mg/kg	10.40	20.017	mg/kg	0.00233 70		
048-010-00-4	10	æ	cadmium { cadmiu	m sulfide }	·	1	0.10	ma/k~	1 20F	0.244	ma/k~	0.000010.9/		
13	12	-	048-010-00-4	215-147-8	1306-23-6		0.19	mg/kg	1.200	0.244	mg/kg	0.000019 %		
	13	4			ds {		18	mg/kg	1.462	26.308	mg/kg	0.00263 %		





#		Determinand	CLP Note	User entere	ed data	Conv.	Compound conc.	Classification value	MC Applied	Conc. Not
		EU CLP index	CLP			1 40101		value	MC	Oscu
14	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		1.99	mg/kg	1.923	3.827 mg/kg	0.000383 %		
		024-001-00-0 215-607-8  1333-82-0	-						_	
15		<b>chrysene</b> 601-048-00-0	-	<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		copper { dicopper oxide; copper (I) oxide }							1	
16	w.	029-002-00-X   215-270-7   1317-39-1	-	11	mg/kg	1.126	12.385 mg/kg	0.00124 %		
17	₫.	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene							F	
18		601-041-00-2   200-181-8   53-70-3	-	<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	ethylbenzene		<2	mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
			-						$\vdash$	
20	0	fluoranthene 205-912-4 206-44-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene 201-695-5 86-73-7		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyrene								
22		205-893-2   193-39-5		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	15	mg/kg		15 mg/kg	0.0015 %		
	-	082-001-00-6 mercury { mercury dichloride }							+	
24	4	080-010-00-X 231-299-8 7487-94-7	-	<1	mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
25		naphthalene 601-052-00-2   202-049-5   91-20-3		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	æ	nickel { nickel dihydroxide }							-	
26	_	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		18	mg/kg	1.579	28.431 mg/kg	0.00284 %		
27	0	pH PH		7.4	рН		7.4 pH	7.4 pH		
28	0	phenanthrene		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		201-581-5 85-01-8	-						4	
29		phenol 604-001-00-2 203-632-7 108-95-2	-	1.99	mg/kg		1.99 mg/kg	0.000199 %		
30	0	pyrene 204-927-3 129-00-0		<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	TPH (C6 to C40) petroleum group		56.11	mg/kg		56.11 mg/kg	0.00561 %	T	
32	_	zinc { zinc oxide }		116	mg/kg	1.245	144.387 mg/kg	0.0144 %	+	
		030-013-00-7 215-222-5 1314-13-2					T-4-1	. 0.0344.0/	+	
							Total	: 0.0341 %	$\bot$	

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Hazardous result
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
LOD
Below limit of detection
CLP: Note 1
Only the metal concentration has been used for classification

# **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"





Force this Hazardous property to non hazardous because No evidence of free phase hydrocarbon on site and remedial works would have removed these if present. Unlikely to be hazardous.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00561%)

Page 132 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





#### Appendix A: Classifier defined and non GB MCL determinands

#### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

H411

#### acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

#### anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### • benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride

Data source: N/A

Data source date: 06 Aug 2015

 $Hazard\ Statements:\ EUH014\ ,\ Acute\ Tox.\ 2;\ H330\ ,\ Acute\ Tox.\ 2;\ H300\ ,\ Skin\ Corr.\ 1A;\ H314\ ,\ Skin\ Corr.\ 1B;\ H314\ ,\ Skin\ Corr.\ 1B;\ H314\ ,\ Skin\ Corr.\ 1B;\ H314\ ,\ Skin\ Corr.\ Skin\$ 

#### • chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

#### salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

#### • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### • fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

#### • indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351





#### lead compounds with the exception of those specified elsewhere in this Annex

GB MCL index number: 082-001-00-6

Description/Comments: Least-worst case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH

 $Consortium, following \ MCL \ protocols, \ considers \ many \ simple \ lead \ compounds \ to \ be \ Carcinogenic \ category \ 2$ 

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

#### pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

## phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

#### pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

# TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

#### Appendix B: Rationale for selection of metal species

#### arsenic {arsenic trioxide}

Worst case species based on hazard statements

beryllium {beryllium oxide}

Worst case species based on hazard statements

boron {boron tribromide/trichloride/trifluoride (combined)}

#### Worst case species based on hazard statements

cadmium {cadmium sulfide}

Worst case species based on hazard statements

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Worst case species based on hazard statements

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case species based on hazard statements

copper {dicopper oxide; copper (I) oxide}

Most likely common species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

Page 134 of 135 HX47J-WZRAS-0QRQF www.hazwasteonline.com





lead {lead compounds with the exception of those specified elsewhere in this Annex}

Worst case species based on hazard statements

mercury {mercury dichloride}

Worst case species based on hazard statements

nickel {nickel dihydroxide}

Worst case species based on hazard statements

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on hazard statements

zinc {zinc oxide}

Worst case species based on hazard statements

#### **Appendix C: Version**

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021

HazWasteOnline Classification Engine Version: 2023.332.5826.10798 (28 Nov 2023)

HazWasteOnline Database: 2023.332.5826.10798 (28 Nov 2023)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

**14th ATP** - Regulation (EU) 2020/217 of 4 October 2019

**15th ATP** - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

GB MCL List v2.0 - version 2.0 of 20th October 2023

www.hazwasteonline.com HX47J-WZRAS-0QRQF Page 135 of 135



# Appendix J Preliminary geotechnical risk register



# Geotechnical hazard identification - desk study stage

Potential geotechnical hazards have been assessed in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622. The following pages set out the identified geotechnical risks and hazards which are associated with the proposed development and establish the approach which is to be taken to manage the risks including the geotechnical input and analysis.

Table J.1 is a preliminary assessment of possible geotechnical hazards at the site at Desk Study stage. This information is used to assist with ground investigation design.

Table J.1: Possible geotechnical hazards

Hazard	azard Comment		on desk study
		Could be present and / or affect site (i.e. Plausible)	Unlikely to be present and/or affect site
Uncontrolled Made Ground (variable strength and compressibility).	The entirety of the site is thought to be overlain by Landscaped Made Ground (BGS), and therefore rates of settlement are likely to vary across the site, reflecting variance in the thickness and composition of the Made Ground.	~	-
Soft / loose compressible ground (low strength and high settlement potential).	The Landscaped Made Ground on the site is underlain by thick superficial deposits which will vary in composition spatially, resulting in variable rates of settlement across the ground profile.	~	-
Shrink swell of the clay fraction of soils under the influence of vegetation.	The superficial deposits on the site are anticipated to be clay rich in composition, and therefore the ground profile is likely to be susceptible to shrink swell.	~	-
Variable lateral and vertical changes in ground conditions.	The composition, thickness and spatial distribution of the Made Ground and superficial deposits on site are likely to be highly variable.	~	-



High sulfates present in the soils.	High sulphates are anticipated to be present in the soils, associated with the site's industrial history.	~	-
Adverse chemical ground conditions, (e.g. expansive slag).	Slag was encountered during field reconnaissance, associated with the industrial past of the site.	~	-
Obstructions.	A review of previous investigations undertaken at the site by third parties unveiled images of steel obstructions, which are likely to remain buried below the ground surface.	~	-
Shallow groundwater.	Groundwater is anticipated to be very shallow, and possibly saline, and lie at the same level as the water in the harbour, 50m to the south of the site.	~	-
Changing groundwater conditions.	Groundwater is shallow, and likely to fluctuate.	~	-
Risk from erosion.	The site is a sufficient distance from any major watercourses and the harbour, and therefore not considered to be at risk from erosion.	-	~
Risk from flooding.	The site may be susceptible to flooding from shallow groundwater.	~	-
Loose Made Ground, leading to difficulty with excavation and collapse of side walls.	The site is covered by Landscaped Made Ground, which may potentially cause destabilisation of excavations where loose Made Ground is encountered.	~	-
Slope stability issues – general slopes.	There is one gentle 1.5m high slope in the south of the site, up to the level of Harbour Way (dual carriageway), which appeared to be stable during field reconnaissance. This slope may require a formal stability assessment prior to construction works, dependant on the building location.	~	-
Slope stability issues – retaining walls.	A small 0.5m high brick retaining wall lies along the southern site boundary, below the level of Harbour Way and	<b>✓</b>	-



	is approximately 2m wide. The retaining wall was observed to be in good condition.		
Earthworks – settlement (due to placement of fill on soft / loose ground)/ unsuitability of site won material to be reused as fill/ poor bearing capacity of new fill.	Hydrock are not aware of any proposals for earthworks at this site.	-	<b>~</b>
Solution features in Chalk.	Not present at this site.	-	~
Cavities in the Superficial Deposits due to solution features.	Not present at this site.	-	~
Dissolution (associated with "wet rock head").	Not present at this site.	-	~
Brine extraction.	Not present at this site.	-	~
Mining.	The site is not within an area of the South Wales Coalfield and is unlikely to be impacted by mining.	-	~
Cambered ground with gulls possibly present.	Not anticipated at this site.	-	~
Relict Slip Surfaces.	Not anticipated at this site.	-	~
Solifluction.	Not anticipated at this site.	-	~
Problematic soils (silts and rewetting etc.).	Not anticipated at this site.	-	~



Geotechnical Hazard Identification - Following Ground Investigation

The preliminary Geotechnical Risk Register following Ground Investigation is set out in Table J.3.

The probability and impact of a hazard have been judged on a qualitative scale as set out in Table J.2. The degree of risk (R) is determined by combining tan assessment of the probability (P) of the hazard occurring with an assessment of the impact (I) of the hazard and associated mitigation it will require if it occurs (R =  $P \times I$ ).

Table J.2: Qualitative assessment of hazards and risks

P = Probability		I = Impact		R = Risk Rating (P x I)					
1	Very unlikely (VU)	1	Very Low	1 – 4	None / negligible				
2	Unlikely (U)	2	Low	5 – 9	Minor				
3	Plausible (P)	3	Medium	10 – 14	Moderate				
4	Likely (Lk)	4	High	15 – 19	Substantial				
5	Very Likely (VLk)	5	Very High	20 - 25	Severe				



Hazard	Comments	Who is at Risk	Consequence	Risk Before Mitigation			Actions Required
				Р	1	R	
Uncontrolled Made Ground (variable strength and	There is Made Ground due to historical construction activity at the site, up to 2.8m thick.	Building foundations.	Bearing capacity failure, settlement (total and differential).	4	4	16	Design foundations to found below Made Ground or on Made Ground which has been improved.
compressibility).			Floor slab failure.	4 4		16	Design floor slabs as suspended.
		Roads and Pavements.	Settlement (total and differential) of roads and pavements.	4	2	8	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate.
		Services.	Settlement (differential), causing damage to services.	4	2	8	Anticipated settlements are significant with regard to services. There is a requirement to improve the Made Ground prior to installation of services.
							It is also advisable to steepen falls in drainage to prevent back fall and use rocker boxes and flexible couplings.
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions.	4	3	12	Where soft spots encountered, over-excavation and replacement with suitable fill.
			Overturning of plant during construction.				Outline design of working platform to include geo-grid.



							Site inspection and watching brief by Contractor to review working platform frequently and regularly.
Shrinkage / swelling of the clay fraction of soils under the influence of vegetation.	The clays of the Tidal Flat Deposits have a low to heave potential. The Tidal Flat Deposits are limited in thickness on site and are underlain by granular Alluvial fan deposits.	Floor slabs.	Shrinkage or heave of soils and associated damage to foundations.  Floor slab failure.	1	4	3	The site is due to be ground improved due to the thickness of Made Ground on site which precludes the use of shallow footings. The Tidal Flat deposits are located at circa 2m bgl and are limited in thickness. Any shallow footings on improved ground should be designed in accordance with NHBC standards. Ground bearing floor slab to only be utilised if the ground is improved sufficiently. Otherwise suspended floor slab due to thickness of Made Ground but no heave protection required.
Variable lateral and vertical changes in ground conditions.	The Made Ground soils vary laterally and vertically, both in composition and strength.	Building foundations.	Foundation bearing capacity failure, settlement (total and differential).	4	4	16	Design foundations to found below Made Ground.
			Floor slab failure.	4	4	16	Design floor slab as suspended.
		Roads and Pavements.	Settlement (total and differential), of roads and pavements.	4	3	12	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate.  If anticipated settlements are significant, and cannot be mitigated



							by design, over-excavate and replace unsuitable soils.
		Services.	Settlement (differential), causing damage to services.	1	3	3	Settlements are not anticipated to be significant with regard to services. No additional design requirements envisaged.
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions.  Overturning of plant during construction.	3	3	9	Where soft spots encountered, over-excavate and replace with suitable fill.  Design working platform to suit the ground conditions.
			J				Site inspection and watching brief by Contractor to review working platform frequently and regularly.
Sulfates present in the soils.	The ground investigation has proven that there is the potential sulfate bearing soils to be present.	Attack of buried concrete.	Damage to concrete and reduction in strength.	3	4	12	Classify concrete in accordance with BRE SD1 and design concrete accordingly.
Adverse chemical ground conditions, (e.g. expansive slag).	The site history and the conditions proven during the ground investigation indicate that slag is present on site.	Concrete below ground.	Damage to concrete and reduction in strength.	1	4	4	Slag expansion tests undertaken following site works show that the maximum heave potential of soils resultant from slag expansion is 0.28mm. This is considered extremely low and should not pose a risk to the development.
Obstructions.	Obstructions have been proven by the investigation and there is a potential for additional obstructions to be	Construction staff, vehicles and plant operators.	Risk of collapse of excavation as obstructions are pulled out.	3	3	9	Allow for a breaker to be present during construction and remove obstructions where encountered during construction.



	present due to historical construction activity, or unknown fill in Made Ground.	Roads and Pavements.	Hard spots in externals and roads / pavements.	3	2	6	
		Building foundations.	Impact on piling / VSC, resulting in additional piles / columns and re- design of foundations.	3	3	9	
Shallow groundwater.	Monitoring during the ground investigations has proven a shallow groundwater table (at approximately 1.84m bgl), with relatively fast inflows of water seen during the ground investigation.	Construction staff, vehicles and plant operators.	Difficulty with excavation.  Limit state failure, excessive deformation, trafficking of site plant, inability to place and compact fill.	4	2	8	Contractor to appoint competent Temporary Works Designer to design temporary works, in accordance with BS 5975:2008+A1:2011. Temporary Works Designer to consider in their analysis the impact of, and requirements for, de- watering of excavations. Any water that collects at the base of excavations to be removed as soon as practicable.
Changing groundwater conditions.	Monitoring during the ground investigations has proven that the groundwater table is highly variable (between 1.76 bgl and 2.14m), although this is likely to be resultant of the tidal regime, due to the proximity of the site to the coastline to the south.	Construction staff, vehicles and plant operators.	Difficulty with excavation. Limit state failure, excessive deformation, trafficking of site plant, inability to place and compact fill.	3	2	6	Contractor to appoint competent Temporary Works Designer to design temporary works as required, in accordance with BS 5975:2008+A1:2011. Temporary Works Designer to consider in their analysis the impact of a variable water table.



leading with ex	Loose Made Ground, leading to difficulty with excavation and collapse of side walls.	The ground investigation has indicated that there is a potential for loose soils and Made Ground to be present at the site.	Construction staff, vehicles and plant operators.	Ground failure, instability of plant and machinery. Risk of collapse of excavation.	3	3	9	As instability has been noted in 3 of the pits from surface, foundation options should be reviewed to ensure minimal excavation (e.g. piles).  Contractor to appoint competent
			Pavement construction and long-term durability highways and external areas.	Serviceability issues.	2	3	6	Temporary Works Designer to design temporary works, in accordance with BS 5975:2008+A1:2011.  Temporary Works Design to include recommendations for inspection of excavations. No person entry to unsupported excavations.
	Problematic soils (silts and rewetting etc.).		Building foundations.	Foundation bearing capacity failure, settlement (total and differential).	2	4	8	Design foundations to found below any problematic soils.
				Floor slab failure.	2	4	8	Design floor slab as suspended.
			Roads and Pavements.	Settlement (total and differential), of roads and pavements.		3	6	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate.
								If anticipated settlements are significant, and cannot be mitigated by design, over-excavate and replace soft soils or undertake ground improvement.



		Services.	Settlement (differential), causing damage to services.	2	3	6	Ground levels are remaining at approximately current levels. Settlements are not anticipated to be significant.
							No additional design requirements envisaged.
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions.	2	3	6	Where soft spots encountered, over-excavate and replace with suitable fill.
			Overturning of plant during construction.				Design working platform to suit the ground conditions.
							Site inspection and watching brief by Contractor to review working platform frequently and regularly.
Unforeseen ground conditions - risk associated with limited data.	Ground investigation has been undertaken. However, additional information will be obtained during construction.	All aspects of the develo	pment.	3	4	12	Designers to be contacted if conditions encountered are different to those identified during investigation.
	Ground conditions are only defined at exploratory hole locations.						Regular inspections of excavations and earthworks for evidence of stability.
							Adequate investigation required to characterise the site and understand the potential risks.

Whilst the probability and impact of the hazard occurring can be reduced to a minimum by geotechnical design, the impact cannot be reduced below very low. The risk register will need to be up-dated, as necessary, to reflect design, additional information, data and experience as it is gained through the construction process.

Impacts of the design with regard to health and Safety considerations will need to be included by the designer at design stage.



# Appendix K Plausible source-pathway-receptor contaminant linkages



## Summary of potential contaminant linkages

Table K.2 lists the plausible contaminant linkages which have been identified. These are considered as potentially unacceptable risks in line with guidelines published in LCRM (2019) and additional risk assessment is required.

Source - Pathway - Receptor Linkages have been assessed in general accordance with guidance in CIRIA Report C552 (Rudland *et al* 2001) but modified to add a 'no linkage' category and to remove low/moderate risk (See Table K.1).

It should be noted that whilst the risk assessment process undertaken in this report may identify potential risks to site demolition and redevelopment workers, consideration of occupational health and safety issues is beyond the scope of this report and need to be considered separately in the Construction Phase Health and Safety Plan.

Table K.1: Consequence versus probability assessment.

		Consequence							
		Severe	Medium	Mild	Minor				
	High Likelihood	Very high risk	High risk	Moderate risk	Low risk				
	Likely	High risk	Moderate risk	Low risk	Very low risk				
>	Low Likelihood	Moderate risk	Low risk	Low risk	Very low risk				
Probability	Unlikely	Low risk	Very low risk	Very low risk	Very low risk				
Prob	No Linkage	No risk							



Table K.2: Exposure model – final source-pathway-receptor contaminant linkages

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
Made Ground, associated with historical construction activities and imported fill, possibly including elevated concentrations of metals, metalloids,	Ingestion, inhalation or direct contact. (PO1).	Site users (R01)	Likely.	Severe	High.	Made Ground was encountered during Hydrock's ground investigation at all locations and is thought to underlie the whole site. Asbestos has been identified in TPO1, TPO2 and TPO9. There are also exceedances of the GAC for human health for lead.
asbestos fibres, Asbestos Containing Materials, PAH and petroleum hydrocarbons	Surface water via overland flow (PO4).	Surface water: on site drainage ditch, and harbour off-site 50m to the south (RO4).	Low likelihood	Medium.	Low.	The risk assessment for controlled waters indicated exceedances of the EQS targets for metals, namely copper
(SO1).	Surface water via drainage discharge (PO5).		Low likelihood	Medium.	Low.	and mercury. The EQS has also been exceeded due to concentrations of petroleum hydrocarbons fluoranthene naphthalene and benzo(a)pyrene.
	Surface water via base flow from groundwater (P06).	Groundwater: Secondary A aquifer status of the South Wales Middle Coal Measures (RO3). Surface water: on site drainage ditch, and harbour off-site 50m to the south (RO4).	Low likelihood	Medium.	Low.	Whilst there are concentrations of Chemicals of Potential Concern elevated above the water quality criteria, based on the investigation works undertaken to date and subject to agreement with Natural Resources Wales, Hydrock does not believe the site poses a significant risk to Controlled Waters.  Betterment in the form of disposing of contaminated arisings may be considered prudent.



	Root uptake (P07).	Landscaping (R02).	Likely.	Medium.	Moderate.	The results of laboratory testing show that soils within the Made Ground in TP01 and TP03 were phytotoxic due to exceedances of Hydrock's GAC for zinc, chromium (III) and copper.
Hydrocarbon fuels, lubricants, and solvents from the operation of the chemical works on the site including leakage from Underground Storage Tanks (USTs), Above Ground Storage	Ingestion, inhalation or direct contact. (PO1).	Site users (R01)	Low likelihood	Severe.	Moderate.	No exceedances of the GAC were recorded for human health associated with PAH, TPH, VOC or BTEX in soils on the site. Oxygen however was significantly depleted in the shallow installs in BH01 and BH02, which indicated that vapours, although not detected by PID, may be present.
Tanks (ASTs), the pipework between tanks and pumps, and general spillage, together with	Surface water via overland flow (PO4).	Surface water: on site drainage ditch, and harbour off-site 50m to the south (RO4).	Low likelihood Medium.  Low Medium.  likelihood	Medium.	Low.	Whilst there are concentrations of Chemicals of Potential Concern elevated above the water quality criteria, based on the investigation works undertaken to date and subject to agreement with Natural Resources Wales, Hydrock does not believe the site poses a significant risk to Controlled
uncontrolled disposal and spillage from waste receptacles (SO2).	Surface water via drainage discharge (PO5).			Medium.	Low.	
	Surface water via base flow from groundwater (P06).	Groundwater: Secondary A aquifer status of the South Wales Middle Coal Measures (RO3). Surface water: on site drainage ditch, and	Low likelihood	Medium.	Low.	Waters.  Betterment in the form of disposing of contaminated arisings may be considered prudent.



		harbour off-site 50m to the south (RO4).				
Ground gases (carbon dioxide and methane) from organic materials in the Made Ground / alluvial deposits (SO3).	Inhalation (RO1).  Methane ingress via permeable soils and/or construction	Site users (R01).  Development end use (buildings, utilities and landscaping) (R02).	Likely.	Severe.	High.	The concentrations of methane recorded during the monitoring visits indicate CS2 conditions apply for the site. Oxygen was significantly depleted in the shallow installs in BH01 and BH02.
Hydrocarbon vapours from potential VOC and petroleum hydrocarbon	gaps (PO2). Inhalation (RO1).	Site users (R01).	Likely.	Severe.	High.	Post fieldwork monitoring with a PID indicated vapour concentrations in the range of 0-2.4ppm. Gas monitoring undertaken at the site recorded depleted oxygen in the shallow installs, which is likely to be due to the presence of vapours. The development will require a vapour membrane.
spillages/leaks (SO4).	VOC and petroleum hydrocarbon vapour ingress via permeable soils and/or construction gaps (PO3).	Development end use (buildings, utilities and landscaping) (RO2).				